Homeostasis of Thymus-Derived Foxp3+ Regulatory T Cells Is Controlled by Ultraviolet B Exposure in the Skin

Sayuri Yamazaki, Akiko Nishioka, Saori Kasuya, Naganari Ohkura, Hiroaki Hemmi, Tsuneyasu Kaisho, Osamu Taguchi, Shimon Sakaguchi and Akimichi Morita

J Immunol 2014; 193:5488-5497; Prepublished online 27 October 2014;
doi: 10.4049/jimmunol.1400985

http://www.jimmunol.org/content/193/11/5488

Supplementary Material http://www.jimmunol.org/content/suppl/2014/10/27/jimmunol.1400985.DCSupplemental

References This article cites 42 articles, 18 of which you can access for free at: http://www.jimmunol.org/content/193/11/5488.full#ref-list-1

Subscription Information about subscribing to *The Journal of Immunology* is online at: http://jimmunol.org/subscription

Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
Homeostasis of Thymus-Derived Foxp3+ Regulatory T Cells Is Controlled by Ultraviolet B Exposure in the Skin

Sayuri Yamazaki,* Akiko Nishioka,* Saori Kasuya,* Naganari Ohkura,† Hiroaki Hemmi,‡ Tsuneyasu Kaisho,‡,§ Osamu Taguchi,*¶ Shimon Sakaguchi,‡ and Akimichi Morita*†

Accumulating evidence shows that immunological tolerance induced by Ag administration together with UVB irradiation is dependent on Foxp3+ CD4+ regulatory T (Treg) cells. However, the mechanisms by which UVB controls Treg cells in the skin are currently unclear. In this study, we have shown that exposure to UVB induced expansion of Treg cells up to 50–60% of the CD4+ T cells in the irradiated skin. The Treg cell expansion in the skin lasted for 2 wk after exposure, which contributed to homeostasis of Treg cells in the periphery later. UVB-expanded Treg cells formed clusters with dendritic cells and proliferated in situ. Furthermore, the expanded Treg cells appeared to derive from neuropilin 1+ thymus-derived T (tTreg) cells in the periphery because UVB-expanded Treg cells possessed Treg cell–specific CpG hypomethylation pattern, as seen in tTreg cells. These results collectively indicate that homeostasis of tTreg cells is controlled by UVB exposure in the skin. UVB therapy may be useful for not only inflammatory skin disorders, but also autoimmunity, transplantation, and allergy.

T regulatory (Treg) cells suppress a variety of immune responses, including autoimmunity, antitumor immunity, transplant rejection, allergy, and microbial immunity (1–3). Two origins of Treg cells have been identified to date, thymus-derived Treg (tTreg) cells and peripherally derived Treg (pTreg) cells (4). Recent studies indicate that homeostasis of pTreg cells is primarily maintained in the intestine by commensal microbes (5–7).

Immunological skin disorders, such as psoriasis and atopic dermatitis, are clinically treated with UVB therapy. There is an accumulating evidence that tolerance induced by UV is mediated by Treg cells (8–10). Suppressive function of peripheral blood Treg cells from psoriasis patients was restored by UV therapy (11).

UV-induced receptor activator for NF-κB ligand on keratinocytes stimulates Langerhans cells to expand Treg cells (8), and PG E2-receptor subtype 4 signaling plays a role in UV-induced tolerance (10). These works mainly investigated the UVB effect on Treg cells in the draining lymph nodes. How Treg cells in the skin are controlled by UVB is poorly understood.

In this work, we investigated the role of UVB in Treg cell maintenances in the skin. We found vigorous expansion of Foxp3+ Treg cells in the skin after UVB exposure. Treg cells actively proliferated in UVB-exposed skin in situ, which contributed to homeostasis of Treg cells in the periphery later. The expanded Treg cells in the skin expressed cutaneous homing receptors and were able to migrate to other parts of the skin. Expanded Treg cells were mainly identified as neuropilin 1+ Treg cells. DNA methylation analysis revealed that expanded Treg cells have acquired the Treg cell–type CpG hypomethylation pattern. Accordingly, we propose that UVB plays a critical role in maintaining homeostasis of Treg cells in the periphery, especially in the skin.

Materials and Methods

Mice

C57BL/6J (B6) mice were obtained from SLC (Shizuoka, Japan) and maintained in the Nagoya City University Animal Facility under specific pathogen-free conditions. The institutional animal care and use committee of Nagoya City University approved this study (ID: H24-M24), and committee guidelines were followed throughout.

Abs and reagents

The anti-mouse Foxp3 (FJK-16s) staining kit was purchased from eBioScience (San Diego, CA); anti-MHC class II Ab, anti–P-selectin ligand (P-lig) Ab was from BD Biosciences (San Diego, CA); and anti-neuropilin 1 Ab was from R&D Systems (Minneapolis, MN). Anti-CD4 and streptavidin microbeads were from Miltenyi Biotec (Gladbach, Germany). CFSE, Live/Dead fixable aqua, and 5-ethynyl-2′-deoxyuridine (EdU) were obtained from Molecular Probes (Eugene, OR). Mitomycin C was from Sigma-Aldrich (St. Louis, MO).

UVB irradiation

UVB was provided by TL20/W12 lamps (Phillips, Eindhoven, The Netherlands), which emit most of their energy within the UVB range (290–320 nm; emission peak 313 nm). Mice were shaved and irradiated with a systemic exposure of 500 mJ/cm2, reported to induce tolerance by Treg cells (10). In the experiment of Fig. 1C, mice were also irradiated with 150 mJ/cm2 daily.

*Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; †Department of Experimental Immunology, World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan; §Laboratory for Immune Regulation, World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan; ‡Laboratory for Inflammatory Regulation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Yokohama, Kanagawa 230-0045, Japan; and ¶Department of Ophthalmology, Kochi Medical School, Nankoku 783-8505, Japan

The online version of this article contains supplemental material.

Received for publication April 16, 2014. Accepted for publication October 1, 2014.

This work was supported by Grant-in-Aid for Challenging Exploratory Research 24659182 and Grant-in-Aid for Scientific Research B 23390988 from the Japan Society for the Promotion of Science, the Aichi Cancer Research Foundation, the Lydia O’Leary Memorial Pts Dermatological Foundation, and a Grant for Basic Dermatological Research from the Japanese Dermatological Association of Shiseido. These funding bodies played no role in study design, data collection or analysis, the decision to publish, or preparation of the manuscript.

Address correspondence and reprint requests to Dr. Sayuri Yamazaki, Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 Japan. E-mail address: yamazasu@med.nagoya-cu.ac.jp.

The online version of this article contains supplemental material.

Abbreviations used in this article: DC, dendritic cell; DLN, draining lymph node; EdU, 5-ethynyl-2′-deoxyuridine; LC, Langerhans cell; P-lig, P-selectin ligand; pTreg, peripherally derived Treg; Treg, regulatory T; tTreg, thymus-derived Treg.
on consecutive 4 d or had one-time exposure of 150 mJ/cm². For the UVB radiation to cervical lymph nodes, mice were anesthetized and irradiated through an incision around the neck. Surrounding skin was covered with aluminum foil. The incision was closed via suture.

Cell isolation

Ear skin was incubated with Liberase and DNase (Roche Applied Science), as reported previously (12), and further digested with MACS gentle homogenizer (Miltenyi Biotec). Inguinal and axillary lymph nodes were mixed and used as draining lymph nodes (DLN). CD4⁺ T cells were positively or negatively separated with MACS beads from lymph nodes and spleen cell suspensions (~90%), as reported previously (13, 14). For the DNA methylation analysis, Foxp3⁺ CD4⁺ or Foxp3⁻ CD4⁺ T cells were further purified by FACS Aria II (BD Biosciences, Franklin Lakes, NJ). The suppression assay in vitro was performed as previously described (15–17). Briefly, responder CD25⁺ CD4⁺ T cells were negatively purified from CD45.1 mice by MACS, CFSE labeled, and stimulated with anti-CD3 mAb and mitomycin C–treated spleen APCs. CD25⁺CD4⁺ T cells were purified by FACS Aria II.

CpG methylation analysis by bisulfite sequencing

CpG DNA methylation analysis was performed as described previously (18). Briefly, genomic DNA was prepared with the NucléoSpin Tissue XS kit (Macherey-Nagel, Duren, Germany). After sodium bisulfite treatment (MethylEasy Xceed; Human Genetic Signatures, Randwick, Australia), modified DNA was amplified by PCR and subcloned into PCR2.1-TOPO vector (Invitrogen). PCR primers for each region were listed in our previous report (18). The colonies (16–48 colonies/region) were directly amplified with the Illustra TempliPhi Amplification Kit (GE Healthcare) and sequenced.

Thymectomy

Mice were anesthetized, and thymectomy was performed by elimination of both thymic lobes through a small incision in the skin above the sternum. The incision was closed via suture. Sham surgery was performed similarly without thymectomy. Mice were irradiated with UVB 7 d after thymectomy and analyzed for Foxp3 expression at day 7 after UVB exposure.

EdU incorporation

Naïve mice or those irradiated with UVB 6 d before were injected with 100 µg EdU i.p. After 16–20 h, mice were sacrificed and EdU detection was performed using flow cytometer and confocal microscopy, according to the manufacturer’s instructions.

Flow cytometry

Cells were stained, as reported previously (16). Data were acquired with Canto II flow cytometers or FACSVerse (BD Biosciences) and analyzed using FlowJo software (Tree Star).

Confocal microscopy

Back skin samples of mice were frozen in OCT compound. Samples were sectioned, fixed with acetone, and stained with indicated Abs. Sections were examined by FV1000 confocal microscopy (Olympus). Foxp3⁺ CD4⁺ T cells were counted in three to seven different high power fields in four separate experiments, and the average of each experiment was plotted.

Results

Exposure to UVB triggers expansion of Foxp3⁺ Treg cells in skin for 2 wk

To investigate possible effect of UVB on Treg cell homeostasis, we initially attempted to determine the frequency of Foxp3⁺ Treg cells/CD4⁺ T cells in the skin, DLN, and spleen after UVB exposure. Mice were irradiated with a systemic exposure of 500 mJ/cm², reported to induce tolerance by Treg cells (10). As previously described (12, 19), Foxp3⁺ Treg cells were enriched in skin compared with lymphoid tissue in nontreated mice (12, 19) (Fig. 1A, 1B). Treg cells in the skin began to expand on day 4 after exposure, and their frequency within CD4⁺ T cells increased significantly up to 57.7 ± 6.4% (n = 10) by day 7 (Fig. 1A [black arrow], 1B). The number of Treg cells in the skin peaked on day 7, which continued until day 14 (Fig. 1B). The frequency of Foxp3⁺ Treg cells in DLN and spleen increased by ~3–4% on day 7 after UVB exposure (Fig. 1A, 1B). The Treg cell population remained significantly higher in DLN and spleen, but not skin, 3 wk after UVB exposure (Supplemental Fig. 1). The results indicate the expanded Treg cells in skin migrate to DLN and spleen by 3 wk after UVB exposure.

To ascertain the specific contribution of UVB irradiation to Foxp3⁺ Treg cells, expansion up to 50–60% in the skin, cervical lymph nodes were surgically exposed and irradiated. After 7 d, the frequency of Foxp3⁺ Treg cells in the UVB-irradiated cervical lymph nodes was increased only by 2–3% compared with sham surgery alone (data not shown), suggesting that UVB exposure of lymph node is unable to expand Treg cells up to 50–60% of CD4⁺ T cells.

Next we compared the effect of a single UVB exposure of 500 mJ/cm² with multiple UVB exposures of 150 mJ/cm² daily on consecutive 4 d or a single UVB of 150 mJ/cm² (Fig. 1C). We found that multiple UVB exposures of 150 mJ/cm² expanded Foxp3⁺ Treg cells, similarly to a single UVB exposure of 500 mJ/cm² (Fig. 1C). A single UVB of 150 mJ/cm² did not expand Treg cells (Fig. 1C). Therefore, we used a single UVB exposure of 500 mJ/cm² in further experiments.

Exposure to UVB expands skin-homing Foxp3⁺ Treg cells

It is reported that skin Treg cells express cutaneous homing receptors such as CD103, CCR4, and P-lig (19, 20). To investigate whether UVB expands skin-homing Treg cells, we analyzed the expression of CD103, CCR4, and P-lig on skin Treg cells. We found that UVB induced significant expansion of CD103⁺, CCR4⁺, and P-lig⁺ Treg cells in the skin (Fig. 2A, 2B). To further determine whether expanded Treg cells could migrate to other parts of the skin that were not exposed to UVB, we protected left ear from UVB irradiation. After 7 d, we observed an increased frequency of Foxp3⁺ Treg cells in the protected ears, similarly to that in the ears exposed to UVB (Fig. 2C, 2D). When we investigated the time points, Treg cells in the UVB-protected skin were still increased after 2 wk (Fig. 2D). These indicate that UVB expands skin-homing Treg cells that can migrate to other parts of the skin.

Foxp3⁺ Treg cells formed clusters with dendritic cells in the UVB-exposed skin

To determine the location of Treg cell expansion in the skin, we examined frozen sections of the skin from UVB-exposed mice using confocal microscopy. In the skin from nontreated mice, a limited number of Foxp3⁺ Treg cells was detected in the dermis, whereas many Foxp3⁺ Treg cells were present in the dermis from UVB-exposed mice (Fig. 3A, 3B). Moreover, in UVB-exposed mice, Foxp3⁺ Treg cells formed clusters with MHC class II⁺ cells in the dermis (Fig. 3A, Supplemental Fig. 2). The majority of MHC class II⁺ cells were CD11c⁺, indicative of dendritic cells (DCs) (Fig. 3C). We also found that Langerin⁺ DCs were within the MHC class II⁺ DCs close to Treg cells (Supplemental Fig. 2). In contrast, no clusters of Treg cells and MHC class II⁺ DCs were present in the skin from nontreated mice (Fig. 3A). These results indicate that Foxp3⁺ Treg cells have expanded in the dermis after UVB irradiation, supporting a possible role of DCs in Treg cell expansion in the skin (21).

Treg cells proliferate in the skin after UVB exposure

The formation of clusters between DCs and Treg cells in the skin suggests that Treg cells proliferate in situ after UVB exposure. To investigate this possibility, EdU, which is incorporated by cells in the S phase, was administered in vivo, and the frequency of EdU⁺ Foxp3⁺ Treg cells in the skin was analyzed. The frequency of EdU⁺ Foxp3⁺ Treg cells was significantly increased in the skin after UVB exposure, as assessed by flow cytometer (Fig. 4A, 4B).
Staining of skin sections additionally revealed that EdU incorporation was detected in Foxp3+ Treg cells in the dermis after UVB exposure (Fig. 4C). Collectively, Treg cells appear to actively proliferate in the skin in situ after UVB exposure.

Expansion of Treg cells after UVB exposure may also reflect their influx into the skin. To determine whether T cell influx from peripheral blood or lymphatics was the source of Treg cells in UVB-exposed skin, we adoptively transferred CFSE-labeled CD4+ T cells and assessed whether the transferred CD4+ T cells migrated to the skin after UVB exposure. Compared with DLN and spleen, fewer CFSE+CD4+ T cells were detected in the skin, with or without UVB exposure (Fig. 4D, 4E). Similar results were observed using CD45.1 marker to discriminate between transferred and host-derived T cells (data not shown). These findings indicate that T cell influx from peripheral blood or lymphatics to the UVB-exposed skin is limited and thus not the source of Treg cell expansion in the skin. Based on these results, we conclude that in situ proliferation of Foxp3+ Treg cells is the main source of Treg cell expansion in the skin after UVB exposure.

In situ neuropilin 1+ Treg cells are mainly expanded upon UVB exposure

To determine the origin of proliferating Treg cells in the skin following UVB exposure, we analyzed the expression of neuropilin 1, which is expressed on tTreg cells and a marker to distinguish tTreg and pTreg cells in mice (22, 23). On day 7 after UVB exposure, we observed significant expansion of neuropilin 1+ Foxp3+ Treg cells in the skin, but not neuropilin 1− Foxp3+ Treg cells (Fig. 5A, 5B). Neuropilin 1+ Foxp3+ Treg cells additionally showed a significant increase in DLN and spleen after UVB exposure (data not shown). These results suggest that the Treg cell population expanded by UVB comprises tTreg cells.
mocytes on day 7 after UVB exposure, in some mice, although Treg cells were not increased in the thymus (Fig. 5C). To further establish whether the output of new tTreg cells from the thymus contributes to Treg cell expansion after UVB exposure, the expression of CD24/heat-stable Ag (24, 25), a marker of recent thymic emigrants, was investigated. Notably, CD24+ Foxp3+ Treg cells were significantly increased in DLN, not in spleen, after UVB exposure (Fig. 5D, 5E). There were almost no CD24+ Foxp3+ Treg cells in the skin before UVB exposure, and there was no increase after exposure (Fig. 5D, 5E). These results indicate that the increased output of tTreg cells does not directly contribute to Treg cell expansion in the skin, although UVB might stimulate tTreg cell output from the thymus.

To confirm the above notion, thymectomy was performed 1 wk before UVB irradiation. Thymectomy or sham surgery alone did not increase the frequency of neuropilin 1+ Foxp3+ Treg cells in the skin (Fig. 5B, top). However, thymectomy, in combination with UVB exposure, led to increase of neuropilin 1+ Foxp3+ Treg cells in the skin similar to that observed with sham surgery plus UVB (Fig. 5B, top). These results indicate that the neuropilin 1+ tTreg cells that already present in the periphery have expanded in the skin after UVB exposure.

UVB-expanded Foxp3+ CD4+ T cells in the skin possess Treg cell–type hypomethylation pattern

It has been shown that Treg cell development was achieved by the combination of Foxp3 expression and hypomethylation of the Treg cell–representative regions (18). To determine whether UVB-expanded Foxp3+ CD4+ T cells underwent Treg cell–type hypomethylation, we analyzed Cpg DNA methylation of Treg-specific sites, Foxp3 intron1, Tnfresf18 exon 5, Ctlad ex0n2, Ikc2 intron1b, and Ikc2 intron3a (18). Foxp3+ CD4+ T cells from skin of UVB-irradiated mice showed Treg cell–type hypomethylation (Fig. 6A), although the number of skin Treg cells in naive mice was too low to analyze. Foxp3+ CD4+ T cells from DLN of UVB-irradiated mice showed Treg cell–type hypomethylation, similar to those from naive mice (Fig. 6B). It is thus likely that UVB mainly triggers expansion of tTreg cells.

The hypomethylation analysis indicates that fully functional Treg cells are expanded by UVB in the skin (18). We performed in vitro suppression assay using DLN CD25+CD4+ T cells from UVB-irradiated mice because the sorted number of skin Treg cells was too low for the suppression assay. We sorted CD25high+CD4+ T cells as Treg cells (15) because Treg cells cannot be fixed for the suppression assay. When the sorted cells were analyzed for the expression of Foxp3, DLN CD25+CD4+ T cells from UVB-irradiated mice were 90% Foxp3+, as shown in Fig. 7A. The CD25+CD4+ T cells suppressed the division of responder CD25+ CD4+ T cells in a dose-dependent manner (Fig. 7B). In contrast, DLN CD25+ CD4+ T cells from UVB-irradiated mice did not suppress the division of responder CD25+ CD4+ T cells (Fig. 7B). Therefore, DLN Treg cells from UVB-irradiated mice are suppressive in vitro as predicted from the signature of Treg cell–type hypomethylation in Fig. 6B.

Discussion

Our results showed that UVB triggers the expansion of Treg cells up to 50–60% of the CD4+ T cell population in the skin. Treg cell expansion lasted for 2 wk after UVB and contributed to Treg cell increase in skin–DLN and the spleen 3 wk after UVB exposure. The UVB-expanded Treg cells upregulated skin-homing receptors and migrate to nonirradiated skin. UVB-expanded Foxp3+ Treg cells in the skin have Treg cell–type hypomethylation, indicative of fully functional Treg cells (18). These results suggest...
that UVB contributes to homeostasis of Treg cells in the skin as well as in peripheral lymphoid organs. Considering that homeostasis of pTreg cells is controlled by intestinal microbes and their metabolites (5–7), it is intriguing that homeostasis of tTreg cells is regulated by UVB in the skin.

Following exposure to UVB, Treg cells formed clusters with MHC class II$^{\text{high}}$ DCs in the dermis (Fig. 3A, Supplemental Fig. 2) and proliferate in situ (Fig. 4A–C). In naive mice, Treg cells preferentially localize to dermis (26). Our results showed that small numbers of Treg cells were detected in the dermis from the

FIGURE 3. Foxp3$^+$ Treg cells are increased with clustering DCs in the skin after UVB exposure. (A) As in Fig. 1A, but the back skin of mice was obtained on day 7 after UVB irradiation (UVB$^+$) and stained with MHC class II (green), CD4 (blue), and Foxp3 (red, top) or isotype (red, bottom) for Foxp3. For control, back skin from nonirradiated mice was stained simultaneously (UVB$^-$$^-$2). The white dotted lines indicate the border between epidermis and dermis. Pictures were obtained at original magnification $\times 400$. Data are representative of four independent experiments. (B) As in (A), but Foxp3$^+$CD4$^+$ cells were counted in three to seven different high power fields ($\times 400$) in four separate experiments. The average of each experiment was plotted, whereby each data point represents a separate experiment. Horizontal bars indicate mean values, and vertical bars signify SD. The p values were obtained from the Student t test. (C) As in (A), but the back skin of UVB-irradiated mice was stained with CD11c (red) and MHC class II (green). Images were obtained at original magnification $\times 400$. Data are representative of two independent experiments.
nontreated skin, whereas many Treg cells located in the dermis making clusters with DCs in the UVB-exposed skin (Fig. 3A, Supplemental Fig. 2). MHC class II hi DCs may have a role in expanding Treg cells in the skin after UVB exposure, as DCs are critical APCs that induce expansion of tTreg cells as well as pTreg cells from Foxp3+ precursors (13–15, 27). MHC class II hi DCs

FIGURE 4. Foxp3+ Treg cells proliferate in situ after UVB exposure. (A) EdU was injected i.p. into nontreated mice (UVB−) or those exposed to UVB 6 d before. The following day, ear skin was examined for EdU by FACS. Plots were gated on CD4+ T cells. Data are representative of three independent experiments. (B) As in (A), a summary of three separate experiments is shown, whereby each data point represents a separate experiment. Horizontal bars indicate mean values. (C) As in (A), but back skin from UVB-treated mice was stained with CD4 and Foxp3, and EdU detection was performed by microscopy. Data are representative of three independent experiments. (D) CFSE-labeled CD4+ T cells (2.5 × 105) were injected i.v. into B6 mice. The following day, mice were irradiated with UVB or left untreated. After 7 d, DLN, spleen, and skin were analyzed. Plots of gated CD45.2+CD4+ T cells are shown. Data are representative of three independent experiments. (E) As in (D), but a summary of three independent experiments is shown, whereby each data point represents a separate experiment. Horizontal bars indicate mean values, and vertical bars signify SD. The p values were obtained from the paired t test.
may present self-Ags to Treg cells in the UVB-exposed skin because TCRs of Treg cells skewed to self-reactive (1, 28). Schwarz et al. (29) reported that Langerhans cells (LCs) are required for UVB-induced immune suppression. We observed Langerin + DCs within MHC class II high DCs in the UVB-exposed dermis (Supplemental Fig. 2). They may be Langerin + dermal DCs, but it is also possible that they are transit LCs because some LCs came back to epidermis at day 7 after UVB exposure (Supplemental Fig. 2). It is reported that both LCs and Langerin+ dermal DCs play a role in inducing Foxp3+ Treg cells (30–32). Moreover, Langerin+ dermal DCs may be equivalent to CD8+ DC subsets, which can induce Foxp3+ Treg cells (16, 21, 33). Therefore, it is possible that Langerin+ dermal DCs play a role in expanding Treg cells in the skin after UVB exposure in our system. Further studies are necessary to determine the mechanisms underlying the expansion of Treg cells by DCs in the skin after UVB exposure.

In addition to the role of UVB on Treg cell homeostasis, we propose that Treg cells recognize self-Ags from UVB-damaged skin and expand to suppress further autoimmune reaction. In support of this hypothesis is prior observation that UV-damaged skin produces self-Ags (34–36). It is recently reported that UV-damaged keratinocytes release self-RNA and induce skin inflammation through TLR-3 signaling (37). We also speculate that UVB expands Treg cells to repair UVB-damaged skin. Mathis and colleagues (38) recently reported that a special population of Treg cells expands after muscle injury to repair muscle.

FIGURE 5. Neuropilin 1+ tTreg cells existing in the periphery provide the source of Treg cells expanded by UVB. (A) Ear skin was stained with anti-Foxp3 Ab and anti-neuropilin 1 Ab at 7 d after UVB exposure. Isotype control for anti-neuropilin 1 Ab is shown in Supplemental Fig. 3. Plots were gated on live CD45.2+CD4+ T cells. Data are representative of three independent experiments. (B) As in (A), but the percentages of neuropilin 1+ Foxp3+ T cells/CD4+ T cells (top) or neuropilin 1+ Foxp3+ T cells/CD4+ T cells (bottom) in skin from the indicated mice are shown. ATX indicates adult thymectomized mice, and sham indicates sham surgery for thymectomy. A summary of three or more separate experiments, whereby each data point represents a separate experiment. Horizontal bars indicate mean values, and vertical bars indicate SD. (C) Mice were irradiated with UVB, and thymus was analyzed at the indicated time points with flow cytometer. Plots were gated on live CD4+CD8− thymocytes. Horizontal bars indicate mean values, and vertical bars indicate SD. (D) As in (B), but a summary of three to four independent experiments is shown, whereby each data point represents a separate experiment. Horizontal bars indicate mean values. The p values were obtained from the Student t test.
Treg cells expanded to 40–50% of CD4+ T cells for ~1 mo. It is possible that similar mechanisms with muscle Treg cells are expanding Treg cells in the UVB-exposed skin. However, the expansion of Treg cells in UVB-exposed skin should have another mechanism involving DCs because DCs formed clusters with Treg cells in the UVB-exposed skin (Fig. 3A, Supplemental Fig. 2).

We showed that UVB-expanded Treg cells mainly comprise neuropilin 1+ Treg cells. Neuropilin 1+ Treg cells in UVB-exposed skin originate from existing peripheral tTreg cells because neuropilin 1+ Treg cells were expanded in the UVB-exposed skin in thymectomized mice (Fig. 5B). It is known that thymus produces Treg cells at day 3 of birth and that tTreg cells go to periphery after day 3 of birth to suppress autoimmune diseases (39–41). Therefore, the expansion of neuropilin 1+ Treg cells in the skin from adult thymectomy mice after UVB exposure in Fig. 5B indicates the expansion of already existing tTreg cells in the periphery, not new recruitment from the thymus. Moreover, UVB could stimulate the production of tTreg cells in the thymus (Fig. 5C) and induce recruitment of CD24+ tTreg cells from thymus to DLN, but not to skin (Fig. 5D, 5E).

Interestingly, UVB exposure expanded skin Treg cells expressing cutaneous homing receptors such as CD103, CCR4, and P-lig (Fig. 2A, 2B). The expanded Treg cells could migrate to UVB-unexposed skin (Fig. 2C, 2D). Therefore, systemic exposure of UVB may not be necessary to maintain Treg cells. Only a part of skin exposed to UVB is enough to expand Treg cells and maintain immunological self-tolerance. Taken together, UVB expands tTreg cells in the skin in situ, and the expanded Treg cells migrate to other parts of skin as well as DLN and spleen later, which contribute to homeostasis of Treg cells in the periphery.

Importantly, the UVB-expanded Treg cells in the skin showed Treg cell–type hypomethylation as tTreg cells (Fig. 6) (18). Recent

FIGURE 6. CpG DNA methylation analysis of UVB-expanded Treg cells in skin and DLN. (A) Foxp3+ CD4+ T cells were purified from mice exposed to UVB 7 d before and analyzed for CpG DNA methylation. A horizontal low corresponds to one sequenced clone in which specific CpG were methylated (closed) or demethylated (open). Data are representative of two independent experiments. (B) As in (A), but Foxp3+ CD4+ and Foxp3− CD4+ T cells from DLN were purified from naive control mice (UVB−) or those exposed to UVB 7 d before (UVB+) and analyzed for CpG DNA methylation. Data are representative of two independent experiments.
studies indicate that expression of Foxp3 alone is not sufficient for conferring Treg cell phenotype and function and that Foxp3+ T cells require the Treg cell–type hypomethylation pattern to acquire Treg cell–type gene expression, full suppressive activity, and sustained expression of Treg cell function–associated molecules (18, 42, 43). Treg cell–type hypomethylation contributes to the stability and cell lineages of Treg cells and reflects the fully functional Treg cells (44). In addition to Foxp3 expression, the Treg cell–type hypomethylation pattern can be a reliable marker for defining functional Treg cells (18, 44). Thus, possessing both the expression of Foxp3 and the Treg cell–type hypomethylation indicates that the UVB-expanded Foxp3+ T cells in the skin are fully functional Treg cells.

Our observation that UVB contributes to tTreg cell homeostasis in the periphery provides a new dimension to UVB therapy. Occasional exposure to UVB could be required for maintenance of tTreg cells in the periphery. This may be one of the reasons that sun exposure is associated with a decreased risk of multiple sclerosis (36). Currently, UVB is an effective treatment for immunological skin disorders such as psoriasis and atopic dermatitis. We suggest that the potential roles for UVB in controlling Treg cells might be able to improve future Treg cell therapy for autoimmunity, transplantation, and allergy.
Supplemental figure 1

Increase in Foxp3+ Treg cells is significant at three weeks after UVB exposure in DLN and spleen

As in Fig.1 (B), but the frequency of Foxp3+T cells / CD4 was analyzed three weeks after UVB exposure. A summary of four to five separate experiments is presented, whereby each data point represents a separate experiment. Horizontal bars and dotted lines indicate mean values, while vertical bars indicate SD. P-values were obtained from paired t-test.
Supplemental figure 2

Foxp3⁺ Treg cells clustering DCs in the skin after UVB exposure

(A) As in Figure 1(A), but the back skin of mice was obtained on day 7 after UVB irradiation and stained with MHC class II (green), CD4 (blue) and Foxp3 (red) (left) or MHC class II (green). The white dotted lines indicate the border between epidermis and dermis. Pictures were obtained at x 200 magnification (top) or x 600 magnification (bottom). Data are representative of four independent experiments.

(B) As in (A), but the back skin of mice was stained with MHC class II (green) and Langerin (red). The white dotted lines indicate the border between epidermis and dermis. Pictures were obtained at x 200 magnification (top) or x 600 magnification (bottom). Data are representative of two independent experiments.
Supplemental figure 3

Isotype staining for neuropilin1

As in Figure 5(A), ear skin was stained with anti-Foxp3 Ab and isotype control for neuropilin1 is shown. Plots were gated on live CD45.2⁺ CD4⁺ T cells.