De Novo–Induced Self-Antigen–Specific Foxp3⁺ Regulatory T Cells Impair the Accumulation of Inflammatory Dendritic Cells in Draining Lymph Nodes

Themis Alissafi, Aikaterini Hatzioannou, Marianna Ioannou, Tim Sparwasser, Joachim R. Grün, Andreas Grützkau and Panayotis Verginis

J Immunol 2015; 194:5812-5824; Prepublished online 6 May 2015; doi: 10.4049/jimmunol.1500111
http://www.jimmunol.org/content/194/12/5812

Supplementary Material http://www.jimmunol.org/content/suppl/2015/05/06/jimmunol.1500111.1.DCSupplemental

References This article cites 57 articles, 21 of which you can access for free at: http://www.jimmunol.org/content/194/12/5812.full#ref-list-1

Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription

Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
De Novo–Induced Self-Antigen–Specific Foxp3+ Regulatory T Cells Impair the Accumulation of Inflammatory Dendritic Cells in Draining Lymph Nodes

Themis Alissafi,* Aikaterini Hatzioannou,† Marianna Ioannou,* Tim Sparwasser,‡ Joachim R. Grün,§ Andreas Grützkau,¶ and Panayotis Verginis‡

Foxp3+ regulatory T cell (Treg)-based immunotherapy holds promise for autoimmune diseases. However, this effort has been hampered by major caveats, including the low frequency of autoantigen-specific Foxp3+ Tregs and lack of understanding of their molecular and cellular targets, in an unmanipulated wild-type (WT) immune repertoire. In this study, we demonstrate that infusion of myelin in WT mice results in the de novo induction of myelin-specific Foxp3+ Tregs in WT mice and amelioration of experimental autoimmune encephalomyelitis. Myelin-specific Foxp3+ Tregs exerted their effect both by diminishing Ag-bearing chemotaxis-related genes. To this end, CCR7 expression by iDCs was significantly downregulated in tolerant mice and this was hampered by major caveats, including the low frequency of autoantigen-specific Foxp3+ Tregs and lack of understanding of their stability of their phenotype and function in vivo are ill defined (9). In the maintenance of homeostasis and tolerance as well as the re-establishment of tolerance based on equivocal data both in mice and humans (1, 2). To this end, Treg-deficient mice develop lethal multiorgan autoimmunity, whereas in humans impaired Treg development leads to life-threatening autoimmune diseases (3–5). Although major effort has been placed in exploiting Tregs for therapeutic intervention in autoimmune diseases, in transplant rejection and allergy, this has been hampered by numerous caveats and impediments. First, emerging data suggest that the efficacy of Treg-mediated suppression is critically dependent on Ag specificity. Because Ag-specific Tregs are infrequent in an unmanipulated repertoire (6), it is essential to devise protocols able to enhance their frequency either in vitro and/or in vivo. Second, growing knowledge supports the existence of diverse Treg subtypes with immunosuppressive potential, including natural Foxp3+ Tregs, adoptive Foxp3+ Tregs, and Tr1 regulatory cells (7, 8). The relative contribution of these Treg subsets in the maintenance of homeostasis and tolerance as well as the stability of their phenotype and function in vivo are ill defined (9). Finally, the molecular and cellular targets of the Treg-mediated suppression in an intact immune system remain elusive.

Accumulating data during the last decade have described multiple and diverse molecules and mechanisms to be involved in Foxp3+ Treg-mediated suppression. These include 1) direct cell-to-cell contact-dependent mechanisms; to this end, expression of CTLA-4, galectin-1, LAG-3, neuropilin 1, and granzyme B by Tregs have all been shown to affect the function and/or survival of APCs and effector T cells; 2) secretion of immunosuppressive soluble mediators by Tregs, such as IL-10, TGF-β, and IL-35, which have been implicated in Treg suppressive activity; and 3) deprivation of IL-2, which may directly suppress effector T cell proliferation and function (1, 2, 10, 11). Although this knowledge has put the field a step forward, major questions regarding the relative contributions of the aforementioned mechanisms in Treg-mediated suppression in vivo as well as the specific cellular targets of Tregs remain unanswered. Importantly, experimental observations on Treg-mediated suppression have severe limitations, as they have been generated mainly using Tregs from either skewed TCR transgenic repertoires or gene-disrupted animals or via Ab-mediated elimination. Whether these data can be extrapolated to wild-type (WT) animals with an unmanipulated immune cell repertoire remains to be seen. Deciphering the relevant modes and targets of Treg-mediated suppression in a given inflammatory milieu in vivo in a WT immune cell repertoire would greatly advance the efforts toward the design of
customized Ag-specific Treg-mediated immunotherapies and ultimately the re-establishment of tolerance.

In this study, we demonstrate that infusion of a myelin Ag in unmanipulated WT mice results in de novo generation of myelin-specific Foxp3+ Tregs and concomitant induction of self-tolerance. Furthermore, we identify Ag-bearing inflammatory DCs (iDCs) as the cellular target of the generated myelin-specific Foxp3+ Tregs, because the latter reduce their accumulation in the draining lymph nodes (dLNs) of tolerant mice and impair their function. Finally, transcriptomic analysis of Treg-exposed iDCs revealed attenuated CCR7-mediated signaling that was dependent on the presence of IL-10. Overall, our data describe a novel model for induction of self-antigen–specific Foxp3+ Tregs in WT animals and shed light on the mechanism of Ag-specific Treg-mediated suppression of autoimmune responses in an unmanipulated immune repertoire.

Materials and Methods

Mice

C57BL/6, BALB/c, and C3H/HeJ mice (C57BL/6 background), purchased from The Jackson Laboratory, were used in this study. All procedures were in accordance with institutional guidelines and were approved by the Greek Federal Veterinary Office. All mice used in the experiments were 8- to 10-wk-old females.

In vivo protocols and experimental autoimmune encephalomyelitis induction

For peptide delivery, mice were implanted s.c. with osmotic micropumps (Alzet 1002; Durect) infusing 10 μg per day of myelin oligodendrocyte glycoprotein (MOG35–55 peptide (Genemed Synthesis) for 14 d. Mice were subsequently immunized s.c. at the base of the tail with 100 μg MOG35–55 (Genemed Synthesis) or OVA (endograde V, Sigma-Aldrich) emulsified (1:1) in CFA (Sigma-Aldrich). Analysis was performed 12 d after immunization.

For experimental autoimmune encephalomyelitis (EAE) induction, mice were immunized s.c. at the base of the tail with 100 μg MOG35–55 in CFA. Mice also received i.p. injections of 200 ng pertussis toxin (Sigma-Aldrich) 1 d prior and 1 d after immunization. For depletion of specific Foxp3+ T cells were sorted (purity >95%) from spleens and LNs of 2D2 transgenic mice, labeled with CFSE (Molecular Probes/Invitrogen; 10 μM for 20 min at 37°C in labeling buffer–PBS/0.1% BSA) and transferred (2 × 106 cells) i.v. into MOG35–55–infused or control mice. At the same time, mice were s.c. immunized with MOG35–55:CFA. LNs and spleen were collected and analyzed 6 d after immunization.

Histological analysis and immunofluorescence

To assess CNS inflammation, mice were perfused with 4% paraformaldehyde. The spinal cords were dissected and fixed, followed by 30% sucrose. Fixed tissues were then frozen with OCT. Five-micrometer sections of the spinal cord were stained with H&E and analyzed in a blinded fashion.

For immunofluorescence staining, tissue was permeabilized by immersing the frozen sections in acetone for 10 min at −20°C. Sections were rinsed in PBS and blocked with 0.5% Triton X-100 solution for 60 min. Sections were then incubated overnight with rabbit anti-GFP Ab (1:500, Minotech Technologies). The next day sections were incubated for 1 h with anti-rabbit CF 488A IgG (1:800, Biotium), DAPI (300 nM, Sigma-Aldrich) fluorescent dye was used for nuclear staining.

T cell proliferation assays and cytokine assessment

Inguinal dLNs were harvested 9 d after immunization and 4 × 105 cells were cultured in the presence or absence of MOG35–55 or OVA (30 μg/ml) for 72 h. Cells were then pulsed with 1 μCi [3H]thymidine (TRK120; Amersham Biosciences) for 18 h, and incorporated radioactivity was measured using a Beckman beta counter. Results are expressed as stimulation index defined as cpm in the presence of Ag/cpm in the absence of Ag. Cytokines were assessed in culture supernatants collected after 48 h of stimulation. In other experiments sorted iDCs were stimulated with or without LPS (1 μg/ml; Sigma-Aldrich). Cytokines were assessed in supernatants, collected 18–20 h later. Pulsed iDCs (2 × 104) were then cultured in the presence of dLNs (4 × 104) as responders, isolated from mice, 9 d following MOG35–55:CFA immunization in the presence of MOG35–55 peptide (30 μg/ml). Cytokines were assessed in culture supernatants 48 h later. In other experiments, 4 × 104 iDCs (isolated as described above) were cultured in a 1:1 ratio with CFSE-labeled (1 μM) dLNs isolated from BALB/c mice in a MLR. In some experiments dLNs were dissected and homogenized with PBS containing protease inhibitors mixture (Roche). Detection of IL-2, IFN-γ (BD OptEIA, BD Biosciences), and CXCL1 (RC), TNF-α, IL-10, and IL-17 (Duoset, R&D Systems) was performed by ELISA following the manufacturers’ recommendations. In other experiments, inguinal LNs were dissected and homogenized with PBS containing protease inhibitors mixture (Roche). Detection of CCL19 and CCL21 (Duoset, R&D Systems) in supernatants of dLN homogenates was performed by ELISA.

In vitro suppression assay

For in vitro suppression assays, 5 × 104 highly purified CD4+Foxp3+ Tregs were sorted from dLNs of MOG35–55–infused or tolerated/MOG35–55–immunized Foxp3gfp+K1 mice (7 d postimmunization [dpi]) and mixed with CFSE-labeled 5 × 104 iDCs (CD11b+ T cells isolated from naive or MOG35–55–infused B6 mice in a 1:1 ratio in the presence of Dynabeads T-activator CD3/CD28 for T cell expansion and activation. Cells were collected and analyzed 4 d later.
Genechip hybridization and data analysis

Total RNA from iDCs isolated from spleen and dLNs of tolerated/MOG35–55-immunized or MOG35–55-immunized mice 9 d following immunization was prepared with a Qiagen RNeasy mini kit. All experiments were repeated three times with individually sorted cells purified to >96% homogeneity. Hybridization on Affymetrix MG430 2.0 GeneChip arrays was performed at the Ramin genomics facility and high-performance chip data analyses with the BioRetis database as well as hierarchical clustering were performed in the Bioinformatics Department of the German Rheumatism Research Center (Berlin, Germany) and validated as described (13). All chip data were uploaded to Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo, accession no. GSE47210) and are publicly available.

Quantitative PCR analysis

iDCs were isolated as described above, followed by reverse transcription with a ThermoScript reverse transcriptase kit (Invitrogen). Transcripts were quantified by incorporation of Platinum SYBR Green (Bio-Rad Laboratories) with a StepOnePlus real-time PCR system (Applied Biosystems), and expression was calculated by the change-in-threshold method (ΔΔCT) with Hprt mRNA (encoding hypoxanthine phosphoribosyltransferase 1). Specific primers were as follows: Hprt, forward, 5′-CCACGGCAATGA-3′, reverse, 5′-GGACGCAGCAACTGACAT-3′; Gr-1, forward, 5′-GTGAAACTGGACTACCA-3′, reverse, 5′-GACTACCCACCGGCAATGA-3′.

Western blot analysis

Whole-cell lysates (40 μg protein) were subjected to SDS-PAGE electrophoresis on 12% gels and then transferred to an Immobilon-P membrane (Millipore). Membranes were blocked with 5% skimmed milk, 1% BSA, or 5% BSA in TBST and then incubated with anti- phospho-PI3K p85α (Z-8) (1:200, Santa Cruz Biotechnology), anti- phospho-Akt (Ser473) (1:1000, Cell Signaling Technology), anti-phospho-PI3K p85α (Z-8) (1:200, Santa Cruz Biotechnology), anti-phospho-Akt (Ser473) (1:1000, Cell Signaling Technology), anti- Akt (C67E7) (1:1000, Cell Signaling Technology), anti-phospho-SAPK/JNK (Thr183/Tyr185) (1:1000, Cell Signaling Technology), anti-sapK/JNK (1:1000, Cell Signaling Technology), anti-phospho-p38 MAPK (Thr180/Tyr182) (1:1000, Cell Signaling Technology), anti-p38 MAPK (1:1000, Cell Signaling Technology). Detection was performed using HRP-linked Abs (Cell Signaling Technology) and ECL detection reagents (Amersham Biosciences).

Statistical analysis

Statistical analyses were performed using a Student t test. Data are presented as means ± SEM. Differences were considered statistically significant at p < 0.05. All data were analyzed using GraphPad Prism v5 software.

Results

Subimmunogenic delivery of MOG35–55 peptide in WT animals ameliorates EAE

The efficacy of Tregs in exerting their function is critically dependent on their Ag specificity (14, 15); however, Ag-specific Tregs are rare in an intact T cell repertoire. Others and we have previously demonstrated that subimmunogenic delivery of a foreign TCR agonist in WT animals leads to Ag-specific tolerance (16–18). To examine whether this method is suited for induction of self-tolerance, mice were infused with the self-peptide MOG35–55 and monitored for EAE development. Notably, MOG35–55-infused/MOG35–55-immunized mice experienced significantly decreased severity and disease onset (Fig. 1A) and reduced inflammatory lesions in the spinal cords (Fig. 1B) as compared to MOG35–55-immunized group. Specifically, assessment of spinal cord cell infiltrates using flow cytometry demonstrated a reduction of the frequency of CD4+ and CD8+ T cells as well as CD11c+ DCs in MOG35–55-infused/MOG35–55-immunized compared to MOG35–55-immunized mice. In contrast, the frequency of infiltrating CD11c+Gr-1+CD11b+CD44high myeloid-derived suppressor cells (12, 19) was markedly enhanced (data not shown). In vitro recall stimulation assays of dLNCs isolated from MOG35–55-infused/MOG35–55-immunized mice showed a defective induction of IL-2, IFN-γ, and IL-17, accompanied by markedly reduced cell proliferation compared with control-immunized dLNCs (Fig. 1C). To address whether MOG35–55 infusion tolerated specifically the self-reactive T cells, MOG35–55-infused mice were immunized with OVA in CFA and dLNCs were restimulated in vitro with MOG35–55 or OVA. Based on the production of IFN-γ and IL-17, the immunogenicity of OVA was not affected (Fig. 1D), suggesting that self-antigen infusion induces tolerance in an Ag-specific manner. Additionally, adoptive transfer of CFSE-labeled MOG35–55-specific T cells (Vα3.2*Vβ8.1*CD4+ cells), from 2D2 TCR transgenic mice, into MOG35–55-infused/MOG35–55-immunized mice demonstrated limited expansion and suppressed proliferation of the transferred cells in dLNs (Fig. 1E) and spleens (data not shown) compared with cells transferred into MOG35–55-immunized animals. Overall, these results suggest that MOG35–55 infusion induces self-tolerance and thus MOG35–55-infused/MOG35–55-immunized mice will be referred to henceforth as tolerized/MOG35–55-immunized.

Infusion of MOG35–55 peptide results in induction of MOG35–55-specific Foxp3+ Tregs

Next, we assessed whether infusion of MOG35–55 peptide was accompanied by induction of Foxp3+ Tregs. As shown in Fig. 2A, tolerized/MOG35–55-immunized mice had significantly increased frequency and absolute numbers of Foxp3+ Tregs in the dLNs as compared with MOG35–55-immunized animals. Furthermore, application of the tolerization protocol to Foxp3+ Tregs within the inflammatory loci of spinal cords during the peak of EAE (Fig. 2B), suggesting that Foxp3+ Tregs were enhanced in tolerized/MOG35–55-immunized mice both in the peripheral lymphoid compartments as well as the target organ. Interestingly, assessment of Foxp3+ Treg-associated molecules revealed significantly increased expression of CTLA-4 and LFA-1 on CD4+Foxp3+ cells of tolerized/MOG35–55-immunized and control Foxp3+KI immunized mice (Fig. 2C).

To determine whether infusion of MOG35–55 results in induction of MOG35–55-specific Foxp3+ Tregs, we performed ex vivo staining of dLNCs using an I-Aβ-restricted MOG35–49-specific tetramer (I-Aβ/MOG38–49). Flow cytometry analysis revealed a significant increase in the proportion and absolute numbers of I-Aβ/MOG38–49 CD4+Foxp3+ (7AAD−B220−CD8−) cells in tolerized/MOG35–55-immunized as compared with control-immunized mice and a marked contraction of the I-Aβ/MOG38–49 CD4+Foxp3+ population (Fig. 2D). Finally, we assessed the in vitro suppressive potential of Foxp3+ Tregs and Foxp3+ CD4+ T cells isolated from tolerized/MOG35–55-immunized and control-immunized Foxp3+KI mice. Notably, Foxp3+ Tregs from tolerized or control animals potentely suppressed the proliferation of effector cells (Fig. 2E), whereas Foxp3+ CD4+ T cells from the respective groups were unable to inhibit T cell proliferation (Supplemental Fig. 2). Overall, our data provide evidence for the induction of MOG35–55-specific Foxp3+ Tregs through infusion of MOG35–55 autoantigen in WT mice that are potently suppressive.

Depletion of MOG35–55-specific Foxp3+ Tregs restores autoimmune reactivity in tolerant mice

The increased frequency of MOG35–55-specific Foxp3+ Tregs in tolerized/MOG35–55-immunized mice indicates a potential role of...
FIGURE 1. Induction of self-tolerance in MOG35–55-infused WT animals. (A) Mean clinical score (**p < 0.0001), days of onset (**p = 0.0004), and EAE severity (**p = 0.0011) are shown. (B) Representative H&E sections from spinal cords of MOG35–55-immunized (clinical score 4) and MOG35–55-infused/MOG35–55-immunized (clinical score 1.5) mice 14 dpi. (C) Stimulation index (**p = 0.0055) and IL-2 (**p = 0.0021), IFN-γ (**p = 0.0035) levels in supernatants of dLNcs (isolated 9 dpi) cultured with MOG35–55. (D) dLNcs isolated from MOG35–55-infused mice immunized with either MOG35–55 or OVA were stimulated in vitro as shown. Levels of IFN-γ (**p = 0.0001, ***p = 0.0096, *p = 0.0206) and IL-17 (**p = 0.0006, ****p < 0.0001, *p = 0.0483, *p = 0.0126, *p = 0.0289) are depicted. (E) Flow cytometric analysis of dLNcs (6 dpi) for CFSE dilution upon transfer of CFSE-labeled Vα3.2*Vβ8.1*CD4+2D2 T cells in MOG35–55-immunized or MOG35–55-infused/MOG35–55-immunized mice (gates were set on CFSE+ cells). Numbers of Vα3.2*CD4+ 2D2 cells per dLN (*p = 0.0314) are depicted. Results are expressed as means ± SEM; n = 4 mice/group, three independent experiments. For (A)–(C), results are expressed as means ± SEM; n = 8 mice/group, three independent experiments.
FIGURE 2. MOG35–55 infusion leads to MOG35–55-specific Foxp3+ Treg induction. (A) Frequencies (**p = 0.0014) and numbers (*p = 0.0111) of CD4+ Foxp3+ dLNCs from MOG35–55-immunized or tolerized/MOG35–55-immunized mice, respectively (7 dpi). (B) Representative H&E and immunofluorescent sections from spinal cords of MOG35–55-immunized (clinical score 4, 14 dpi) and tolerized/MOG35–55-immunized (clinical score 2.5, 17 dpi) Foxp3gfp.KI mice. Scale bars, 50 \(\mu \)m. Numbers of Foxp3-GFP+ cells per section are shown (***p, 0.0001). (C) Flow cytometric analysis of IL-10 expression by CD4+ T cells isolated from dLNs of Foxp3gfp.KI mice. Numbers (*p = 0.0131) and percentages (*p = 0.0163) of 7AAD−B220−CD8−CD4+Foxp3+IL-10+ cells per dLN are shown, as are numbers (**p = 0.0050) and percentages (*p = 0.0423) of 7AAD−B220−CD8−CD4+Foxp3−IL-10− cells per dLN. (D) Flow cytometric analysis of CD4+MOG38–49/I-Ab+ dLNCs from MOG35–55-immunized or tolerized/MOG35–55-immunized mice for the expression of Foxp3. hCLIP/I-Ab was used as control. Frequencies (**p = 0.0075, *p = 0.0299) and numbers (**p = 0.0039, *p = 0.0232) of CD4+MOG38–49/I-Ab− Foxp3+ and Foxp3− cells, respectively, are shown. (E) CD4+Foxp3+ Tregs isolated from dLNs of MOG35–55-immunized or tolerized/MOG35–55-immunized Foxp3gfp.KI mice (7 dpi) were mixed with CellTrace-labeled CD4+CD25−CD62L+ T cells (1:1 ratio) in the presence of CD3/CD28 Dynabeads. Flow cytometric analysis for CellTrace dilution was measured 4 d later. Results are expressed as means ± SEM; \(n = 4 \) mice/group, three (Figure legend continues)
these cells in the amelioration of EAE. To explore this hypothesis, we performed the tolerization protocol in DEREG mice (Fig. 3A) that express a DT receptor under the Foxp3 promoter. Injection of DT in tolerized animals eliminated the entire Foxp3-expressing Treg compartment (including Foxp3+ Tregs induced during the infusion protocol) (data not shown). Mice were challenged with MOG35–55/CFA 5 d later (Fig. 3A). At this time point only thymus-derived Tregs emerged in the periphery, because de novo generation of Foxp3+ Tregs was not feasible (completion of MOG35–55 infusion takes place in 14 d). Consistent with our previous findings, tolerized/MOG35–55-immunized DEREG mice exhibited significantly decreased incidence of EAE that was markedly enhanced in tolerized/Foxp3+ Treg-depleted/MOG35–55-immunized mice (Fig. 3B). Additionally, robust secretion of IFN-γ and IL-17 as well as heightened T cell proliferation were observed in recall in vitro assays of dLNCs isolated from tolerized/Foxp3+ Treg-depleted/MOG35–55-immunized DEREG mice as compared with cells obtained from tolerized/MOG35–55-immunized mice (Fig. 3C). Collectively, our data demonstrate the operation of dominant tolerance executed by myelin-specific Foxp3+ Tregs in MOG35–55-immunized mice.

Impaired migration and function of Ag-bearing inflammatory DCs in dLNs of tolerized/MOG35–55-immunized animals

Extensive literature implicates DCs as one of the major cell targets of Treg-mediated suppression (2, 10, 11), but the precise DC subset that is targeted by Foxp3+ Tregs remains elusive. Interestingly, we identified 7AAD+CD3+CD19+CD11c+CD11bhighGr-1+ DCs to be markedly decreased in the dLNs of tolerized/MOG35–55-immunized mice as compared with MOG35–55-immunized control mice (Fig. 4A). To determine whether the reduced CD11c+CD11bhighGr-1+ DC accumulation to the dLNs was due to de novo–generated Foxp3+ Tregs, we performed the Foxp3+ Treg elimination protocol in tolerized/MOG35–55-immunized DEREG mice as described in Fig. 3A. Notably, depletion of Foxp3+ Tregs resulted in complete restoration of CD11c+CD11bhighGr-1+ DC trafficking to the dLNs, because both their frequencies and absolute numbers reached the levels of the control-immunized littermates (Fig. 4B), suggesting that Foxp3+ Tregs curtail the accumulation of CD11c+CD11bhighGr-1+ DCs to the dLNs. Of note, the proportion of annexin V+ CD11c+CD11bhighGr-1+ DCs did not differ between tolerized/MOG35–55-immunized and control-immunized mice (data not shown). Furthermore, kinetic experiments demonstrated an impaired accumulation of CD11c+CD11bhighGr-1+ DCs in tolerized/MOG35–55-immunized mice (Fig. 4C), suggesting that Treg-mediated cell death of CD11c+CD11bhighGr-1+ DCs could not account for their impaired accumulation in dLNs of tolerized/MOG35–55-immunized mice.

DCs expressing such phenotype have been characterized as iDCs (20–22) with a potent ability to augment T cell responses. Characterization of the function of iDCs in our setting demonstrated that iDCs isolated from MOG35–55-immunized dLNs secreted vast amounts of proinflammatory cytokines such as CXCL1 and TNF-α (Fig. 5A), and they significantly enhanced MOG35–55-specific Th1 and Th17 responses in vitro (Fig. 5B), thus confirming their inflammatory properties. Importantly, immunization of mice with OVA–Alexa Fluor 488/CFA demonstrated that Ag was mostly displayed by iDCs in the dLNs, whereas other CD11c-expressing cells only slightly contributed in Ag transport to dLNs (Fig. 5C).

To examine whether Foxp3+ Tregs regulated not only the accumulation but also the phenotype and function of the remaining iDCs in the dLNs, we first assessed the expression of MHC class II and costimulatory or inhibitory molecules. Expression of I-antennae and CD86 molecules was significantly downregulated in DCs isolated from dLNs of tolerized/MOG35–55-immunized mice compared with either tolerized/Foxp3+ Treg-depleted/MOG35–55-immunized or control MOG35–55-immunized animals (Fig. 5D), whereas expression of CD80, CD40, and PD-L2 was not affected (Fig. 5D). Furthermore, iDCs isolated from dLNs of tolerized/MOG35–55-immunized mice (H-2b) were not as sufficient as iDCs from MOG35–55-immunized or Foxp3+ Treg-depleted/MOG35–55-immunized syngeneic mice to induce activation, proliferation, and IL-2 release in an MLR using dLNCs from BALB/c (H-2b) mice (Fig. 5E). Overall, our findings suggest that de novo–induced Foxp3+ Tregs affect the recruitment of iDCs in the dLNs and potently modulate their function.

MOG35–55-specific Foxp3+ Tregs impair the accumulation of iDCs in the dLNs via downregulation of CCR7 expression

To gain insight into the mechanisms underlying Treg-mediated modulation of iDC function, we determined the gene expression pattern of iDCs from tolerized and control-immunized mice using Affymetrix expression microarrays. Surprisingly, 5155 differentially regulated transcripts were identified in iDCs from tolerized mice (data not shown). Hierarchical clustering, using Genes@Work with Pearson correlation and center of mass, pointed to an enrichment of genes encoding molecules involved in chemotaxis (for example Ccr7) (Fig. 6A), suggesting that tolerance induction through MOG35–55-specific Foxp3+ Tregs can regulate pathways critical for iDC migration to dLNs. To validate the microarray results, we performed quantitative real-time PCR for Ccr7. Ccr7 expression by iDCs isolated from tolerized/MOG35–55-immunized animals was found significantly reduced (Fig. 6B). Trafficking of DCs in dLNs is tightly regulated through interactions of LN stroma–derived CCL19 and CCL21 chemokines and CCR7 expressed by DCs (22, 23). To this end, we assessed whether MOG35–55 infusion affected the secretion of these two chemokines. No significant differences were observed for CCL19, whereas CCL21 levels were increased in tolerized/MOG35–55-immunized dLN homogenates (Fig. 6C). Our data indicate that MOG35–55-specific Foxp3+ Tregs impair the accumulation of iDCs in the dLNs via downregulation of CCR7 expression.

Inhibition of IL-10 signaling in tolerized/MOG35–55-immunized animals restores iDC trafficking to the dLNs

Immunomodulatory cytokines such as IL-10 have been linked to Treg suppressive function (24–26). To examine whether the elevated secretion of IL-10 by Tregs was involved in the decreased accumulation of iDCs to dLNs of tolerized mice, we administered an IL-10R neutralizing Ab following completion of MOG35–55 infusion (Fig. 7A). Neutralization of IL-10 signaling resulted in a 3-fold induction in the proportion of iDCs in dLNs of tolerized/MOG35–55-immunized/IL-10R–treated mice compared with the tolerized/MOG35–55-immunized group (Fig. 7B). Interestingly, blocking of IL-10R signaling in tolerized/MOG35–55-immunized mice resulted in the upregulation of the expression of Ccr7 (Fig. 7C) compared with tolerized/MOG35–55-immunized animals.
suggesting that IL-10 inhibits CCR7 expression on iDCs. Additionally, MOG35–55-immunized \textit{Il10}^{−/−} mice exhibited elevated numbers of iDCs in their dLNs compared with their WT littermates (Fig. 7D) that was accompanied by enhanced expression of CCR7 on iDCs (Fig. 7E), confirming thus that IL-10 affects the recruitment of iDCs in the dLNs through regulation of CCR7 expression.

Finally, to gain insight into the molecular signaling regulating the IL-10–mediated recruitment of iDCs, we studied the expression of signaling molecules implicated in controlling CCR7-mediated chemotaxis. Generally, chemokine receptors mediate signaling via MAPKs such as JNK and p38. These molecules are important regulators of chemotaxis and random motility in a variety of cells (27–29). Chemokine receptors may also activate PI3K and the downstream effector target protein kinase B (Akt), which plays a central role in regulation of the chemotactic response in leukocytes and other cells (30, 31). We analyzed whether deficiency of IL-10 induced the activation of JNK/p38 or PI3K/Akt axis in DCs. For this, DCs were isolated from dLNs and spleen of MOG35–55-immunized \textit{Il10}^{−/−} or WT littermates. The cells were lysed and the lysates were analyzed by Western blotting using Abs specific for the phosphorylated/active forms of the proteins mentioned above. Although we were not able to detect any differences in the phosphorylation pattern of MAPKs, JNK, and p38 (Fig. 7D), DCs isolated from \textit{Il10}^{−/−}/MOG35–55-immunized mice had increased phosphorylation of p85, the regulatory subunit of PI3K, as well as increased phosphorylation of Akt (Fig. 7D) compared with DCs isolated from \textit{Il10}^{+/+}/MOG35–55-immunized littermates. These data suggest that the PI3K/Akt signaling pathway is involved in the IL-10–mediated inhibition of chemotaxis in DCs.

Discussion

Foxp3-expressing Tregs play a pivotal role in the maintenance of self-tolerance, and thus methods seeking their generation and expansion are of great importance in the field of autoimmunity, where self-tolerance is disturbed. In this study, we demonstrate the de novo induction of autoantigen-specific Foxp3 Tregs in an unmanipulated immune repertoire and the concomitant induction of self-tolerance, and we provide new insights into the molecular
and cellular bases that underlie Foxp3+ Treg-mediated suppression of autoimmune responses. To this end, we demonstrate that myelin-specific Foxp3+ Tregs 1) restrain the accumulation of Ag-bearing iDCs, which are required for the priming of encephalitogenic responses, in the dLNs, and 2) target the CCR7-dependent migration of iDCs in an IL-10–dependent manner.

Induction and/or expansion of Ag-specific Foxp3+ Tregs has been documented in a plethora of studies. To this end, oral administration or i.v. injection of myelin peptides induce tolerance in EAE via induction of T cell clonal anergy (32, 33) or through autoreactive T cell deletion (34), respectively. Additionally, transdermal administration of myelin peptides successfully inhibited EAE in TCR transgenic animals (35, 36). Finally, expression of Ag by tissue-resident cells or delivery of Ag by either targeting the DCs or using infusion protocols resulted in generation of Ag-specific Tregs (18, 37–39). However, to our knowledge, our study for the first time demonstrates direct evidence for the operation of dominant tolerance executed by myelin-specific Foxp3+ Tregs induced in unmanipulated mice and subsequent amelioration of EAE. However, whether these methods could be

FIGURE 4. MOG35–55-specific Foxp3+ Tregs impair the accumulation of CD11c+CD11b+Gr-1+ DCs to the dLNs. (A) Flow cytometric analysis of 7AAD−CD3−CD19−CD11c+CD11bhighGr-1− cells in the dLNs. Percentages (*p = 0.0260, ***p < 0.0001) and numbers of 7AAD−CD3−CD19−CD11c+CD11bhighGr-1− cells (*p = 0.0163, ***p = 0.0007, ***p = 0.0006) per dLN are depicted. (B) Flow cytometric analysis and numbers (*p = 0.0375, **p = 0.0028) of CD11c+CD11bhighGr-1− in dLNs of MOG35-55-immunized, tolerized/MOG35–55-immunized, and tolerized/Foxp3+ Treg-depleted/MOG35–55-immunized DEREG mice. For (A) and (B), analysis was performed 4 d following immunization. (C) Kinetic analysis of 7AAD−CD3−CD19−CD11c+CD11bhighGr-1− cells in dLNs of MOG35–55-immunized and tolerized/MOG35–55-immunized mice 1, 2, or 3 dpi. Results are expressed as means ± SEM; n = 6 mice/group, three independent experiments.
FIGURE 5. MOG35–55–specific Foxp3+ Tregs modulate the function of Ag-bearing iDCs. (A) Levels of CXCL1 (***p = 0.0006) and TNF-α (***p = 0.0001) in supernatants of untreated or LPS-treated purified CD11c+CD11bhighGr-1+ iDCs isolated from dLNs and spleen of MOG35–55–immunized mice. (B) Levels of IFN-γ (*p = 0.0175, **p = 0.0017, ***p = 0.0026, ****p < 0.0001) and IL-17 (*p = 0.0195, **p = 0.0016, ***p = 0.0006, ****p < 0.0001) in supernatants from cocultures of iDCs with responder cells purified from MOG35–55–immunized spleens and dLNs. (C) Flow cytometric analysis of OVA uptake in CD11c+ cell subsets. (D) Flow cytometric analysis and percentages of CD11c+I-Abhigh (**p = 0.0016, ***p = 0.0005), and expression of CD86 (*p = 0.0203, **p = 0.0073), CD40, CD80, PD-L2, and PD-L1 on CD11c+CD11b+ cells in dLNs. For data depicted in (A) and (B), results are expressed as means ± SEM; n = 6 mice/group, three independent experiments. (E) iDCs isolated from MOG35–55–immunized, Foxp3+ Treg-depleted/ MOG35–55–immunized.
adopted to generate self-antigen–specific Foxp3+ Tregs in a WT immune repertoire remains unknown. Importantly, generation of myelin-specific Foxp3+ Tregs did not induce a generalized immunosuppression, because immune responses against foreign Ag were not compromised. In line with this result, Kasagi et al. (40) recently demonstrated that radiation-triggered apoptosis results in autoantigen-specific Tregs that treat ongoing autoimmunity without affecting immune responses to bacterial Ags.

Our observations raise important questions regarding the relative contribution of other Treg subsets in amelioration of EAE and establishment of self-tolerance. Notably, in our model the disease induced in tolerized mice upon elimination of myelin-specific Foxp3+ Tregs appeared to be less aggressive and less severe compared with control-immunized animals, suggesting the operation of additional mechanisms of tolerance. Additionally, the increased frequency of the IL-10–producing Foxp3-GFP2 T cell population in tolerant mice upon elimination of myelin-specific Foxp3+ Tregs could instruct the induction of myelin-specific Tr1 cells in the periphery of infused mice that act in concert with thymus-derived myelin-specific Foxp3+ Tregs toward the re-establishment of self-tolerance. In support of this idea, it has been demonstrated that the maturation status of DCs could direct the induction of IL-10–producing Tregs both in vivo and in vitro (44, 45). Regardless of the relative contribution of distinct cell-intrinsic mechanisms of tolerance or inducible Treg subsets in the re-establishment of self-tolerance in our model, our results clearly demonstrate that myelin-specific Foxp3+ Tregs possess a central role in the re-establishment of self-tolerance by suppressing the migration of Ag-bearing iDCs in the dLNs of tolerant mice.

The Treg-mediated suppression of DC activation and function has been extensively proposed based on in vitro (46–48) and in vivo studies (49, 50). However, the DC lineage is heterogeneous and the precise subset that is targeted by Tregs is unknown. Furthermore, different DC subsets might be involved in tolerance induction in different inflammatory settings or at different inter-
FIGURE 7. IL-10 impairs the accumulation of iDCs in the dLNs of self-tolerant mice via modulation of CCR7 signaling. (A) Protocol used for administration of IL-10R Ab. (B) Flow cytometric analysis of iDCs in the dLNs following IL-10R Ab administration. Numbers of iDCs (*p = 0.0243, *p = 0.0219, **p = 0.0025, ***p = 0.0016, ****p = 0.0091) per dLN are shown. (C) Relative mRNA expression of Ccr7 (*p = 0.0327, *p = 0.0145, *p = 0.0304, ****p = 0.0015) in iDCs. (D) Flow cytometric analysis and numbers (*p = 0.0166) of iDCs in dLNs of MOG35–55-immunized Il10−/− and Il10+/+ mice (3 dpi). (E) Flow cytometric analysis of CD11c+CD11bhighGr-1+CCR7+ iDCs in dLNs of MOG35–55-immunized Il10−/− and Il10+/+ mice (3 dpi). (F) Western blot analysis for expression of p-p38, total p38, p-SAPK/JNK, total SAPK/JNK, p-PI3K, total PI3K, p-Akt, and total Akt in DC lysates isolated from spleens and dLNs of MOG35–55-immunized Il10−/− and Il10+/+ mice (3 dpi). Results are expressed as means ± SEM; n = 6 mice/group, three independent experiments.
faces. Our data reveal that self-antigen–specific Foxp3+ Tregs diminish the accumulation of CD11c+CD11bhiGr-1+iDCs that carry Ag to the dLNs. iDCs secrete significant amounts of proinflammatory cytokines and endow MOG35–55–specific Th1 and Th17 responses, confirming their robust inflammatory properties (21). Furthermore, iDCs are absent from the dLNs during the steady-state and they gradually appear upon encountering the inflammatory insult. Because migration of Ag-bearing DCs to peripheral lymphoid compartments plays an essential role in the initiation of adaptive immune responses (51, 52), we propose that the steady-state and they gradually appear upon encountering the inflammatory environment could operate to facilitate the DC migration to LNs. iDCs secrete significant amounts of proinflammatory cytokines and endow MOG 35–55-specific Th1 responses, confirming their robust inflammatory properties and Th17 responses, confirming their robust inflammatory properties.

How Foxp3+ Tregs impair the iDC trafficking at a molecular level is not known. Our results demonstrate that in vivo neutralization of IL-10 signaling in tolerized animals is essential for restoring the iDC levels to dLNs, and this was accompanied by increased levels of CCR7 expression by iDCs. CCR7-mediated migration of DCs to dLNs is vital for the initiation of an immune response (23, 54). Both CCL19 and CCL21, which are known to orchestrate DC migration to LNs (55), were not reduced in LN homogenates of tolerant mice, suggesting that the impaired iDC migration to LNs could not be attributed to differences in the expression of CCR7 ligands and points toward differences in the molecular pathways downstream of CCR7. CCR7 stimulation leads to phospholipase C activation followed by diacylglycerol-mediated activation of protein kinase C and intracellular calcium release (56). Following this, a variety of signaling molecules have been implicated in the CCR7-mediated chemotaxis of DCs as well as their migratory speed. To this end, activation of PI3K and the downstream target protein Akt have been shown to coordinate chemotactic responses of inflammatory cells (30). Additionally, MAPKs have also been implicated in the regulation of chemotaxis as well as in cell motility (57). Whether IL-10 affects any of these pathways and thus DC chemotaxis remains elusive. Our results highlight that IL-10 regulates the PI3K/Akt pathway in iDCs during MOG35–55/CFA immunization, suggesting that this pathway might be crucial for the coordinated chemotaxis and/or migratory speed of iDCs in our model. Taking into account the several DC subtypes, it is possible that different signaling events under specific inflammatory environments could operate to facilitate the DC migration and positioning into the dLNs.

In summary, our results suggest a model for the de novo generation of self-antigen–specific Foxp3+ Tregs in unmanipulated mice and provide evidence for the Ag-bearing iDCs as a target of the Foxp3+ Treg-mediated induction of self-tolerance. Protocols aiming at the induction and/or expansion of self-antigen–specific Foxp3+ Tregs provide invaluable knowledge toward the design of cell-based therapies in autoimmune diseases that could confer specificity avoiding a pan-immunosuppression. Importantly, these findings have the potential of extending beyond the autoimmune field to allergic responses, graft-versus-host disease, and solid organ rejections during transplantation regimens whereby disturbed tolerance is a common denominator.

Acknowledgments

We thank Eirini Kirmizi and Maria Savvaki for assisting with experiments, Xara Vlata and Niki Goulani for cell sorting, Anna Agapaki for histology preparations, Heidi Schliemann for chip hybridizations, and Vily Panoutsokopoulou for discussions and for critically reading the manuscript.

Disclosures

The authors have no financial conflicts of interest.

