Distinct Lineages of Lung Dendritic Cells

Timothy P. Moran, Hideki Nakano, Hrisavgi D. Kondilis-Mangum, Paul A. Wade and Donald N. Cook

J Immunol 2014; 193:4904-4913; Prepublished online 8 October 2014;
doi: 10.4049/jimmunol.1401104
http://www.jimmunol.org/content/193/10/4904

Supplementary Material
http://www.jimmunol.org/content/suppl/2014/10/07/jimmunol.1401104.DCSupplemental

References
This article cites 56 articles, 18 of which you can access for free at:
http://www.jimmunol.org/content/193/10/4904.full#ref-list-1

Subscription
Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Epigenetic Control of Ccr7 Expression in Distinct Lineages of Lung Dendritic Cells

Timothy P. Moran,*1 Hideki Nakano,† Hrisavgi D. Kondilis-Mangum,§ Paul A. Wade,‡ and Donald N. Cook†

Adaptive immune responses to inhaled allergens are induced following CCR7-dependent migration of precursor of dendritic cell (pre-DC)–derived conventional DCs (cDCs) from the lung to regional lymph nodes. However, monocyte-derived (moDCs) in the lung express very low levels of Ccr7 and consequently do not migrate efficiently to LN. To investigate the molecular mechanisms that underlie this dichotomy, we studied epigenetic modifications at the Ccr7 locus of murine cDCs and moDCs. When expanded from bone marrow precursors, moDCs were enriched at the Ccr7 locus for trimethylation of histone 3 lysine 27 (H3K27me3), a modification associated with transcriptional repression. Similarly, moDCs prepared from the lung also displayed increased levels of H3K27me3 at the Ccr7 promoter compared with migratory cDCs from that organ. Analysis of DC progenitors revealed that epigenetic modification of Ccr7 does not occur early during DC lineage commitment because monocytes and pre-DCs both had low levels of Ccr7-associated H3K27me3. Rather, Ccr7 is gradually silenced during the differentiation of monocytes to moDCs. Thus, epigenetic modifications of the Ccr7 locus control the migration and therefore the function of DCs in vivo. These findings suggest that manipulating epigenetic mechanisms might be a novel approach to control DC migration and thereby improve DC-based vaccines and treat inflammatory diseases of the lung. The Journal of Immunology, 2014, 193: 4904–4913.

The online version of this article contains supplemental material.

Abbreviations used in this article: BM, bone marrow; cDC, conventional DC; ChIP, chromatin immunoprecipitation; DC, dendritic cell; FL, Flt3 ligand; H3K27me3, histone 3 lysine 27 trimethylation; LN, lymph node; moDC, monocyte-derived DC; NIEHS, National Institute of Environmental Health Sciences; poly (I:C), polyinosinic-polycytidylic acid; PRC2, polycomb repressive complex 2; pre-DC, precursor of DC; QPCR, quantitative PCR.

Copyright © 2014 by The American Association of Immunologists, Inc. 0022-1767/14/S16.00
modifications of multiple genes have been well studied in the context of Th cell differentiation (18–20), remarkably little is known of epigenetic mechanisms that might be expected to influence DC development or function (16). In the current study, we investigated whether epigenetic modifications at the Ccr7 locus influence the migratory properties of different DC subsets. We found that moDCs have increased repressive histone modifications at the Ccr7 locus, which was associated with decreased Ccr7 expression and a nonmigratory phenotype. Surprisingly, these repressive epigenetic marks are not established during lineage commitment within the BM but rather during monocyte differentiation into moDCs in peripheral tissues. Our findings suggest that epigenetic modifications at the Ccr7 locus closely correlate with the migratory properties, and hence the functional roles, of nonlymphoid DC subsets. The transcriptional silencing of Ccr7 during moDC differentiation might also have implications for the development of effective DC-based vaccines for immunotherapy.

Materials and Methods

Mice

C57BL/6J and OT-II (C57BL/6-Tg(TcraTcrb)425Bnn/J) mice were purchased from The Jackson Laboratory (Bar Harbor, ME). Ccr7reporter mice were generated in our laboratory and have been described previously (10). Mice were housed in specific pathogen-free conditions at the National Institute of Environmental Health Sciences (NIEHS) and used between 6 and 12 wk of age in accordance with guidelines provided by the Institutional Animal Care and Use Committees.

Flow cytometric analysis

Cells were incubated with a nonspecific-binding blocking reagent mixture of anti-mouse CD16/CD32 (2.4G2) and normal mouse and rat serum (Jackson ImmunoResearch Laboratories, West Grove, PA) for 5 min. For staining, cells were incubated with fluorescein isothiocyanate (FITC), phycoerythrin (PE), allophycocyanin (APC), and APC-Cy7 (eBioscience, San Diego, CA) or Alexa Fluor 488, Alexa Fluor 647, eFluor 450, eFluor 605 NC, FITC, PerCP-Cy5.5, or PE) or biotin-conjugated Abs against mouse CD3e (145-2C11), CD11b (M1/70), CD11c (N418), CD14 (Sa2-8), CD19 (D50), CD40 (1C10), CD49b (DX5), CD86 (GL1), CD86 (2070), CD103 (M290), CD115 (AFS98), CD135 (A2F10), F4/80 (BM8), Ly-4C-1 (AL-21), Ly-6G (1A8), MHC class II-Ab (Af6-120, Sca-1 (D7), and TER-119 (BD Biosciences [San Jose, CA), BioLegend [San Diego, CA], and eBioscience [San Diego, CA]). Staining with biotinylated Abs was followed by fluorochrome-conjugated streptavidin. Stained cells were analyzed on a five-laser LSRII (BD Biosciences) or sorted on a five-laser ARIA-II flow cytometer (BD Biosciences), and the data were analyzed using FACS Diva (BD Biosciences) and FlowJo (Treestar, Ashland, OR) software. Dead cells were excluded based on their forward and side scatter or uptake of 7-aminoactinomycin D. Only single cells were analyzed.

Generation and analysis of BM-elicited DCs

Marrow was collected from pulsedverized bones, and RCs were lysed with 0.15 M ammonium chloride and 1 mM potassium bicarbonate. BM cells were then cultured in complete RPMI 1640 medium (RPMI 1640, 10% FBS [Gemini, West Sacramento, CA], penicillin/streptomycin, and 50 μg ml−1 2-ME) supplemented with either 100 ng ml−1 recombinant human FL to generate FL-DCs or 5 ng ml−1 GM-CSF and IL-4 (R&D Systems, Minneapolis, MN) to generate GM-DCs. Recombinant human FL was produced by the NIEHS Protein Expression Core Facility using previously described methods (21). Media was replaced every 3 d, and cells were collected at each time point. Flow cytometric analysis of cell surface markers was performed using a five-laser LSRII flow cytometer (BD Biosciences) or a MoFlo (Treestar, Ashland, OR) using conjugated Abs against mouse CD3, CD4, CD8, CD19, CD44 (PhC3), and CD11c (H2-DR). Cell surface markers were analyzed using Fluorescence-Activated Cell Sorter (FACS) analysis software (BD Biosciences) or FlowJo software (Treestar, Ashland, OR). To enumerate differentiated DCs, cells were stained with FITC-conjugated Abs against mouse CD11c and CD11b, and CD11c−CD11b+ cells were analyzed using an Olympus BX51 microscope, DP70 digital camera, and DP software (Olympus, Center Valley, PA).

Preparation and analysis of lung DCs subsets

Lung DC subsets were isolated and purified by flow cytometry-based sorting as described previously (22). To induce activation of lung DCs in vivo, mice were anesthetized by isoflurane inhalation and given 0.1 μL PLS by oropharyngeal aspiration 16 h prior to lung DC isolation. In some experiments, purified DC subsets were cultured in complete RPMI 1640 medium containing 100 ng ml−1 LPS.

Purification of monocytes and pre-DCs from BM

Ly-6C+ monocytes (CD11c−CD11b+Ly-6C+CD19−CD49b−CD154−CD31+), Ly-6C−CD11c−CD19−CD49b+Ly-6G−Ccr7+CCR7+ (23) or pre-DCs (CD3−CD11b+CD11c−CD19−CD49b−Ly-6C+Ly-6G+CCR7+CCR11+) from BM were enriched by MACS and then further purified by flow cytometry-based sorting. In some experiments, Ly-6C+ monocytes were cultured in complete RPMI 1640 medium supplemented with 5 ng ml−1 GM-CSF and IL-4 to generate moDCs. Culture medium was changed every 3 d with fresh cytokines added at that time.

Chromatin immunoprecipitation

Total RNA was isolated from cells using an RNeasy kit (Qiagen, Valencia, CA) or TRIzol (Life Technologies) and converted to cDNA with oligo dT and random hexamer primers using murine leukemia virus reverse transcriptase (Life Technologies, Grand Island, NY). PCR amplification was performed using primers listed in Supplemental Table I with Power SYBR Green PCR Master Mix (Life Technologies) and an Mx3000P quantitative PCR (QPCR) system (Agilent Technologies, Santa Clara, CA). The efficiency-corrected ΔCt for each gene was determined and normalized to Gapdh expression.

Chromatin immunoprecipitation

Chromatin immunoprecipitation

Total RNA was isolated from cells using a RNeasy kit (Qiagen, Valencia, CA) or TRIzol (Life Technologies) and converted to cDNA with oligo dT and random hexamer primers using murine leukemia virus reverse transcriptase (Life Technologies, Grand Island, NY). PCR amplification was performed using primers listed in Supplemental Table I with Power SYBR Green PCR Master Mix (Life Technologies) and an Mx3000P quantitative PCR (QPCR) system (Agilent Technologies, Santa Clara, CA). The efficiency-corrected ΔCt for each gene was determined and normalized to Gapdh expression.

Chromatin immunoprecipitation

Native chromatin was prepared from cells by small-scale micrococcal nuclease digestion as previously described with modification (23). Briefly, CD11c+ BM-elicited DCs (4×106) or sorted lung DCs (0.2–1×106) were fixed at 4°C for 10 min on ice. Nuclei were then washed and resuspended in digestion buffer containing 25 U/ml micrococcal nuclease (Worthington Biochemical, Lakewood, NJ) and incubated at 37°C for 5 min to generate mono- and dinucleosomes. The reaction was stopped by addition of 10 mM Tris-HCl (pH 8), 5 mM EDTA, and 10 mM sodium butyrate, and samples were incubated overnight at 4°C. After centrifugation, the supernatant was harvested and Triton X-100 was added to a concentration of 1% (v/v). For BM-elicited DC samples, chromatin was precleared with protein A–Sepharose/salmon sperm DNA (EMD Millipore, Billerica, MA) and then incubated overnight at 4°C with 2.5 μg of either anti-trimethylated H3 lysine 27 (anti-H3K27me3; Active Motif, Carlsbad, CA), anti-acetylated H3 lysine 27 (anti-H3K27ac; Active Motif), or nonspecific anti-rabbit IgG Ab (Santa Cruz Biotechnology, Dallas, TX). After incubation with protein A–Sepharose/salmon sperm DNA for 1 h, immunoprecipitates were washed vigorously, and DNA was purified. For lung DC samples, chromatin was immunoprecipitated with the above Abs using the MAGnify ChiP System (Life Technologies) per the manufacturer’s instructions. Bound and input fractions were quantified by QPCR using an Mx3000P QPCR system (Agilent Technologies) with Power SYBR Green PCR Master Mix (Life Technologies) and PCR primers listed in Supplemental Table I. PCR conditions were as follows: 10 min at 95°C; 15 s at 95°C and 60 s at 62°C for 40 cycles; and dissociation curve analysis to verify specific PCR product labeling. Data were presented as the signal from bound fractions normalized to the input fraction.

Statistics

Data are expressed as mean ± SD or SEM as indicated. Statistical differences between groups were calculated using a two-tailed Student t test, unless indicated otherwise. A p value < 0.05 was considered significant.
Results

BM-elicited conventional DCs, but not moDCs, express functional CCR7

Lung DCs are rare compared with many other cell types in that organ. Accordingly, we first used different culture conditions to generate cDCs and moDCs from BM progenitors ex vivo (Fig. 1A) (24). Because FL is required for cDC development, we cultured BM progenitors in the presence of this cytokine to generate cDCs (FL-DCs). To generate moDCs, we cultured progenitors with GM-CSF and IL-4 (GM-DCs). Light microscopic and flow cytometric analyses revealed that both cultures contained CD11c^{hi}I-Ab^{hi} DCs having similar morphologies, including the presence of dendrites (Fig. 1B, 1C). FL-DCs and GM-DCs were similarly responsive to maturation stimuli, as both upregulated expression of MHC class II and costimulatory molecules following LPS treatment (Fig. 1D). Furthermore, LPS treatment induced similar expression of Il6 and Il12b mRNA in FL-DCs and GM-DCs (data not shown).

Importantly, LPS-matured FL-DCs and GM-DCs were equivalent in their ability to stimulate naive T cells (Fig. 1E). Thus, by these standard assays, FL-DCs and GM-DCs each displayed the characteristics of bona fide DCs. However, FL-DCs and GM-DCs differed considerably with regard to lineage-associated gene expression. Compared with GM-DCs, FL-DCs expressed significantly higher levels of mRNA for the cDC-specific transcription factor Zbtb46 (Fig. 1F) (25, 26). In contrast, activated GM-DCs highly expressed Nos2, consistent with a moDC phenotype (Fig. 1F) (27). On the basis of these observations, we concluded that FL-DCs and GM-DCs corresponded to cDCs and moDCs, respectively.

Ccr7^{gfp} reporter mice are a convenient resource for assaying Ccr7 expression in DCs (10). Using these mice as a source of BM, we compared Ccr7^{gfp} expression in FL-DCs and GM-DCs. Following LPS stimulation, FL-DCs rapidly upregulated Ccr7^{gfp} (Fig. 2A, 2B). In contrast, GM-DCs expressed very low levels of Ccr7^{gfp} following LPS treatment (Fig. 2A, 2B). Similar results were observed when FL-DCs and GM-DCs were stimulated with the TLR3 ligand poly(I:C) (Fig. 2B). To confirm that the GFP fluorescence correlated with functional CCR7 protein, we studied the abilities of FL-DCs and GM-DCs to undergo chemotaxis in response to CCL19. FL-DCs migrated very efficiently to various concentrations of CCL19, confirming that they expressed functional CCR7 (Fig. 2C). Conversely, GM-DCs migrated poorly to CCL19 (Fig. 2C), which was consistent with their low expression of Ccr7^{gfp}. Thus, although FL-DCs and GM-DCs were similar in many measures of DC function, only FL-DCs expressed functional CCR7 at high levels.

FIGURE 1. Culturing BM precursors with FL or GM-CSF/IL-4 yields DCs that resemble conventional or moDCs, respectively. (A) Schematic protocol for the generation and maturation of BM-elicited DCs using FL (FL-DCs) or GM-CSF/IL-4 (GM-DCs). (B) Representative light micrographs of cytospin preparations of FL- or GM-DCs. (C) Representative cytograms depicting surface I-A^b and CD11c expression on FL- and GM-DCs after maturation with LPS. (D) Histograms depicting I-A^b, CD40, and CD86 expression on unstimulated (shaded histograms) or LPS-matured (bold lines) DCs. Data are from a single experiment, representative of two. (E) Stimulation of naive CD4⁺ OT-II cells by LPS-matured FL- or GM-DCs in the presence or absence of OVA₃₂₃₋₃₃₉ peptide. Bar graphs represent the mean ± SD of viable T cells (duplicate samples). Data are from a single experiment, representative of two. (F) Zbtb46 and Nos2 mRNA expression by MACS-purified CD11c⁺ FL- and GM-DCs. Bar graphs represent the mean ± SD of mRNA amounts in arbitrary units (AU) after normalization to Gapdh mRNA. Data are from a single experiment, representative of two.
The Ccr7 locus is enriched for repressive histone modifications in BM-elicited moDCs

The inability of GM-DCs to express Ccr7 despite having otherwise normal responsiveness to LPS (Fig. 1D) suggested that the Ccr7 locus in these cells might be inaccessible to transcriptional activators. It is well established that histone modifications help govern chromatin accessibility to the transcriptional machinery, thereby regulating gene expression (17). In particular, trimethylation of lysine 27 on histone 3 (H3K27me3), which is primarily mediated by the polycomb repressive complex 2 (PRC2), is associated with transcriptional repression in various cells including DCs and macrophages (28, 29). Analysis of available chromatin immunoprecipitation (ChIP)-sequencing data obtained from the Encyclopedia of DNA Elements (ENCODE) project (30) revealed that the Ccr7 promoter is enriched for H3K27me3 in tissues that generally lack CCR7 expression (Fig. 3A), suggesting that H3K27me3 might also be associated with Ccr7 repression in moDCs. Therefore, using ChIP-QPCR assays, we investigated H3K27me3 modifications at the Ccr7 promoter in LPS-stimulated FL-DCs and GM-DCs. We found that the Ccr7 promoter is significantly enriched for H3K27me3 in GM-DCs but not FL-DCs (Fig. 3B). GM-DCs also had similar enrichment of H3K27me3 at the first intron of Ccr7. To exclude the possibility that our findings at the Ccr7 locus were due to a widespread nonspecific increase in H3K27me3 in GM-DCs, we studied a distant locus containing the Magea2 gene. No significant differences were seen in H3K27me3 at that locus, indicating that repressive histone marks were preferentially increased at the Ccr7 locus (Fig. 3B). The level of H3K27me3 at the Ccr7 promoter was inversely related to Ccr7 mRNA expression, consistent with transcriptional repression of Ccr7 (Fig. 3C). Similar differences in Ccr7-associated H3K27me3 were observed in unstimulated DCs, indicating that the repressive histone marks were established prior to DC activation (Supplemental Fig. 1A). Because histone acetylation has been associated with transcriptional activation in human DCs (28), we also analyzed H3K27 acetylation at the Ccr7 locus. We did not find significant differences in Ccr7-associated H3K27 acetylation between FL- and GM-DCs (Supplemental Fig. 1B), suggesting that Ccr7 expression was predominantly regulated by repressive histone marks. Taken together, these findings suggest that lineage-specific repressive histone modifications help govern Ccr7 expression in BM-elicited DCs.

Nonmigratory lung-resident moDCs have increased levels of Ccr7-associated H3K27me3

Having established that the Ccr7 locus is associated with repressive histone marks in moDCs expanded from BM progenitors, we next investigated whether similar repressive histone marks are associated with Ccr7 in lung-resident moDCs. Lung-resident DCs can be phenotypically divided into CD103+ or CD11bhi DCs. CD103+ DCs arise from pre-DC precursors and primarily mediated by the polycomb repressive complex 2 (PRC2), thereby regulating gene expression (17). In particular, trimethylation of lysine 27 on histone 3 (H3K27me3), which is primarily mediated by the polycomb repressive complex 2 (PRC2), is associated with transcriptional repression in various cells including DCs and macrophages (28, 29). Analysis of available chromatin immunoprecipitation (ChIP)-sequencing data obtained from the Encyclopedia of DNA Elements (ENCODE) project (30) revealed that the Ccr7 promoter is enriched for H3K27me3 in tissues that generally lack CCR7 expression (Fig. 3A), suggesting that H3K27me3 might also be associated with Ccr7 repression in moDCs. Therefore, using ChIP-QPCR assays, we investigated H3K27me3 modifications at the Ccr7 promoter. We found that the Ccr7 promoter is significantly enriched for H3K27me3 in GM-DCs but not FL-DCs (Fig. 3B). GM-DCs also had similar enrichment of H3K27me3 at the first intron of Ccr7. To exclude the possibility that our findings at the Ccr7 locus were due to a widespread nonspecific increase in H3K27me3 in GM-DCs, we studied a distant locus containing the Magea2 gene. No significant differences were seen in H3K27me3 at that locus, indicating that repressive histone marks were preferentially increased at the Ccr7 locus (Fig. 3B). The level of H3K27me3 at the Ccr7 promoter was inversely related to Ccr7 mRNA expression, consistent with transcriptional repression of Ccr7 (Fig. 3C). Similar differences in Ccr7-associated H3K27me3 were observed in unstimulated DCs, indicating that the repressive histone marks were established prior to DC activation (Supplemental Fig. 1A). Because histone acetylation has been associated with transcriptional activation in human DCs (28), we also analyzed H3K27 acetylation at the Ccr7 locus. We did not find significant differences in Ccr7-associated H3K27 acetylation between FL- and GM-DCs (Supplemental Fig. 1B), suggesting that Ccr7 expression was predominantly regulated by repressive histone marks. Taken together, these findings suggest that lineage-specific repressive histone modifications help govern Ccr7 expression in BM-elicited DCs.

Nonmigratory lung-resident moDCs have increased levels of Ccr7-associated H3K27me3

Having established that the Ccr7 locus is associated with repressive histone marks in moDCs expanded from BM progenitors, we next investigated whether similar repressive histone marks are associated with Ccr7 in lung-resident moDCs. Lung-resident DCs can be phenotypically divided into CD103+ or CD11bhi DCs. CD103+ DCs arise from pre-DC precursors and thereby regulate gene expression (17). In particular, trimethylation of lysine 27 on histone 3 (H3K27me3), which is primarily mediated by the polycomb repressive complex 2 (PRC2), is associated with transcriptional repression in various cells including DCs and macrophages (28, 29). Analysis of available chromatin immunoprecipitation (ChIP)-sequencing data obtained from the Encyclopedia of DNA Elements (ENCODE) project (30) revealed that the Ccr7 promoter is enriched for H3K27me3 in tissues that generally lack CCR7 expression (Fig. 3A), suggesting that H3K27me3 might also be associated with Ccr7 repression in moDCs. Therefore, using ChIP-QPCR assays, we investigated H3K27me3 modifications at the Ccr7 promoter. We found that the Ccr7 promoter is significantly enriched for H3K27me3 in GM-DCs but not FL-DCs (Fig. 3B). GM-DCs also had similar enrichment of H3K27me3 at the first intron of Ccr7. To exclude the possibility that our findings at the Ccr7 locus were due to a widespread nonspecific increase in H3K27me3 in GM-DCs, we studied a distant locus containing the Magea2 gene. No significant differences were seen in H3K27me3 at that locus, indicating that repressive histone marks were preferentially increased at the Ccr7 locus (Fig. 3B). The level of H3K27me3 at the Ccr7 promoter was inversely related to Ccr7 mRNA expression, consistent with transcriptional repression of Ccr7 (Fig. 3C). Similar differences in Ccr7-associated H3K27me3 were observed in unstimulated DCs, indicating that the repressive histone marks were established prior to DC activation (Supplemental Fig. 1A). Because histone acetylation has been associated with transcriptional activation in human DCs (28), we also analyzed H3K27 acetylation at the Ccr7 locus. We did not find significant differences in Ccr7-associated H3K27 acetylation between FL- and GM-DCs (Supplemental Fig. 1B), suggesting that Ccr7 expression was predominantly regulated by repressive histone marks. Taken together, these findings suggest that lineage-specific repressive histone modifications help govern Ccr7 expression in BM-elicited DCs.

Nonmigratory lung-resident moDCs have increased levels of Ccr7-associated H3K27me3

Having established that the Ccr7 locus is associated with repressive histone marks in moDCs expanded from BM progenitors, we next investigated whether similar repressive histone marks are associated with Ccr7 in lung-resident moDCs. Lung-resident DCs can be phenotypically divided into CD103+ or CD11bhi DCs. CD103+ DCs arise from pre-DC precursors and thereby regulate gene expression (17). In particular, trimethylation of lysine 27 on histone 3 (H3K27me3), which is primarily mediated by the polycomb repressive complex 2 (PRC2), is associated with transcriptional repression in various cells including DCs and macrophages (28, 29). Analysis of available chromatin immunoprecipitation (ChIP)-sequencing data obtained from the Encyclopedia of DNA Elements (ENCODE) project (30) revealed that the Ccr7 promoter is enriched for H3K27me3 in tissues that generally lack CCR7 expression (Fig. 3A), suggesting that H3K27me3 might also be associated with Ccr7 repression in moDCs. Therefore, using ChIP-QPCR assays, we investigated H3K27me3 modifications at the Ccr7 promoter. We found that the Ccr7 promoter is significantly enriched for H3K27me3 in GM-DCs but not FL-DCs (Fig. 3B). GM-DCs also had similar enrichment of H3K27me3 at the first intron of Ccr7. To exclude the possibility that our findings at the Ccr7 locus were due to a widespread nonspecific increase in H3K27me3 in GM-DCs, we studied a distant locus containing the Magea2 gene. No significant differences were seen in H3K27me3 at that locus, indicating that repressive histone marks were preferentially increased at the Ccr7 locus (Fig. 3B). The level of H3K27me3 at the Ccr7 promoter was inversely related to Ccr7 mRNA expression, consistent with transcriptional repression of Ccr7 (Fig. 3C). Similar differences in Ccr7-associated H3K27me3 were observed in unstimulated DCs, indicating that the repressive histone marks were established prior to DC activation (Supplemental Fig. 1A). Because histone acetylation has been associated with transcriptional activation in human DCs (28), we also analyzed H3K27 acetylation at the Ccr7 locus. We did not find significant differences in Ccr7-associated H3K27 acetylation between FL- and GM-DCs (Supplemental Fig. 1B), suggesting that Ccr7 expression was predominantly regulated by repressive histone marks. Taken together, these findings suggest that lineage-specific repressive histone modifications help govern Ccr7 expression in BM-elicited DCs.
Ccr7-associated H3K27me3. Compared with CD103+ DCs and CD11b^{hi}CD88^{lo} cDCs, CD11b^{hi}CD88^{hi} moDCs had significantly elevated levels of H3K27me3 at the Ccr7 promoter (Fig. 4D). The amount of Ccr7-associated H3K27me3 was inversely related to the expression of this gene, consistent with transcriptional silencing of Ccr7 in CD11b^{hi}CD88^{hi} moDCs (Fig. 4C). Levels of H3K27me3 at a distant locus (Hoxc10) were similar among all DC subsets, confirming that the epigenetic differences seen at the Ccr7 promoter are not due to a nonspecific genomewide increase of H3K27me3 in lung moDCs (Fig. 4D). Overall, these findings indicate that the nonmigratory status of lung-resident moDCs is associated with repressive histone modifications at the Ccr7 promoter.

BM monocytes have low levels of Ccr7-associated H3K27me3

Our observation that cDCs and moDCs have disparate levels of Ccr7-associated H3K27me3 is consistent with lineage-specific epigenetic repression of Ccr7 expression. This prompted us to investigate whether the divergence in H3K27me3 at the Ccr7 locus in cDCs and moDCs occurs during lineage commitment. Monocyte-DC progenitors can give rise to both monocytes and pre-DCs (32). We therefore compared histone modifications in the latter two types of progenitor cells following their purification from BM. Unexpectedly, monocytes and pre-DCs had similar amounts of H3K27me3 at the Ccr7 promoter (Fig. 5A), and these amounts were much lower than that seen for either BM-elicited or lung moDCs (Figs. 3B, 4D). Thus, differentiation of monocyte-DC progenitors to monocytes in the BM is not immediately accompanied by epigenetic repression of Ccr7.

Epigenetic repression of the Ccr7 promoter is gradually established during monocyte differentiation into DCs

The similar amounts of H3K27me3 at the Ccr7 locus of monocytes and pre-DCs suggested that this epigenetic modification is acquired after monocytes enter peripheral tissues and differentiate into moDCs. We first investigated whether monocyte emigration into pulmonary tissues triggers epigenetic repression of Ccr7. Airway exposure to LPS results in the recruitment of Ly-6C^{hi} monocytes to the lungs, which rapidly differentiate into Ly-6C^{hi}CD11b^{hi} inflammatory DCs (33). Inflammatory DCs also express CD88 but can be distinguished from lung-resident moDCs by their high-level expression of Ly-6C (Fig. 5B). ChIP-QPCR analysis of inflammatory DCs revealed that they had significantly lower levels of Ccr7-associated H3K27me3 compared with lung-resident moDCs (Fig. 5C). Indeed, inflammatory DCs and BM monocytes had similar low levels of H3K27me3 at the Ccr7 locus (Fig. 5A, 5C). Thus, extravasation of monocytes into the lung parenchyma does not immediately result in epigenetic repression of Ccr7.

We next investigated whether epigenetic repression of Ccr7 is established during the later stages of monocyte differentiation into...
moDCs. We have previously shown that only a very small percentage of adoptively transferred monocytes enter the lungs and differentiate into resident moDCs (10). Therefore, it was not possible to accurately track the fate of large numbers of monocytes in the lung for an extended period. As an alternative approach, we purified Ly-6Chi monocytes from BM and followed epigenetic changes at the Ccr7 locus during ex vivo differentiation of these cells into moDCs (34). As expected, during 6 d of culture in the presence of GM-CSF and IL-4, monocytes differentiated into CD11chiI-Abhi moDCs (Fig. 6A). As we had seen previously with BM progenitors cultured under these same conditions, monocyte-derived cells failed to express Ccr7, even after their stimulation with LPS (Fig. 6B). During ex vivo moDC differentiation, we observed a significant increase in Ccr7-associated H3K27me3 (Fig. 6C). In contrast, the level of H3K27me3 at the Hoxc10 locus remained stable during the culture period (Fig. 6C), indicating the observed changes at the Ccr7 locus were not due to a genomewide increase in H3K27me3. Consistent with this, we did not detect increased expression of the PRC2 core subunits EZH2, EED, SUZ12, and RbAp48 during moDC differentiation (Supplemental Fig. 2). Overall, these findings suggest that epigenetic silencing of Ccr7 occurs in a specific and gradual manner during the differentiation of monocytes into lung-resident moDCs.

Discussion

The migration of DCs to lung-draining LN is critical for shaping nascent immune responses to inhaled Ags (1, 3, 10). Given that the DC network is composed of populations with distinct functional roles, it is not surprising that only certain subsets possess the ability to express Ccr7 and migrate to regional LN. We have previously demonstrated that the developmental lineage of DCs is important for determining their migratory potential (10). In the current study, we investigated whether epigenetic mechanisms might contribute to lineage-specific Ccr7 expression. We found that in BM-elicted or lung moDCs, the Ccr7 promoter is enriched for the repressive histone mark H3K27me3. Consequently, Ccr7 induction is transcriptionally repressed in moDCs but not cDCs. The repressive histone modifications are not established during lineage commitment in the BM but are formed during monocyte differentiation into moDCs in the periphery. Our results suggest...
that a combination of lineage-specific epigenetic mechanisms and cues within the tissue microenvironment help determine the migratory capacity, and consequently the functional role, of lung DC subsets. The nonmigratory status of moDCs suggests that they do not function during Ag sensitization, which is thought to require DC migration, but rather during the effector phase of immune responses within the lung. Indeed, a recent report found that moDCs were largely responsible for Ag presentation and proinflammatory cytokine secretion in the lungs during allergen challenge (3). Whether lung moDCs are more efficient than cDCs at stimulating effector or memory T cells is an important question for future studies.

Although there has been recent progress in identifying the transcriptional profiles of different DC subtypes (9, 12, 35), little is known regarding the epigenetic mechanisms regulating gene expression in DCs. This is in contrast to Th cell differentiation, where epigenetic changes at lineage-specific genes have been well documented (36). Epigenetic mechanisms are likely responsible for regulating several aspects of DC immunobiology. For example, DCs treated with histone deacetylase inhibitors have altered expression of proinflammatory cytokines and costimulatory molecules, arguing that dynamic changes in histone modifications during adaptive immune responses can influence DC function (37). Furthermore, heritable epigenetic changes have been shown to influence DC maturation (37). Using an ex vivo model for generating moDCs from BM monocytes, we observed a gradual but specific increase in H3K27me3 at the Ccr7 locus when compared with DCs from pups of naive mothers (38). The observation that Ccr7 locus. The observation that this cytokine is frequently used to generate DCs in vitro and to culture monocytes suggests a role of GM-CSF and FL in determining the identity of these factors is unknown, several cytokines can modulate Ccr7 expression in activated DCs, including IL-33 (43), and type I IFNs (44). In addition, our studies with BM-elicited moDCs and ex vivo–cultured monocytes suggest a role of GM-CSF and FL in determining epigenetic modifications at the Ccr7 locus. The observation that GM-CSF may lead to epigenetic repression of Ccr7 in monocytes has significant implications for DC-based immunotherapies because this cytokine is frequently used to generate DCs from peripheral blood monocytes in humans. Because LN homing by DCs is considered necessary for optimal stimulation of Ag-specific T cells (45), understanding how GM-CSF and FL influence the migratory potential of DCs will be essential for designing effective DC vaccines.

FIGURE 5. Monocytes and their immediate progeny have low levels of H3K27me3 at the Ccr7 promoter. (A) ChIP-QPCR analysis of the Ccr7 promoter or Hoxc10 locus (reference gene) in monocytes (mono) or pre-DCs following immunoprecipitation with either anti-H3K27me3 (■) or nonspecific IgG (○) Abs. Bar graphs represent the mean ± SEM (after normalization to input DNA) of combined data from three independent experiments. (B) Gating strategy for purifying lung-resident CD11bhiCD88hi moDCs and Ly-6ChiCD11bhi inflammatory DCs (InfDCs) from LPS-treated lungs. The cytogram depicts CD88 expression in Ly-6Chi infDCs or CD88hi moDCs. Bar graphs represent the mean ± SEM (after normalization to input DNA) of combined data from three independent experiments. *p < 0.05.
Although our studies demonstrate that Ccr7-associated H3K27me3 increases during monocyte differentiation into moDCs, the mechanisms by which occurs are currently unclear. Because trimethylation of H3K27 is mediated by the chromatin modification complex PRC2, we studied expression of genes encoding its core subunits (EZH2, EED, SUZ12, and RbAp48) during monocyte differentiation to moDCs (46). We found that expression of these genes generally decreased during moDC development (Supplemental Fig. 2), which is consistent with the previously reported decrease in Ezh2 expression during cellular differentiation (47). Therefore, it is likely that the increased Ccr7-associated H3K27me3 results from a selective recruitment of PRC2 to the Ccr7 locus by specific DNA-binding proteins or transcription factors (48). Identification of such factors should further our understanding of how the Ccr7 locus is regulated in moDCs.

Although our observations suggest that H3K27me3 leads to silencing of Ccr7 in moDCs, demonstrating direct causality is difficult. It is possible to inhibit H3K27me3 by targeting the histone methyltransferase EZH2, but this can affect multiple aspects of cell differentiation and survival (49). Not surprisingly, we found that the EZH2 inhibitor 3-deazaneplanocin A interfered with DC development from BM progenitors and monocytes, thus precluding any specific studies on Ccr7 expression (T.P. Moran, unpublished observations). Strategies that specifically inhibit EZH2 activity at the Ccr7 locus will be important for addressing this issue. It is also likely that H3K27me3 is but one of many mechanisms involved with regulating Ccr7 expression. Monocytes and monocyte-derived Ly-6Chi inflammatory DCs have low levels of Ccr7-associated H3K27me3, yet they do not express Ccr7 after stimulation with LPS (Fig. 6A) (10). This implies that in addition to a receptive chromatin configuration at the Ccr7 promoter, lineage-specific transcription factors are also necessary for driving gene expression. Several transcriptional factors have been reported to regulate Ccr7 expression, including NF-κB (50), peroxisome proliferator-activated receptor γ (51), Runx3 (52), liver X receptor (53), and IFN regulatory factor 4 (54). The migratory properties of cDCs and moDCs may be dependent on differential expression of these transcription factors. Additional epigenetic mechanisms, such as DNA methylation and noncoding RNAs, might also regulate Ccr7 expression. The Ccr7 promoter does not contain any CpG islands, but it is possible that DNA methylation in upstream enhancers or intronic regions may influence Ccr7 expression. Noncoding RNAs that inhibit CCR7 production have been described in human T lymphocytes and breast cancer cells (55, 56) but not in APCs. Future studies will help clarify the relative contribution of lineage-specific transcription factors and other epigenetic marks to Ccr7 regulation.

Overall, our findings suggest that by controlling Ccr7 expression, lineage-specific epigenetic mechanisms can influence the function of specific DC subsets. Identifying the endogenous and cell-intrinsic factors that direct Ccr7-specific epigenetic changes will likely uncover pathways that can be targeted to modulate DC migration. In turn, the ability to manipulate the migratory properties of DCs represents a novel strategy for improving DC-based immunotherapies and for treating immunemediated diseases.

Acknowledgments
We thank Carl Bortner and Maria Sifre of the NIEHS Flow Cytometry Center for help with cell sorting, the NIEHS Protein Expression Core Facility for production of recombinant human FL, Ligon Perrow for mouse colony management, Komal Patel for technical assistance, Thomas Randall for bioinformatics consultation, and Michael Fessler and Harriet Kinyamu for critical review of the manuscript.

Disclosures
The authors have no financial conflicts of interest.

Supplemental Figure 1: Histone modifications at the Ccr7 locus in BM-elicited cDCs and moDCs. (A) ChIP-QPCR analysis of the Ccr7 promoter, Ccr7 first intron, or Magea2 locus in unstimulated FL- or GM-DCs following immunoprecipitation with either anti-H3K27me3 (black bars) or nonspecific IgG (white bars) antibodies. Bar graphs represent the mean ± s.d of duplicate samples after normalization to input DNA. Data are from a single experiment, representative of two. (B) ChIP-QPCR analysis of the Ccr7 promoter, Ccr7 first intron, or B2m locus in unstimulated FL- or GM-DCs following immunoprecipitation with either anti-acetylated H3K27 (H3K27ac, black bars) or nonspecific IgG (white bars) antibodies. Bars represent the mean ± s.d of duplicate samples after normalization to input DNA. Data are from a single experiment, representative of two.
Supplemental Figure 2: Expression of PRC2 core proteins during monocyte differentiation to moDCs. Ly-6Chi monocytes sorted from the BM of wild type mice were cultured in the presence of GM-CSF and IL-4 for 6 days. *Ezh2, Eed, Rbbp4* (RbAp48) and *Suz12* mRNA levels were analyzed by RT-PCR at the indicated time points and normalized to *Gapdh* mRNA levels. Symbols represent the fold-change (compared to day 0 values) ± s.d of triplicate wells. Data are from a single experiment, representative of two.
Supplemental Table 1: List of PCR Primers

<table>
<thead>
<tr>
<th>Primer Name</th>
<th>Sequence (5’ → 3”)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ccr7 forward</td>
<td>GTACGAGTCCGCTGTGGCTTC</td>
<td>Primers used for cDNA analysis</td>
</tr>
<tr>
<td>Ccr7 reverse</td>
<td>GG TAGGTATCCGTCATGGGTCTTG</td>
<td></td>
</tr>
<tr>
<td>Gapdh forward</td>
<td>GGCAAATTCAACGGCAGAT</td>
<td></td>
</tr>
<tr>
<td>Gapdh reverse</td>
<td>AGATGGTGATGGGCTTTCCC</td>
<td></td>
</tr>
<tr>
<td>Nos2 forward</td>
<td>CCCCGCTACTACTCCATCCAG</td>
<td></td>
</tr>
<tr>
<td>Nos2 reverse</td>
<td>GGCTTCAGGTTTCTGATCCAA</td>
<td></td>
</tr>
<tr>
<td>Zbtb46 forward</td>
<td>ATCACTTCTCACTACGGCAT</td>
<td></td>
</tr>
<tr>
<td>Zbtb46 reverse</td>
<td>AAGACGTTCTTTATGTGCCCTGAA</td>
<td></td>
</tr>
<tr>
<td>Ezh2 forward</td>
<td>CTTGCAATTCATTTCATACGC</td>
<td></td>
</tr>
<tr>
<td>Ezh2 reverse</td>
<td>CATGGAAGGAATAACTGCAC</td>
<td></td>
</tr>
<tr>
<td>Eed forward</td>
<td>GAAGTTCTGAGTGCTGATTATG</td>
<td></td>
</tr>
<tr>
<td>Eed reverse</td>
<td>CTTTGAGTTGATTCTCCACAG</td>
<td></td>
</tr>
<tr>
<td>RbAp48 (Rbbp4) forward</td>
<td>TCACCTCAATGAGACTATC</td>
<td></td>
</tr>
<tr>
<td>RbAp48 (Rbbp4) reverse</td>
<td>TAAACAACAATTCTGAGGTGG</td>
<td></td>
</tr>
<tr>
<td>Suz12 forward</td>
<td>ATATGGTGAGTCCCTACTCG</td>
<td></td>
</tr>
<tr>
<td>Suz12 reverse</td>
<td>GGAAGTTCTTTCACTGACATC</td>
<td></td>
</tr>
<tr>
<td>Ccr7 Promoter forward</td>
<td>TCCCACCCCTCAGATGCCCTTC</td>
<td>Primers used for ChIP analysis</td>
</tr>
<tr>
<td>Ccr7 Promoter reverse</td>
<td>GGGCTTTCTGAAGGCAAACG</td>
<td></td>
</tr>
<tr>
<td>Ccr7 Intron forward</td>
<td>TGGTGAGCGGAACCTCTAGGA</td>
<td></td>
</tr>
<tr>
<td>Ccr7 Intron reverse</td>
<td>GCTCCAGACACCCAGTTT</td>
<td></td>
</tr>
<tr>
<td>Magea2 forward</td>
<td>AACGTTTGTGAACGTCCTAGG</td>
<td></td>
</tr>
<tr>
<td>Magea2 reverse</td>
<td>GACGCTCCAGAACAATGACGC</td>
<td></td>
</tr>
<tr>
<td>Hoxc10 forward</td>
<td>GCCGGGTCATTGGTATAGA</td>
<td></td>
</tr>
<tr>
<td>Hoxc10 reverse</td>
<td>TTAGGCAATGAGTGGCAGTTG</td>
<td></td>
</tr>
<tr>
<td>B2m forward</td>
<td>CTGCTACTCCGGCGCTTCACTG</td>
<td></td>
</tr>
<tr>
<td>B2m reverse</td>
<td>GAGAGGGAAAGAGGCACCTCA</td>
<td></td>
</tr>
</tbody>
</table>