A Deficiency in the Prostaglandin D2 Receptor CRTH2 Exacerbates Adjuvant-Induced Joint Inflammation

Yoshiki Tsubosaka, Tatsuro Nakamura, Hiroyuki Hirai, Masatoshi Hori, Masataka Nakamura, Hiroshi Ozaki and Takahisa Murata

J Immunol 2014; 193:5835-5840; Prepublished online 31 October 2014;
doi: 10.4049/jimmunol.1303478
http://www.jimmunol.org/content/193/12/5835

Supplementary Material
http://www.jimmunol.org/content/suppl/2014/10/31/jimmunol.1303478.DCSupplemental

References
This article cites 40 articles, 23 of which you can access for free at:
http://www.jimmunol.org/content/193/12/5835.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
A Deficiency in the Prostaglandin D₂ Receptor CRTH2 Exacerbates Adjuvant-Induced Joint Inflammation

Yoshiki Tsubosaka,* Tatsuro Nakamura,* Hiroyuki Hirai,† Masatoshi Hori,‡ Masataka Nakamura,§ Hiroshi Ozaki,‡ and Takahisa Murata*

Although the cyclooxygenase metabolites PGs are known to be involved in the progression of arthritis, the role of PGD₂ remains unclear. In this study, we evaluated the contribution of signaling mediated through a PGD₂ receptor, chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2), in the progression of adjuvant-induced joint inflammation. Injection of CFA into the ankle joint stimulated PGD₂ production and induced paw swelling in both CRTH2-naive (WT) and CRTH2⁻/⁻ mice. CRTH2⁻/⁻ mice presented more severe arthritic manifestations than did WT mice. Through bone marrow transplantation experiments between WT and CRTH2⁻/⁻ mice, we showed that CRTH2 deficiency in bone marrow-derived immune cells is involved in disease progression. Morphological studies showed that CRTH2 deficiency accelerated the infiltration of macrophages into the inflamed paw. Consistent with this finding, we observed that treatment with the macrophage inactivator GdCl₃ or the macrophage-depleting agent liposomal clodronate improved arthritis symptoms in CRTH2⁻/⁻ mice. In addition, CRTH2 deficiency accelerated, whereas CRTH2 agonism inhibited, the expression of a macrophage-activating cytokine (GM-CSF) and a chemokine receptor (CXCR2) in CFA-treated peritoneal macrophages. Together, these observations demonstrate that PGD₂–CRTH2 signaling plays a protective role in joint inflammation by attenuating the infiltration of macrophages.

Increasingly, studies are investigating the pathophysiologic role of PGD2. The administration of PGD2 or a DP agonist has anti-inflammatory effects in rat bowel inflammation (18) and mouse atopic dermatitis (19). DP receptor agonists also inhibit eosinophil migration (20) and dendritic cell activation (21) in a mouse model of asthma. Additionally, we showed that DP deficiency promotes mouse acute lung inflammation, tumor growth, and dermatitis by inhibiting vascular permeability, whereas DP agonists suppress acute lung inflammation (22–24). Together, these studies suggest that the PGD2-DP pathway exerts an anti-inflammatory effect.

In contrast, there are several studies showing that proinflammatory responses also are mediated through CRTH2. In vitro studies show that CRTH2 agonist stimulates chemotactic activation of Th2 cells, basophils, eosinophils, and macrophages (25, 26). In line with these observations, treatment with a CRTH2 agonist aggravates atopic dermatitis, whereas CRTH2 deficiency improves it (27, 28). Concomitant CRTH2-mediated anti-inflammatory reactions were reported. CRTH2 deficiency promoted the infiltration of eosinophils into asthmatic mice (29), as well as the infiltration of neutrophils in septic mice (30). Thus, PGD2 signaling can regulate inflammation differently, depending on the context of the disease.

PGD2 synthases are expressed at high levels in arthritic joints, and PGD2 production is detected in the serum and arthritic paws of model mice (31, 32). However, the pathophysiologic roles of PGD2 in RA remain unknown. In this study, we investigated the role of CRTH2-mediated signaling in arthritic inflammation using genetically modified mice. Our results demonstrate that CRTH2 signaling attenuates adjuvant-induced joint inflammation by inhibiting macrophage accumulation and activation.

Materials and Methods

Reagents

The following reagents were used: IFA and heat-killed Mycobacterium tuberculosis strain H37RA (Becton Dickinson, San Diego, CA); paraformaldehyde, Triton X-100, and GdCl3 (WAKO, Osaka, Japan); liposomal clodronate (FormuMax Scientific, Palo Alto, CA); 13,14-dihydro-15-keto-PGD2 (DK-PGD2) (Cayman Chemicals, Ann Arbor, MI); M-CSF (ProSpec, East Brunswick, NJ); DAPI, BSA, HBSS, and RPMI 1640 (Sigma-Aldrich, St. Louis, MO); random RT primers, ReverTra Ace, and THUNDERBIRD SYBR qPCR Mix (TOYOBO, Osaka, Japan); FITC-labeled Y chromosome probes (Chromosome Science Labo, Hokkaido, Japan); anti–granulocyte receptor-1 (anti–Gr-1), anti-CD4, and anti-CD8 Ab (BioLegend, San Diego, CA); anti-CD68 Ab (AbD Serotec, Oxford, U.K.); anti-F4/80 Ab (BMA Biomedicals, Augst, Switzerland); and anti-rat IgG conjugated to Alexa Fluor 488 (Molecular Probes, Eugene, OR).

Mice

All experiments and animal care were conducted in conformity with the institutional guidelines of The University of Tokyo. CRTH2−/− mice were generated, backcrossed for >10 generations to C57BL/6J mice, and bred as previously described (28). Control wild-type (WT) mice of the same generation were used.

Stimulation of adjuvant-induced joint inflammation

The adjuvant-induced joint inflammation model is known to exhibit features similar to human RA (33). WT and CRTH2−/− mice, 8–12 wk old, were injected s.c. at two sites around the left ankle joint with 150 μg CFA. The volume of the hind paw was measured using a digital plethysmometer (LE7500; Panlab, Barcelona, Spain). Results are expressed as the difference (Δ ml) in paw volume before and after administration of CFA.

A series of bone marrow (BM) transplantation experiments was performed. To ablate the BM, recipient mice (4–5 wk old) were irradiated (9 Gy). BM cells (2 × 106) were isolated from the femurs and tibiae of donor mice (8–12 wk old) and injected into the tail vein of recipient mice. The subsequent experiments were conducted on the mice 6 wk posttransplantation.

Morphological analysis

Hind paws were fixed in 10% neutral-buffered formalin for 4 d, decalcified in 30% formic acid for 24 h, and embedded in paraffin. Four-micrometer-thick sections of the ankles were stained with H&E or toluidine blue.

Immunofluorescence was performed on frozen sections (4 μm). The primary Abs used were anti–CD68 (1:1000), anti–F4/80 (1:500), anti–Gr-1 (1:500), anti–CD4 (1:500), and anti–CD8 (1:500). The images were captured using an Eclipse E800 fluorescence microscope (Nikon, Tokyo, Japan). The number of CD68+, F4/80+, Gr-1−, CD4+, and CD8− cells was counted in 10 randomly selected fields.

Measurement of PGD2 and PGE2

The content of PGD2 and PGE2 in the paws was measured as previously described (23). Briefly, excised paws were quickly frozen in liquid nitrogen and homogenized in ethanol containing 0.02% HCl, and the samples were separated by HPLC. The quantification was performed using an LCMS-8030 Triple Quadropole Mass Spectrometer (Shimadzu, Kyoto, Japan).

Isolation of peritoneal macrophages

Mice were injected i.p. with 150 μg CFA and sacrificed after 72 h. Peritoneal exudate cells were collected by washing with 5 ml HBSS. The cells were incubated in RPMI 1640 for 2 h, and the adherent cells (peritoneal macrophages) were collected. In some experiments, the CRTH2 agonist DK-PGD2 (10 μg/kg) was injected i.p. in mice 2 h prior to CFA treatment and twice daily thereafter.

RT-PCR

Total RNA was extracted from intact hind paws or peritoneal exudate macrophages. The first-strand synthesis of cDNA was performed using a random 9-mer primer and ReverTra Ace. For RT PCR analyses, cDNA was amplified using THUNDERBIRD SYBR qPCR Mix and an ABI Prism 7000 (Applied Biosystems, Foster City, CA). The expression levels were determined by the ΔCt method, using 18S rRNA as an endogenous control gene. The primer sequences used are shown in Table 1.

Inactivation of macrophages

To decrease macrophage number and activity in an in vivo situation (34), GdCl3 (100 μg/kg) was administered i.p. 1 d prior to CFA treatment and, subsequently, on alternating days. The macrophage-depletion agent liposomal clodronate (100 μl/100 g) also was administered i.p. 1 d prior to and every 3 d following, CFA injection.

Adoptive transfer of macrophages

To prepare BM-derived macrophages (Mfs), BM cells from male WT or CRTH2−/− mice were cultured in RPMI 1640 supplemented with 10% FBS and 20 ng/ml M-CSF for 7 d. Mfs (1.5 × 106) from each mouse group were transferred into female WT hosts by i.v. injection immediately before and every 3 d after CFA treatment. The cryosections were labeled with the FITC-labeled Y chromosome probes (Chromosome Science), following the manufacturer’s protocol, and the number of FITC+ cells was counted in randomly selected fields.

Statistics

Data are expressed as mean ± SEM. Unpaired Student t test was used to compare data between two groups. One-way ANOVA followed by a Tukey or Dunnett test or two-way ANOVA followed by the Bonferroni post hoc test were used to compare multiple groups. A p value < 0.05 was considered significant.

Results

CRTH2 deficiency exacerbates arthritis

As shown in Fig. 1A and 1B, nontreated WT and CRTH2−/− mice had the same initial paw size, and the injection of CFA (150 μg) induced paw swelling. Their paw swelling peaked on day 11 and lasted until day 15 (paw volume on day 15, WT mice: 0.15 ± 0.013 ml; CRTH2−/− mice: 0.29 ± 0.023 ml; n = 5 for each). CRTH2−/− mice showed a progressive development of paw swelling throughout the test period. By day 11 postinjection, the pad volume of CRTH2−/− mice was ~2-fold greater than that of WT mice.

No morphological differences were observed between WT and CRTH2−/− hind paws prior to CFA stimulation (Fig. 1C, 1D, left
A log value of the mean mRNA levels of CFA-treated WT paws is regarded as 1.0. The data are presented as the ratio of expression relative to that in CFA-treated WT paws. *p < 0.05 versus nontreated paws. Concentration of PGD2 (F) and PGE2 (G) in paws (day 11, n = 4–5). *p < 0.05 versus CFA-treated WT paws, †p < 0.05 versus nontreated paws. c, calcaneus; t, talus; t, tibia.

CRTH2 deficiency in hematopoietic lineage cells aggravates arthritis
To investigate the contribution of CRTH2 signaling in hematopoietic and nonhematopoietic lineage cells during arthritis progression, BM chimeric mice were generated and analyzed. WT hosts with transplanted CRTH2-deficient BM (WT + CRTH2−/−BM) exhibited a CFA-induced increase in paw volume equal to that of nonchimeric CRTH2−/− mice (CRTH2−/− + WTBM) (Fig. 2A). Conversely, chimeric CRTH2−/− mice possessing WT BM (CRTH2−/− + WTBM) displayed a reduced paw volume in response to CFA injection compared with that of nonchimeric CRTH2−/− mice. These results suggest that a genetic CRTH2 deficiency in hematopoietic cells aggravates adjuvant-induced joint inflammation.

CRTH2 deficiency accelerates infiltration of macrophages in inflamed paws
We performed a histological analysis on paws on the third day post-CFA injection, a time point when the manifestations of arthritis are first observed. H&E staining of paw cross-sections revealed that the majority of infiltrating cells exhibited multilobulated or notched nuclei, which are typical of neutrophils or monocytes/macrophages, respectively (Fig. 2B, insets). Consistent with these observations, immunostaining showed that many cells expressed the macrophage marker CD68 or F4/80 (representative images are shown in Fig. 2D, Supplemental Fig. 2A, and the quantifications are shown in Fig. 2D or Supplemental Fig. 2B) or the neutrophil marker Gr-1. Few cells expressed the T cell markers CD4 and CD8. We found that the number of CD68+ macrophages in CRTH2−/− paws was ∼2.4-fold greater than that in WT paws. Notably, the numbers of Gr-1+ neutrophils and CD4+CD8+ T cells were comparable between the mouse strains. These observations lines, whereas the PGE2 level in CRTH2−/− mice was ∼2-fold greater than that in WT mice.

Table I. Primer list
<table>
<thead>
<tr>
<th>Name</th>
<th>Sense</th>
<th>Antisense</th>
<th>Sequences (5′ → 3′)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNF-α</td>
<td>Sense</td>
<td>ACAGCATGAGGCATTCACAAAGC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antisense</td>
<td>CGAACATCCCCAAGATCTTTAGG</td>
<td></td>
</tr>
<tr>
<td>IL-6</td>
<td>Sense</td>
<td>GTCCGTCCTTGGCCTGTGAGCC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antisense</td>
<td>TGGAGAGCATTAGAAGACA</td>
<td></td>
</tr>
<tr>
<td>IL-1β</td>
<td>Sense</td>
<td>TCACTGCTCCATTGACAGCAC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antisense</td>
<td>TGGGGAAGCCATGTAAGAAC</td>
<td></td>
</tr>
<tr>
<td>M-CSF</td>
<td>Sense</td>
<td>TTTGCTGAACTGACACCTGAG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antisense</td>
<td>ATCTGGCAAGTTCCCTCCCTTC</td>
<td></td>
</tr>
<tr>
<td>GM-CSF</td>
<td>Sense</td>
<td>GAAGAGTGAGGAGAGAAAGTTG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antisense</td>
<td>CCAAGAATGAGAAATGAGAAG</td>
<td></td>
</tr>
<tr>
<td>CCR1</td>
<td>Sense</td>
<td>GTTTTATCATTGAGATTGAGTTG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antisense</td>
<td>TTGTTGACACAGATGATGCTTG</td>
<td></td>
</tr>
<tr>
<td>CCR2</td>
<td>Sense</td>
<td>TTGTACATTGACATTGACAGG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antisense</td>
<td>ACGAATGAGGAAGAGAATGAG</td>
<td></td>
</tr>
<tr>
<td>CXCR2</td>
<td>Sense</td>
<td>CTGCTAGTTCCATTGAGATTGAG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antisense</td>
<td>CTGTTGACACAGATGATGCTTG</td>
<td></td>
</tr>
<tr>
<td>iNOS</td>
<td>Sense</td>
<td>GTGTTGACACAGATGATGCTTG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antisense</td>
<td>TTGTTGACACAGATGATGCTTG</td>
<td></td>
</tr>
<tr>
<td>IL-12</td>
<td>Sense</td>
<td>CCACTCATTCACTCATTGAGCAGG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antisense</td>
<td>ACTTCTTATGACCTTTGGTGAGAA</td>
<td></td>
</tr>
<tr>
<td>IFN-γ</td>
<td>Sense</td>
<td>ATAGAAGCGTCACTCAGCCTTTC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antisense</td>
<td>CCAAGAATGAGAAATGAGAAG</td>
<td></td>
</tr>
<tr>
<td>Arginase-1</td>
<td>Sense</td>
<td>CGAGCGAGAGGAGAGAAATGAG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antisense</td>
<td>CCAAGAATGAGAAATGAGAAG</td>
<td></td>
</tr>
<tr>
<td>CD206</td>
<td>Sense</td>
<td>GTCGGCATTCCACAGATGTTTCTT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antisense</td>
<td>CCAAGAATGAGAAATGAGAAG</td>
<td></td>
</tr>
<tr>
<td>18S rRNA</td>
<td>Sense</td>
<td>GAAGAATGAGGAAGAGAATGAG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antisense</td>
<td>CCAAGAATGAGAAATGAGAAG</td>
<td></td>
</tr>
</tbody>
</table>

This content is from The Journal of Immunology, volume 181, issue 9, published 1 May 2013.
suggest that CRTH2 deficiency accelerates the infiltration of macrophages into CFA-injected paws.

CRTH2 deficiency in macrophages aggravates arthritis

Next, we investigated the contribution of macrophages to the development of adjuvant-induced joint inflammation in CRTH2"/-" mice. As shown in Fig. 3A and 3B, treatment with the macrophage inactivator GdCl3 (100 mg/kg, 1 d before and alternating days post-CFA treatment) significantly reduced the CFA-induced paw swelling typically seen in CRTH2"/-" mice to a level that was comparable to that in WT mice. Consistently, GdCl3 treatment also decreased the elevated mRNA levels of IL-6 and IL-1β that we observed in CRTH2"/-" inflamed paws (Fig. 3C). Treatment with the macrophage-depleting agent liposomal clodronate (100 μl/head, 1 d before and every 3 d after CFA treatment) improved the paw swelling normally observed in CRTH2"/-", but not WT, mice (Fig. 3D). These results indicate that the infiltrating macrophages exacerbate joint inflammation in CRTH2"/-" mice. As shown in Supplemental Fig. 3, GdCl3 treatment decreased the volume of the swollen paws induced by higher concentrations of CFA (500 μg) in WT mice. Therefore, the 150-μg dose of CFA might not have been sufficient to observe a response to macrophage inactivation/depletion in WT mice.

We next examined whether CRTH2"/-" macrophages aggravated joint inflammation. Mfs isolated from male CRTH2"/-" or WT mice were injected into female WT mice, and tissue infiltration of Y chromosome+ macrophages was assessed. On day 11, Y chromosome+ Mfs were detected in WT inflamed paws (Fig. 3E). The number of infiltrating CRTH2"/-" Mfs was 2.0-fold greater than that of WT Mfs (Fig. 3F). The adoptive transfer of CRTH2"/-" Mfs to WT hosts induced greater paw swelling than that of WT Mfs (Fig. 3G). These results further support the hypothesis that CRTH2 deficiency in macrophages exacerbates the manifestations of joint inflammation.

CRTH2 deficiency enhances the accumulation and activation of macrophages

We next attempted to clarify the mechanism by which CRTH2"/-" macrophages aggravate adjuvant-induced joint inflammation. Three days after the i.p. injection of CFA (150 μg), peritoneal macrophages were isolated and characterized. Similar to the data obtained in arthritic ankles, CRTH2 deficiency increased the infiltration of macrophages into the peritoneal cavity in response to CFA injection (Fig. 4A). There are two subsets of macrophages. M1 macrophages produce the proinflammatory cytokines inducible NO synthase, IL-12, and IFN-γ, whereas M2 macrophages synthesize arginase-1, an enzyme that inhibits NO synthase activity and expresses a scavenger receptor (CD206). As shown in Supplemental Fig. 4, CRTH2 deficiency did not change the mRNA expression of these cytokines and cell surface Ag. However, CRTH2 deficiency increased the mRNA expression of a macro-

FIGURE 2. The deficiency of CRTH2 enhances macrophage infiltration. (A) Time-dependent changes in paw volume (n = 9–10), *p < 0.05, versus WT + WT Mf mice, *p < 0.05, versus CRTH2"/-" + WT Mf mice on day 11. (B) Representative H&E staining of ankle sections (day 3). Scale bar, 20 μm. (C) Representative images of CD68+, Gr-1+, CD4+, and CD8+ cells in the ankle sections (n = 4 for each). *p < 0.05 versus CFA-treated WT paws, †p < 0.05 versus nontreated paws.

FIGURE 3. CRTH2 deficiency in macrophages exacerbates adjuvant-induced joint inflammation. GdCl3 (100 mg/kg) was administered i.p. 1 d prior to CFA treatment and on alternating days thereafter. (A) Representative images of CFA-induced paw swelling on day 11. Scale bar, 1 cm. (B) Time-dependent changes in paw volume (n = 5–6), *p < 0.05 versus saline-treated WT paws, †p < 0.05 versus saline-treated CRTH2"/-" paws on day 11. (C) mRNA expression levels of proinflammatory cytokines in arthritic paws (day 5, n = 5–9). A log value of the mean mRNA levels of saline-treated WT paws is regarded as 1.0. The data are presented as the ratio of expression relative to that in saline-treated WT paws. *p < 0.05 versus saline-treated WT paws, †p < 0.05 versus saline-treated WT Mfs, ‡p < 0.05 versus saline-treated CRTH2"/-" paws. (D) Changes in paw volume on day 11 after CFA immunization (n = 5/group). Liposomal clodronate (100 μl/head) was administered i.p. 1 d before and every 3 d after CFA injection. *p < 0.05 versus saline-treated CRTH2"/-" paws, †p < 0.05 versus saline-treated WT paws, ‡p < 0.05 versus saline-treated WT Mfs. (E) Changes in paw volume on day 11 after CFA immunization (n = 4–5). Mfs (1.5 × 10⁶) from each group of mice were transferred into WT hosts by i.v. injection immediately before and every 3 d after CFA treatment. *p < 0.05 versus WT + WT Mf mice.
phage-activating cytokine, GM-CSF, and a chemokine receptor, CXCR2, in the CFA-stimulated macrophages (Fig. 4B). Consistently, i.p. injection of a CRTH2 agonist DK-PGD2 (10 μg/kg) was injected i.p. into mice 2 h prior to CFA treatment and again twice daily. A log value of the mean mRNA levels of WT or vehicle-treated macrophages is regarded as 1.0. The data are presented as the ratio of expression relative to that in WT or vehicle-treated macrophages. *p < 0.05 versus WT or vehicle-treated macrophages.

FIGURE 4. CRTH2 deficiency enhances the accumulation and activation of macrophages. (A) Number of CFA-elicited macrophages in the peritoneal cavities (n = 7/group). *p < 0.05 versus WT mice. (B and C) mRNA expression levels of cytokines and chemokine receptors in peritoneal macrophages (n = 4–8). DK-PGD2 (10 μg/kg) was injected i.p. into mice 2 h prior to CFA treatment and again twice daily. A log value of the mean mRNA levels of WT or vehicle-treated macrophages is regarded as 1.0. The data are presented as the ratio of expression relative to that in WT or vehicle-treated macrophages. *p < 0.05 versus WT or vehicle-treated macrophages.

Discussion

In this study, we demonstrated that a genetic deficiency in the PGD2 receptor CRTH2 aggravates adjuvant-induced joint inflammation by enhancing macrophage invasion and activation.

The clinical benefits of nonsteroidal anti-inflammatory drugs imply an exacerbating role for cyclooxygenase-mediated PG production in the pathogenesis of RA (11). Previous experimental evidence suggested that the major PGs, PGE2 and PGD2, are abundantly produced in arthritic joints, and they aggravate arthritis by activating immune responses (12, 13). These observations support the notion that PGs are a proinflammatory, exacerbating factor for RA. In contrast, using genetically deficient mice, we identified an endogenous PGD2-CRTH2 pathway that acts in an antiarthritic manner. PG-mediated signaling appears to modulate the progression of joint inflammation multilaterally, with proinflammatory or anti-inflammatory effects, depending on the context.

The infiltration of macrophages into inflamed paws reportedly exacerbates RA progression by producing a set of proinflammatory/proarthritic cytokines, including TNF-α, IL-6, and IL-1β (35). Indeed, the severity of RA positively correlates with the number of infiltrating macrophages in inflamed joints (2). Depletion of macrophages using drugs or gene recombination improves murine arthritis (3, 4). Therefore, researchers have explored ways to modulate macrophage activation to treat RA. In this study, we showed that the PGD2-CRTH2 pathway is a novel inhibitory signaling of the macrophage response in the adjuvant-induced joint inflammation model.

Adjuvant-induced joint inflammation exhibits features similar to human RA, such as infiltration of innate immune cells into the joint and articular cartilage and bone destruction (33). However, because we used a relatively low dosage of CFA (150 μg), the resulting manifestation was relatively weak in WT mice. This model can be used as an experimental model of incipient human RA. In addition, CFA-induced inflammation does not include an adoptive autoimmune response that is characterized by T cell infiltration, which is also crucial for RA progression. Thus, we could not clarify the contribution of CRTH2 signaling to the autoimmune response. Previous studies separately indicated the implications of D2 or macrophage in serum-induced mouse autoimmune arthritis (3, 4, 31). The PGD2-CRTH2 pathway may be common in various types of joint immune responses, and this signaling pathway may be exploited as a potential therapeutic target for the treatment of RA in the future. Further investigations are needed to clarify this point.

In vitro studies showed that CRTH2 agonism (DK-PGD2, 10 nM–1 μM) elicits the migration of immune cells, including macrophages, Th2 cells, eosinophils, and basophils (25, 26). Intradermal administration of DK-PGD2 (3 μg/site) in mice also promotes neutrophil accumulation (36). In contrast to these reports, our data showed that the concentration of PGD2 in inflamed WT paws was relatively lower (~35 ng/g) (Fig. 1F) and that CRTH2 deficiency accelerated CFA-induced macrophage accumulation in vivo (Figs. 2D, 3F, 4A). Furthermore, our group reported previously that CRTH2 deficiency or CRTH2 agonism (DK-PGD2, 100 μg/kg) does not influence LPS-induced neutrophil infiltration into the lung (22). This inconsistency in the chemotactic action of CRTH2 signaling on immune cells may be attributed to differences in the site of PGD2 production or CRTH2 stimulation and/or the strength and duration of signaling, the target tissue, and the type of stimulant.

As shown in Fig. 2D, neutrophil infiltration is comparable in WT and CRTH2−/− paws, whereas macrophage infiltration is accelerated in CRTH2−/− paws. A previous study showed that a variety of chemokines for neutrophils, such as CXCL1, CXCL2, CXCL5, CCL2, and CCL7, were detected in murine serum–induced arthritic joints (37). These chemokines other than PGD2 may more dominantly modulate neutrophil infiltration into the inflamed paw.

Based on our data, we conclude that CRTH2 deficiency enhances, and CRTH2 agonism inhibits, the expression of the macrophage-stimulating factors GM-CSF and CXCR2, which further promotes the manifestations of arthritis (Fig. 4B, 4C) (37, 38). CRTH2 is coupled to Gi-type G proteins. Previous studies reported that CRTH2 agonism activates PI3K, which then suppresses IL-2–induced apoptosis in Th2 cells (39). Other groups showed that the constitutive activation of PI3K, by creating a deficiency in the PTEN gene, inhibits the expression of proinflammatory cytokines, including TNF-α and IL-6, in macrophages (40). Although we did not fully elucidate the detailed mechanism of macrophage depression by CRTH2 signaling, our data suggest that it might act by inhibiting the expression of GM-CSF and CXCR2 via PI3K activation.

Although a previous study showed that chondrocytes and synovial cells in murine arthritic paws express PGD2 synthases (31), we did not identify the functional source of PGD2 during the progression of joint inflammation in our study. In addition, there is a possibility that PGD2 may exhibit pathophysiological responses that act exclusively on DP when CRTH2 is absent. DP activation is reported to have anti-inflammatory effects in various pathological conditions, including asthma, dermatitis, and lung inflammation, as well as in tumors (21–24). Human osteoclasts express DP and CRTH2, and stimulations of both receptors inhibited osteoclast differentiation (41). Although we did not clarify the contribution of DP-mediated signaling in this study, it might also improve manifestations of arthritis. Further investigation is necessary to reveal the pathophysiological implications of PGD2 signaling.
In conclusion, we demonstrate that PGD_2-CRTH2 signaling improves joint inflammation by inhibiting macrophage activation and accumulation. Our findings provide new insights into the protective effect and therapeutic potential of exogenous activation of CRTH2 signaling in treating arthritis.

Disclosures
The authors have no financial conflicts of interest.

References