Central Role of Conventional Dendritic Cells in Regulation of Bone Marrow Release and Survival of Neutrophils

Jingjing Jiao, Ana-Cristina Dragomir, Peri Kocabayoglu, Adeeb H. Rahman, Andrew Chow, Daigo Hashimoto, Marylene Leboeuf, Thomas Kraus, Thomas Moran, Gonzalo Carrasco-Avino, Scott L. Friedman, Miriam Merad and Costica Aloman

J Immunol 2014; 192:3374-3382; Prepublished online 3 March 2014;
doi: 10.4049/jimmunol.1300237
http://www.jimmunol.org/content/192/7/3374

Supplementary Material http://www.jimmunol.org/content/suppl/2014/03/01/jimmunol.1300237.DCSupplemental

References This article cites 39 articles, 17 of which you can access for free at: http://www.jimmunol.org/content/192/7/3374.full#ref-list-1

Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription

Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts

The Journal of Immunology is published twice each month by
The American Association of Immunologists, Inc.,
1451 Rockville Pike, Suite 650, Rockville, MD 20852
Copyright © 2014 by The American Association of Immunologists, Inc. All rights reserved.
Print ISSN: 0022-1767 Online ISSN: 1550-6606.
Central Role of Conventional Dendritic Cells in Regulation of Bone Marrow Release and Survival of Neutrophils

Jingjing Jiao,* Ana-Cristina Dragomir,* Peri Kocabayoglu,* Aedeé H. Rahman,* Andrew Chow,† Daigo Hashimoto,‡ Marylene Leboeuf,† Thomas Kraus,‡ Thomas Moran,‡ Gonzalo Carrasco-Avino,§ Scott L. Friedman,* Miriam Merad,† and Costica Aloman*§‖

Neutrophils are the most abundant cell type in the immune system and play an important role in the innate immune response. Using a diverse range of mouse models with either defective dendritic cell (DC) development or conditional DC depletion, we provide in vivo evidence indicating that conventional DCs play an important role in the regulation of neutrophil homeostasis. Flik2, Flt3L, and Batf3 knockout mice, which have defects in DC development, have increased numbers of liver neutrophils in the steady state. Conversely, neutrophil frequency is reduced in DC-specific PTEN knockout mice, which have an expansion of CD8+ and CD103+ DCs. In chimeric CD11c-DTR mice, conventional DC depletion results in a systemic increase of neutrophils in peripheral organs in the absence of histological inflammation or an increase in proinflammatory cytokines. This effect is also present in splenectomized chimeric CD11c-DTR mice and is absent in chimeric mice with 50% normal bone marrow. In chimeric CD11c-DTR mice, diphtheria toxin treatment results in enhanced neutrophil trafficking from the bone marrow into circulation and increased neutrophil recruitment. Moreover, there is an increased expression of chemokines/cytokines involved in neutrophil homeostasis and reduced neutrophil apoptosis. These data underscore the role of the DC pool in regulating the neutrophil compartment in nonlymphoid organs. The Journal of Immunology, 2014, 192: 3374–3382.

Neutrophils are the most abundant circulating leukocytes and are essential for innate immunity. They are recruited rapidly to sites of inflammation, where their primary role is to kill invading pathogens through phagocytosis by releasing preformed lytic enzymes and by producing reactive oxygen species (1). Neutrophils exhibit rapid homeostatic turnover; it has been estimated that ∼10¹⁰ cells/kg of body weight leave the bone marrow per day (2). Neutrophil homeostasis is maintained through a delicate balance between granulopoiesis, bone marrow storage and release, intravascular margination, and migration into peripheral tissues. Neutrophils also may undergo apoptosis and clearance in peripheral tissues (3, 4). Tissue-resident macrophages, including Kupffer cells (5, 6), bone marrow stromal macrophages (7), and

Materials and Methods

Animals

Six-week-old female Flt3L knockout (KO) mice were purchased from Taconic. C57BL/6, CD11c-DTR, CD11c-Cre, Foxp3-DTR, and Pten-flox mice were purchased from The Jackson Laboratory. Flk2KO mice were provided by I. Lemischka from Icahn School of Medicine at Mount Sinai (New York, NY). Batf3KO mice were gifts from K. Murphy from Washington University (St. Louis, MO). DC-specific Pten KO mice (DC/Pten−/−) were generated by breeding CD11c-Cre with Pten-flox mice. Cre-negative littermates (Pten-Flox) were used as control. All procedures were in accordance with Institutional Animal Care and Use Committee Protocols.

Bone marrow transplantation

Recipient CD45.1 mice underwent lethal total body irradiation delivered in two doses of 660 rad each. A total of 2 × 10⁶ bone marrow cells from CD11c-DTR mice were injected retro-orbitally. All the mice were used 12 wk after bone marrow transplantation.
In vivo cellular depletion

For cDC depletion, 25 ng/g diphtheria toxin (DT; List Biological Laboratories) was administered i.p. into the chimeric CD11c-DTR mice. Mice were sacrificed 12 h later, and bone marrow, blood, liver, spleen and lung were harvested for further analysis. For pDC depletion, mice were injected i.p. with 500 µg 120G8 every other day for 14 d. 120G8 and control Ab were purchased from Imgenex. Mice were sacrificed 24 h after the last injection, and livers were harvested. For Foxp3+CD4+ T cell depletion, DT was injected i.p. at a dose of 50 ng/g for 2 consecutive days into Foxp3-DTR mice. Mice were sacrificed 48 h after the last dose.

Cell preparation

Bone marrow cells were flushed thoroughly from mouse femurs with 10 ml PBS. Peripheral blood leukocytes were obtained through retroorbital bleeding by heparinized capillary tubes. Single-cell suspensions from spleens were prepared by mashing through 70-µm cell strainers (BD Biosciences) without enzymatic digestion. Lungs were perfused via the right ventricle of the heart with PBS. The tissues were minced, digested in 0.4 mg/ml collagenase IV (Sigma-Aldrich) for 45 min, and filtered through 70-µM cell strainers (BD Biosciences) to get the cells suspension. RBCs from the bone marrow, peripheral blood, spleen, and lungs were removed by RBC lysis buffer (eBioscience). For liver leukocyte isolation, livers were perfused in situ via the portal vein with PBS. Perfused livers were dissected and digested with 0.1 mg/ml collagenase IV (Sigma-Aldrich), except in cases where annexin V staining was to be performed. The resultant cell suspensions were layered onto a two-step (40/70%) discontinuous Percoll gradient (GE Healthcare) and centrifuged at 900 × g for 20 min at 25°C. Heparin leukocyte populations collected at the interface were washed twice in wash medium and used for analysis.

Flow cytometry

Fluorochrome-conjugated or biotinylated mAb specific to mouse Ab were listed as below. PE-Ly6G (clone 1A8) and allophycocyanin-Cy7-CD45 (clone 30-F11) were purchased from BD Pharmingen. PerCP-Cy5.5-CD11b (clone M1/70), FITC-CD11b (clone M1/70), eFluor 450-CD19 (clone eBio1D3), eFluor 450-CD3 (clone 17A2), eFluor 450-NK1.1 (clone PK136), allophycocyanin-MHC class II (MHCIId) (I-A/E clone M5/114.15.2), PE-Cy7-CD11c (clone N418), biotin-PDCA-1 (clone eBio927), FITC-PDCA-1 (clone eBio927), PE-CD103 (clone 2E7), PerCP-Cy5.5-CD3 (clone 145-2C11), PE-Cy7-NK1.1 (clone PK136), PE-IFN-γ (clone XMG1.2), allophycocyanin-IL-17 (clone eBio1T7B), allophycocyanin-CD34 (clone 4H11), PE-CD16/32(clone 93), FITC-Sca-1 (clone D7), and PE-Cy7-C-kit (clone 2B8) were from eBioscience. Biotin-F480 (clone CI:A3-1) was purchased from Serotec. Secondary reagents PE-Cy7-streptavidin were purchased from BD Pharmingen. PE-streptavidin and allophycocyanin-streptavidin were from eBioscience. Intracellular PE-Foxp3 (clone FJK-16s) staining was performed after fixation and permeabilization following the manufacturer’s protocol (eBioscience). For intracellular IL-17 staining, cells were stimulated for 4 h with PMA (50 ng/ml), and ionomycin (1 µg/ml; both from Sigma-Aldrich) was in the presence of monensin (2 µM) (eBioscience) at 37°C. For detection of IL-17, cells were fixed and permeabilized, according to the manufacturer’s protocol (eBioscience). Multiparameter analyses of stained cell suspension were performed on an LSR II (BD Biosciences) at the Mount Sinai Flow Cytometry Core Facility and analyzed with FlowJo software (Tree Star).

FIGURE 1. Mice with developmental DC deficiency have increased neutrophil in the liver and blood. Representative FACS plots (A) of liver (top panel) and blood (bottom panel) neutrophils in WT, Flk2KO, and Fit3LKO mice are displayed. Liver neutrophils are gated as CD45+CD11b+Ly6G+ (B–E). Increased neutrophils in the liver of Flk2KO and Fit3LKO as graphed by percentage of CD45+ cells (B, D) and absolute numbers (C, E). Increased blood neutrophils frequencies of Flk2KO and Fit3LKO. Results are expressed as mean ± SD (n = 4–6 mice). The experiments were repeated three times with similar results. *p < 0.05, **p < 0.01, ***p < 0.001.
Single DAPI cells were evaluated for all analyses but intracellular staining and apoptosis. Plasmacytoid DCs (pDC) were gated as CD45+CD3e-CD19-NK1.1-PDCA-1+CD11cint. cDC were gated as CD45+CD3e-CD19-NK1.1-PDCA-1-CD11chighMHCIIhigh. Neutrophils were defined as CD45+Ly6G+CD11b+. Th17 cells were gated as CD45+CD3+CD4+IL-17+. Apoptosis was evaluated by incubating the cells with allophycocyanin-annexin V in binding buffer (eBioscience), as per the manufacturer’s instructions.

Cell sorting and Hema3 staining

Neutrophils from the liver were sorted based on the expression of Ly6G and CD11b on FACSAria II (BD Biosciences). The Hema 3 system (Fisher Scientific) was used to stain cytospin prepared slides through cytocentrifugation.

Histochemical neutrophil staining and quantification

Neutrophil specific esterase staining was performed on paraffin-embedded liver, spleen, bone marrow, and lung sections using Naphthol AS-D chloroacetate esterase kit following the product instructions (Sigma-Aldrich). At least 20 pictures/section were acquired using an AxioImager M2 microscope (Zeiss). Neutrophils were manually counted in each 3400 field.

Immunofluorescence staining

Goat-anti-mouse S100A9 (100 ng/ml; R&D Systems) and rabbit-anti-mouse colIV (13.3 µg/ml; Abcam) immunofluorescence staining was performed on frozen tissue, followed with fluorescently conjugated secondary Abs (chicken anti-goat Alexa Fluor 488 and donkey anti-rabbit Alexa Fluor 647; 10 µg/ml; Invitrogen). Nuclei were visualized using DAPI. Images were acquired using a Leica SP5 DM confocal microscope. Neutrophils were manually counted in each 3400 field.

Multiplex cytokine/chemokine assay

Mouse liver was homogenized in 0.15 M potassium chloride solution containing protease inhibitor mixture (Roche). Cytokines/Chemokines expression in the liver was assessed by a magnetic bead-based array Milliplex Map (EMD Millipore) following the manufacturer’s instruction. Multiplex plates were read using a Luminex 100 multiplex plate reader (Luminex, Austin, TX).

ELISA

Blood was collected by retro-orbital bleeding, and plasma was isolated using BD Microtainer Plastic Capillary Blood Collectors. Plasma G-CSF level was detected with Mouse G-CSF Quantikine ELISA Kit (R&D Systems) following the manufacturer’s instruction.

Splenectomy

Mice were anesthetized with isoflurane (Isoflur; Dainippon Sumitomo Pharma). The spleen was exposed and removed after appropriate blood vessel ligation by clipping. Sham-operated animals underwent the laparotomy without a splenectomy.

Mix bone marrow chimera

Recipient CD45.1 mice underwent lethal total body irradiation delivered in 2 doses of 660 rad each. Bone marrow cells from CD11c-DTR mice (CD45.2) and wild-type (WT) mice (CD45.1) were mixed together (10⁶ total, ratio 3:2) and injected via the retro-orbital vein. All the mice were used 12 wk after bone marrow transplantation.

Bromodeoxyuridine labeling

Mice were injected i.p. with 1.5 mg bromodeoxyuridine (BrdU) (BD Pharmingen). At various time points after injection, blood samples were obtained via retro-orbital bleeding by heparinized capillary tubes and an-

FIGURE 2. Mice with altered CD103+ DC development have changes in hepatic neutrophil. Batf3KO mice have increased neutrophil number in the liver as indicated by FACS (A) and graphed as percentage (B) and absolute number (C). DCΔPten mice have decreased neutrophil in the liver as indicated by FACS (D) and graphed as percentage (E) Results are expressed as mean ± SD (n = 3–5 mice). The experiments were repeated twice with similar results. *p < 0.05, **p < 0.01.
analyzed by flow cytometry using an allophycocyanin-BrdU Flow kit (BD Pharmingen) following the manufacturer’s protocol.

Statistical analysis

Error bars represent mean ± SD and were analyzed by Student t test with Prism 4 software (GraphPad Software). The p values <0.05 were considered significant. Statistical significance was expressed as follows: *p < 0.05; **p < 0.01; and ***p < 0.001.

Results

Flt3LKO and Flk2KO mice have increased hepatic neutrophils

DC development critically depends on the cytokine Flt3L, which signals through its receptor Flt3/Flk2 (9). Both Flk2KO and Flt3LKO mice have reduced pDC and cDC compared with WT controls (9, 12). In the first set of experiments, we explored whether the neutrophil homeostasis in these strains of mice is altered in the steady state. We noted an increase in hepatic neutrophils in Flk2KO mice both as a percentage of total CD45+ cells (neutrophil frequency) and by absolute number (Fig. 1A–C), whereas in Flt3LKO mice only an increase in hepatic neutrophil frequency was observed (Fig. 1A, 1D, 1E). Flt3L-dependent defects were associated with increased blood neutrophil frequencies in both mice strains (Fig. 1A, 1F, 1G).

Mice with abnormal CD103+ DC development exhibit differences in peripheral neutrophil numbers

Consistent with these results, Batf3KO mice, well-known to have developmental deficiencies of CD8+ DC and CD103+ DC (13) in lymphoid and nonlymphoid organs respectively, also have more neutrophils in their livers than WT controls (Fig. 2A–C). It has been reported that PI3K-mTOR signaling downstream of Flt3L controls DC development, and DC-specific deletion of the PI3K-mTOR negative regulator PTEN causes a substantial expansion of DC, especially CD8+ and CD103+ DC (14) (data not shown). These mice with specific CD103 DC expansion had a decreased neutrophil frequency (Fig. 2D, 2E). As expected, because of the tumor suppressor function of PTEN, significant myeloproliferation is observed in these mice. No difference in the absolute neutrophil number was noted (data not shown). Similar to our model, in a myeloid-specific PTEN deletion model generated using Lysozyme-Cre, neutrophil numbers in peripheral blood was also unchanged from control mice (15).

In addition to homeostatic conditions, in a chronic liver inflammation model induced using CCl4 administration, there was still an increase in liver neutrophils in both Flk2KO mice and Batf3KO mice compared with controls. However, the magnitude...
of neutrophilia was smaller than under steady-state conditions (data not shown).

cDC depletion in CD11c-DTR chimeric mice results in neutrophilia and increased neutrophils in peripheral organs

Deficiency in the Flk2-Fit3L system affects both the pDC and cDC compartment (10). In addition, Flt3LKO mice also had impaired NK and B cell development (12). Depleting pDC with a depleting Ab 120G8 (Supplemental Fig. 1A) did not result in increased neutrophils (Supplemental Fig. 1B–D), and we therefore hypothesized that the increased neutrophil in Flk2KO mice is due to cDC deficiency. To test this, we used chimeric CD11c-DTR mice to deplete cDC. Injecting these mice with 25ng/g body weight of DT induces cDC depletion in the liver, spleen and lung without affecting pDCs (data not shown). We observed a systemic increase in neutrophils associated with cDC depletion as revealed by FACS analysis (Fig. 3A–C) and neutrophil esterase–specific staining (Fig. 3D, 3E).

Increased neutrophils in DT-treated chimeric CD11c-DTR mice is not caused by nonspecific inflammation induced by DT

We next confirmed that the increase in neutrophil is not due to non-specific inflammation induced by dendritic cell necrosis/apoptosis. First, we did not identify any differences in the expression of several inflammatory cytokines (IL-1α, IL-1β, TNF-α, IL-12, and IFN-γ) in the liver between the cDC-depleted group and control group (Fig. 4A). In the plasma, these cytokines were either below the detection limit (IL-1β, TNF-TNF-α, IL-12, and IFN-γ) or did not differ (IL-1α) between the two (data not shown). We also performed intracellular cytokine staining for IFN-γ, and there was no difference in the percentage of IFN-γ+ cells (data not shown). Second, the same dose (25mg/g) of DT injection into WT mice did not lead to a neutrophil increase, suggesting that increased neutrophil infiltration is not caused by contamination with LPS of DT or DT itself (Fig. 4B–D). Third, in another DTR mouse model, Foxp3-DTR mice, efficient CD4+Foxp3+ T cell depletion (50 ng/g body weight for 2 consecutive days) (Supplemental Fig. 1E) (16) did not result in increased neutrophils (Supplemental Fig. 1F–H), suggesting that increased neutrophils in CD11c-DTR mice is due to specific cDC depletion rather than general cell death induced by the DTR system. Last, to prove a causal relationship between cDC depletion and neutrophil increase, we analyzed neutrophil numbers in mixed bone marrow chimeras (WT CD45.1+ CD11c-DTR CD45.2). DT injection in these chimeras leads to depletion of cDC only from CD45.2+ compartment originating from CD11c-DTR strain without affecting overall cDC number (Supplemental Fig. 2A, 2B). However, in the presence of DC from the WT CD45.1 compartment, we did not observe increased neutrophil after DT depletion and depletion of all cells from CD45.2+CD68+ donor DC (Supplemental Fig. 2C). Taken together, these data suggest that the increase in neutrophils is due to specific cDC depletion and not due to the DTR system, DT treatment or non-specific inflammation.

Because CD11c-DTR chimeric mice enabled us to specifically deplete cDC, we used this model to further characterize the mechanisms underlying cDC depletion-induced neutrophilia.

Acute cDC depletion is associated with an increased mobilization of neutrophils from bone marrow

In order to elucidate the mechanism of increased neutrophils associated with DC depletion, we quantified first the neutrophil numbers in the bone marrow during cDC depletion. DT treatment led to a ~50% decrease in bone marrow neutrophils (Fig. 5A–C) without any impact on the total CD45+ femoral cellularity (Fig. 5D). Consistent with this finding, the frequency of cells expressing neutrophil-specific leukocyte esterase is decreased after DT administration (Fig. 5E). As bone marrow neutrophil numbers decrease, a concomitant increase in neutrophil numbers is observed in the peripheral blood (Fig. 5F). Neutrophil trafficking from the bone marrow...
is estimated by neutrophil distribution index (NDI), which is the percentage of neutrophils in the blood versus the total number of neutrophils in the bone marrow and blood (17). As indicated in Fig. 5G, there is a ∼3-fold increase in NDI after cDC depletion. To confirm the increased neutrophil mobilization, we injected CD11c-DTR chimeras with BrdU and administered one dose of DT to deplete cDC 12 h later. The percentage of BrdU+ neutrophils in the blood was assessed from 24 to 144 h after BrdU injection. BrdU+ neutrophils were observed in the periphery 24 h earlier in cDC depleted mice than in controls, confirming the increased rate of release of neutrophils from the bone marrow into the periphery (Supplemental Fig. 2D). Collectively, these data suggest that cDC depletion did not have a significant effect on neutrophil production.

We next sought to identify mediators responsible for increased neutrophil mobilization. G-CSF promotes neutrophil release from the bone marrow into the circulation (17). Indeed, there was increased plasma G-CSF in cDC-depleted mice, implicating this cytokine as a potential candidate to explain the increased mobilization (Fig. 5H). Because IL-17 induces the expression of G-CSF (18), we compared the frequency of Th17 cells in the liver, spleen, and lung in cDC-depleted mice with control. However, after cDC depletion, there was no alteration in Th17 cell frequency in these organs, indicating that IL-17 is not likely to be responsible for upregulation of G-CSF in our model (data not shown).

cDC depletion increases the expression of neutrophil-recruiting cytokines in the liver

To better understand the cause of increased neutrophils in the peripheral organs, we examined production of chemokines in the liver by a customized cytokine beads array focused on cytokines involved in neutrophils recruitment. KC, MCP-1, G-CSF, and IP-10 were all shown to be increased in cDC-depleted mice (Fig. 6A). All these chemokines have been reported as involved in neutrophil mobilization and recruitment (19–24). A similar increase was also noted in the plasma of cDC-depleted mice (Fig. 6B). This indicates that increased neutrophil recruitment also contributes to cDC

FIGURE 5. cDC depletion results in neutrophil release from bone marrow into periphery. (A–D) DT administration leads to reduced neutrophil number in the bone marrow without affecting total hematopoietic cell number (D). Neutrophil reduction is shown by FACS (A) and graphed as percentage of total CD45+ cell (B) and absolute number (C). (E) Less neutrophil in bone marrow after cDC depletion is confirmed by Naphthol AS-D chloroacetate esterase staining (oil; original magnification ×630). (F and G) Enhanced neutrophil mobilization into periphery as indicated by increased neutrophil number in blood (F) and increased NDI (G). (H) Increase plasma G-CSF is detected in cDC depleted mice by ELISA. *p < 0.05, **p < 0.01.
depletion–induced neutrophilia, in addition to increased mobilization. Supporting this increase recruitment, a calculated neutrophil recruitment index was higher in cDC depleted mice (Supplemental Fig. 2E).

Careful inspection of neutrophil staining by histochemistry localized the increased neutrophils within the hepatic sinusoid. To further determine whether margination was involved in increased neutrophils, we performed colocalization studies. Staining neutrophils with S100A9 (25), and basement membrane type collagen IV confirmed that many neutrophils resided in the sinusoidal space (Supplemental Fig. 4A, 4B), indicating that some of the neutrophilia is due to margination.

Acute cDC depletion results in decreased hepatic neutrophil apoptosis

Given that cell death is an important element of neutrophil homeostasis in peripheral tissues, we measured neutrophils apoptosis by flow cytometry to determine whether cDC also affected neutrophil survival. As shown in Fig. 6C, 6D, 12 h after cDC depletion, the percentage of apoptotic neutrophils as defined by AnnexinV+DAPI+CD45+Ly6G+CD11b+ was reduced by ~50%, suggesting an enhanced survival of neutrophils after acute DT-induced cDC depletion.

Our mechanistic studies indicate that acute cDC depletion affects multiple steps involved in neutrophil homeostasis, including mobilization, recruitment, margination and survival.

Increased hepatic neutrophils after DT depletion in CD11c DTR chimeric mice is not due to depletion of splenic macrophages

One limitation of the CD11c-DTR mice is that DT injection not only depletes cDC but also depletes marginal zone and metallophilic macrophages from the spleen (26). Spleen marginal zone macrophages have been shown to play a critical role in maintaining the homeostasis of neutrophils through phagocytosis of senescent neutrophils (8). To rule out the role of spleen macrophages in our model, we analyzed neutrophils after cDC depletion in splenectomized CD11c-DTR chimeras. Three weeks after splenectomy, DT treatment induced cDC depletion and resulted in similarly increased neutrophils in splenectomized mice and sham-operated controls (Fig. 7A, 7B). Similar to nonsplenectomized mice, we observed decreased mature neutrophil numbers in the bone marrow (Figure 7A,C) and increased numbers in the peripheral blood (Fig. 7A, 7D), corresponding to a significantly increased NDI (Fig. 7E). Thus, we conclude that depletion of spleen macrophages is not responsible for increased neutrophil trafficking from the bone marrow into periphery after DT-induced cDC depletion.

Discussion

In this study, we have shown using a variety of murine models that cDCs are involved in neutrophil migration from the bone marrow and their recruitment and local survival in peripheral organs. Our results provide in vivo evidence for an important role for dendritic cells in neutrophil homeostasis.

Our analysis shows increased neutrophil counts in mice with DC developmental deficiencies (Flk2KO, Flt3LKO, and Batf3KO) and decreased frequencies in a model with DC expansion (loss of Pten in the CD11c+ compartment). Abnormal neutrophil homeostasis has also been reported in other transgenic murine models that exhibit abnormal DC development. First, two strains of CD11c-DTA mice generated by independent laboratories have a constitutive absence of cDC and both exhibit neutrophilia (27, 28). Second, dampened DC survival induced by DC-specific KO of TGF-β–activated kinase 1 causes a myeloid proliferative disorder characterized by expansion of neutrophils and inflammatory monocytes (29). Third, mice that are deficient in IRF8, a critical transcriptional factor involved in the development of DCs, especially CD8+ DC (30) also have a significant systemic increase of neutrophils (31). Most recently, in zDC-DTR mice, another transgenic mouse strain that carries DTR in the 3’-untranslated region of the zDC (a zinc finger transcription factor specifically expressed by cDC and committed cDC precursors), an increase in neutrophils was reported following cDC depletion (32). Furthermore, mutations that impair
IRF8 transcriptional activity in human patients lead to selective depletion of CD11c+CD1c+ circulating DC and are associated with a very high neutrophil count in the blood (33). Taken together, these data strongly point to a potential link between DC and neutrophil homeostasis.

The cDC effect on neutrophils homeostasis appears to be class specific because we did not observe increased neutrophils in mice that received a pDC depleting Ab. This data are consistent with previously published data showing that successful pDC depletion obtained with a BDCA-2 DTR system results in similar numbers of neutrophils as controls (34). Thus, neutrophil homeostasis is likely regulated by cDC rather than pDC, even though both DC subsets are Flt3L dependent. It should be noted that an increase of neutrophils after DC depletion in the CD11c-DTR model has been previously mentioned (35), but a causal link between DC and neutrophils in the steady state and a mechanistic characterization of this phenomenon have been missing.

In our methodology, we explored a number of other mechanisms that have frequently been claimed to increase neutrophils induced by DT. In CD11c-DTR bone marrow chimeric mice, we first performed a series of experiments to rule out that DT-induced cell death is responsible for neutrophilia. We did not observe any differences in the levels of several inflammatory cytokines (IL-1α, IL-1β, TNF-α, IL-12, and IFN-γ) assessed using a cytokine bead array technology. Moreover, in mixed bone marrow chimeras (50% WT and 50% CD11cDTR bone marrow) DC depletion of the DTR+ DC fraction does not induce neutrophilia, despite DT treatment and the associated cell death. Furthermore, by performing a splenectomy of CD11c-DTR chimeric mice, we confirmed for the first time that splenic macrophages, which have also been found to be depleted with cDC in this model system, were not involved in the development of neutrophilia. Taken together, we have provided a causal relationship between cDC depletion and neutrophilia; a relationship that has previously been attributed mainly to the macrophage population.

Next, we explored the mechanism underpinning the increase in neutrophils associated with DC depletion. DT induced cDC depletion results in decreased neutrophil numbers in the bone marrow and a concordant increase in the periphery. A significant increase in NDI and an earlier appearance of BrdU-labeled neutrophils in the circulation indicate that neutrophilia results from increased neutrophil mobilization from the bone marrow. Consistent with our data, another group has also recently reported that DC depletion causes neutrophil release from the bone marrow using different strains of CD11c-DTR mice (36). Considering the well-characterized role of G-CSF in neutrophil release (17) and an upregulation of this cytokine in cDC depleted mice, we consider G-CSF as a plausible candidate to trigger neutrophil release after acute DC depletion induced by DT administration. The cellular sources of G-CSF in cDC depleted mice are still unknown. We hypothesize that in the liver the
loss of cDC is sensed by endothelial cells which serve as source of G-CSF (37), although the detailed mechanism is still unclear. Recently, in two infection models caused by uropathogenic Escherichia coli and Yersinia enterocolitica, DC depletion using the CD11c-DTR system resulted in a neutrophil increase and was associated with improved bacterial clearance (36) (38). Besides CD11c-DTR models, studies using DC developmental deficiency models must be reinterpreted. For example, in the Salmonella typhimurium oral infection model, Salmonella dissemination to mesenteric lymph nodes was strongly reduced in Flt3LKO mice compared with WT control 2 d postinfection. The phenotype was previously interpreted to result from impaired dissemination of bacteria to the mesenteric lymph node in the absence of lamina propria CD103+CD11b+ DC in Flt3LKO mice. Considering the previously interpreted evidence for their involvement in liver neutrophil homeostasis. In summary, cDC are well known to orchestrate immune responses linking innate and adaptive immunity. Our study adds to the enlarging repertoire of DC function by providing compelling evidence for their involvement in liver neutrophil homeostasis.

Disclosures

The authors have no financial conflicts of interest.

References