Correction: Chimeric NKG2D Expressing T Cells Eliminate Immunosuppression and Activate Immunity within the Ovarian Tumor Microenvironment

Amorette Barber, Agnieszka Rynda and Charles L. Sentman

J Immunol 2014; 193:1513; doi: 10.4049/jimmunol.1490025b
http://www.jimmunol.org/content/193/3/1513.3
Corrections


We recently discovered through single-nucleotide polymorphism analysis that the GM-CSF–deficient mice used in these studies were not backcrossed onto the C57BL/6 (B6) background and appear to be a B6/129/FVB genetic mix. These mice have the MHC region of B6 origin. Because it is theoretically possible that the other genes in this mixed strain could account for some of the phenotypes we observed using these mice, we have done several experiments to test this hypothesis. We have performed in vivo experiments on acute chimeric Ag receptor (CAR) T cell effects and anti-tumor efficacy studies using 129/Sv, (B6 × 129/Sv)F1, or C3H as sources of CAR T cells, and these F1 and allogeneic CAR T cells gave similar readouts as B6 CAR T cells in the same experiments with B6 recipients. GM-CSF–deficient mice as hosts in the ID8 ovarian tumor model or the RMA-RG lymphoma model resulted in a similar outcome as when B6 CAR T cells are used in B6 hosts. These data suggest that different background genes do not affect the outcomes in these types of experiments. However, we cannot rule out that a unique combination of genes in this strain may have some effect, so we want the scientific community to be aware that the GM-CSF–deficient mouse strain used in these was of a mixed genetic background.