Nerve Growth Factor Downregulates Inflammatory Response in Human Monocytes through TrkA

Giusi Prencipe, Gaetana Minnone, Raffaele Strippoli, Loredana De Pasquale, Stefania Petri, Ivan Caiello, Luigi Manni, Fabrizio De Benedetti and Luisa Bracci-Laudiero

J Immunol 2014; 192:3345-3354; Prepublished online 28 February 2014;
doi: 10.4049/jimmunol.1300825
http://www.jimmunol.org/content/192/7/3345

References
This article *cites 48 articles*, 15 of which you can access for free at:
http://www.jimmunol.org/content/192/7/3345.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Nerve Growth Factor Downregulates Inflammatory Response in Human Monocytes through TrkA

Giusi Prencipe,*1 Gaetana Minnone,*3,†4 Raffaele Strippoli,*5 Loredana De Pasquale,* Stefania Petri,*1 Ivan Caiello,* Luigi Manni,* Fabrizio De Benedetti,* and Luisa Bracci-Laudiero*1,4

Nerve growth factor (NGF) levels are highly increased in inflamed tissues, but their role is unclear. We show that NGF is part of a regulatory loop in monocytes: inflammatory stimuli, while activating a proinflammatory response through TLRs, upregulate the expression of the NGF receptor TrkA. In turn, NGF, by binding to TrkA, interferes with TLR responses. In TLR-activated monocytes, NGF reduces inflammatory cytokine production (IL-1β, TNF-α, IL-6, and IL-8) while inducing the release of anti-inflammatory mediators (IL-10 and IL-1 receptor antagonist). NGF binding to TrkA affects TLR signaling, favoring pathways that mediate inhibition of inflammatory responses: it increases Akt phosphorylation, inhibits glycogen synthase kinase 3 activity, reduces IκB phosphorylation and p65 NF-κB translocation, and increases nuclear p50 NF-κB binding activity. Use of TrkA inhibitors in TLR-activated monocytes abolishes the effects of NGF on the activation of anti-inflammatory signaling pathways, thus increasing NF-κB pathway activation and inflammatory cytokine production while reducing IL-10 production. PBMC and mononuclear cells obtained from the synovial fluid of patients with juvenile idiopathic arthritis show marked downregulation of TrkA expression. In ex vivo experiments, the addition of NGF to LPS-activated juvenile idiopathic arthritis to both mononuclear cells from synovial fluid and PBMC fails to reduce the production of IL-6 that, in contrast, is observed in healthy donors. This suggests that defective TrkA expression may facilitate proinflammatory mechanisms, contributing to chronic tissue inflammation and damage. In conclusion, this study identifies a novel regulatory mechanism of inflammatory responses through NGF and its receptor TrkA, for which abnormality may have pathogenic implications for chronic inflammatory diseases. The Journal of Immunology, 2014, 192: 3345–3354.

The neurotrophin nerve growth factor (NGF) is a well-known regulator of differentiation, plasticity, and phenotype of sensory and sympathetic neurons during the entire lifespan (1). Because of its dynamic control of innervation, trophism, and synthesis of neuroepitopes in neurons, the production of NGF in the peripheral tissues is strictly regulated, because alterations in NGF tissue concentrations lead to neuropathy, hyperalgesia, and pain (2). Nevertheless, as demonstrated by an increasing number of studies on inflammatory and autoimmune diseases, inflammation can greatly enhance the synthesis of NGF in the tissues.

1Research Laboratories, Unit of Rheumatology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy; 2Department of Medicine, “Tor Vergata” University, Rome 00173, Italy; 3Department of Cellular Biotechnologies and Haematology, University of Rome La Sapienza, Rome 00185, Italy; 4Research Laboratories, Confocal Microscopy Core Facility, Bambino Gesù Children’s Hospital, 00165 Rome, Italy; and 5Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy

*G.P. and G.M. contributed equally to this work.

Received for publication March 25, 2013. Accepted for publication January 15, 2014.

This work was supported by research funding from the Bambino Gesù Children’s Hospital Istituto di Ricovero e Cura a Carattere Scientifico “Ricerca Corrente” (to F.D.B.).

Address correspondence and reprint requests to Dr. Luisa Bracci-Laudiero, Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche, Via Fosso del Cavaliere 100, 00133 Rome, Italy. E-mail address: luisa.bracci@lcrf.cnr.it

Abbreviations used in this article: AU, arbitrary unit; Ct, threshold cycle; EAE, experimental autoimmune encephalomyelitis; GSK3, glycogen synthase kinase 3; IL-1ra, IL-1 receptor antagonist; IQR, interquartile range; JIA, juvenile idiopathic arthritis; LTA, lipoteichoic acid from Staphylococcus aureus; MFI, mean fluorescence intensity; NGF, nerve growth factor; PAM, Pam3CSK4; SFMC, mononuclear cells from synovial fluid; Us, unstimulated.

Copyright © 2014 by The American Association of Immunologists, Inc. 0022-1767/14/$16.00

www.jimmunol.org/cgi/doi/10.4049/jimmunol.1300825
such as TLRs (13). Signaling downstream of these receptors engages common effector mechanisms, including NF-κB/AP-1–dependent transcription of proinflammatory cytokines and chemokines (14–16). The amount and type of cytokines released after the TLR activation regulate the differentiation and functional state of dendritic cells and influence T cell activation and differentiation (17). Aberrant stimulation of TLRs or dysregulation of TLR signaling pathways results in increased expression of cytokines and chemokines, creating a vicious inflammatory cycle that contributes to the initiation and progression of chronic inflammatory diseases and autoimmune diseases such as rheumatoid arthritis (18, 19).

Because previous studies have shown that LPS stimulation through TLR4 upregulates TrkA expression in monocytes (20, 21), in the current study, we investigated in these cells whether NGF addition affects the expression and release of cytokine production after TLR activation and the intracellular pathways involved. Our results show that, through the activation of TrkA signaling, NGF influences TLR ligand–activated pathways, resulting in a downregulation of inflammatory cytokine production and the induction of anti-inflammatory mediators. We demonstrate that TrkA activation enhances AKT phosphorylation, inhibits glycogen synthase kinase 3 (GSK3) activity, and decreases IkB phosphorylation and p65 NF-κB nuclear translocation, while increasing p50 NF-κB nuclear binding, leading to a potentiation of endogenous anti-inflammatory mechanisms. We also report that mononuclear cells of patients with juvenile idiopathic arthritis (JIA) have reduced expression of TrkA. This results in the absence of NGF-mediated inhibition of inflammatory cytokine release after ex vivo TLR stimulation, suggesting that a physiological anti-inflammatory pathway is defective in JIA patients.

Materials and Methods

Chemicals and Abs

Endotoxin-free LPS was purchased from Sigma-Aldrich (St. Louis, MO), and lipopolysaccharide acid from Staphylococcus aureus (LTA) (Pam) and Pam3CysKq (PAM) were supplied by InvivoGen (San Diego, CA). NGF was purified according to Bocchini and Angeletti (22). Polyclonal Ab against Akt, phospho-Akt (Ser473), phospho-IκB, and phospho-GSK3 were from Cell Signaling Technology (Danvers, MA); mAbs and polyclonal Abs against p65 NF-κB were from Santa Cruz Biotechnology; mAb against TrkA was from R&D Systems (Minneapolis, MN). Polyclonal Ab against TrkA was from InvivoGen (San Diego, CA). NGF was purified from R&D Systems (Minneapolis, MN). Polyclonal Abs against Akt, phospho-Akt (Ser473), phospho-IκB, and phospho-GSK3 (Ser) were from Cell Signaling Technology (Danvers, MA); mAbs and polyclonal Abs against p65 NF-κB were from Santa Cruz Biotechnology; mAbs against tubulin was from Sigma-Aldrich. HRP-conjugated secondary Abs were from Jackson Immunoresearch Laboratories. For cellular cultures, neutralizing NGF Ab, goat Ab against TrkA, and recombinant human TrkA Fc chimera were from R&D Systems, and purified rabbit and goat IgG were from Zymed Laboratories (San Francisco, CA).

The specific PI3K inhibitors LY294002 [2-(4-Morpholinyl)-8-phenyl-4H-1-benzopyran-4-one] and wortmannin were purchased from Calbiochem. Fc chimera were from R&D Systems, and purified rabbit and goat IgG neutralizing NGF Ab, goat Ab against TrkA, and recombinant human TrkA clonal Abs against p65 NF-κB, p50 NF-κB, NF-κB, and NF-κB p65 NF-κB nuclear translocation, while increasing p50 NF-κB nuclear binding, leading to a potentiation of endogenous anti-inflammatory mechanisms. We also report that mononuclear cells of patients with juvenile idiopathic arthritis (JIA) have reduced expression of TrkA. This results in the absence of NGF-mediated inhibition of inflammatory cytokine release after ex vivo TLR stimulation, suggesting that a physiological anti-inflammatory pathway is defective in JIA patients.

Human monocyte cultures

PBMC were obtained from buffy coats of healthy donors after centrifugation over Ficoll-Hypaque (Pharmacia, Uppsala, Sweden) gradients. Monocytes were separated from lymphocytes by Percoll (Pharmacia) gradients, as described previously (23). Monocyte preparations were ~95% pure, as assessed by flow cytometry. Monocytes were cultured at a concentration of 2 × 10^6 cells/ml in RPMI 1640 (BioWhittaker, Walkersville, MD) and 5% heat-inactivated and endotoxin-free FCS (HyClone Labs, Logan, UT). For experiments with TLR stimulation, monocytes were either treated or not treated with 10 ng/ml LPS, 2 μg/ml LTA, 2 μg/ml PAM, and 100 ng/ml NGF for 18 h. In a set of experiments to assess TNF-α release, the conditioned media were collected after 3 h. In experiments with NGF inhibition, cells were incubated with 5 μg anti-NGF for 3 h and then with 10 ng/ml LPS or 2 μg LTA with or without the addition of 100 ng/ml NGF. For experiments with TrkA inhibition, cells were incubated with 3 μg/ml affinity-purified anti-TrkA Ab or 3 μg/ml TrkA-Fc chimera for 3 h and then stimulated with LPS and LTA with or without the addition of 50 ng/ml NGF. For experiments with Akt and GSK3 inhibition, cells were pretreated with 1 μM wortmannin, 25 μM LY 294002, 40 μM LiCl, or 25 μM AR-18 and then stimulated with 10 ng/ml LPS with or without the addition of 100 ng/ml NGF. In all of these conditions, the conditioned media were collected after 18 h of incubation.

RNA extraction and real-time PCR analysis

Total RNA was isolated from monocytes using the RNeasy mini kit (Qiagen), according to the manufacturer’s instructions. A total of 1 μg total RNA from each sample was used for first-strand cDNA synthesis using the Superscript VILO cDNA synthesis Kit (Invitrogen, Carlsbad, CA). TrkA, p75-NTR, IL-6, IL-1β, and IL-10 gene expression levels were measured by real-time quantitative PCR. PCR reactions were performed on the ABI PRISM 7900 HT Sequence Detector (Applied Biosystems, Foster City, CA) platform using TaqMan Universal Master Mix (Applied Biosystems). TrkA, p75-NTR, IL-6, IL-1β, and IL-10 expression were tested using Assays on Demand reagents (p75-NTR, Hs00182120_m1; IL-6, Hs00985639_m1; IL-1b, Hs01740971_m1; and IL-10, Hs00961622_m1; Applied Biosystems). Each measurement was performed in duplicate. TaqMan Endogenous Control human β-actin (4326315E; Applied Biosystems) was used as the housekeeping gene. Relative quantification was performed using the comparative threshold cycle (CT) method, and results were expressed in arbitrary units (AU). Expression levels were calculated as 2^(-ΔΔCt) and then compared with each other, whereas fold changes were calculated using the 2^(-ΔΔCt) equation (24).

Cytokine assays

Conditioned media were collected from monocytes obtained from different donors and incubated for 18 h with TLR ligands with or without the addition of NGF. The media were stored at −70°C, and different cytokine concentrations were analyzed simultaneously. Human IL-6, IL-1 receptor antagonist (IL-1ra), IL-1β, IL-8, TNF-α, and IL-10 were measured in cell culture supernatants using ELISA kits purchased from R&D Systems. Human NGF Elisa Kit was from Promega (Madison, WI). All of the assays were performed according to the manufacturer’s instructions. The detection limit of the assay was 9.3 pg/ml for IL-6, 39.06 pg/ml for IL-1ra, 7.8 pg/ml for IL-1β, 31.25 pg/ml for IL-8, 15.62 pg/ml for IL-10, 15.6 pg/ml for TNF-α, and 7.8 pg/ml for NGF.

Western blot analysis

To study the effects of TrkA activation on TLR signaling, monocytes in RPMI 1640 0.1% FCS were either treated or not treated with 10 ng/ml LPS, 2 μg/ml LTA, 2 μg/ml PAM, and 100 ng/ml NGF for 30 min. For experiments with TrkA inhibition, cells were instead incubated with 3 μg/ml affinity-purified anti-TrkA Ab or 3 μg/ml TrkA-Fc chimera for 3 h in RPMI 0.1% FCS and then stimulated with LPS and LTA with or without the addition of 50 ng/ml NGF for 30 min. Monocytes were then lysed in modified RIPA buffer containing: 50 mM Tris-HCl (pH 7.4), 1% Nonidet P-40, 0.1% SDS, 0.25% nadeoxycholate, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM PMSF, 1 μM each aprotinin, leupeptin, and pepstatin, and 25 mM NaF (all from Sigma-Aldrich). Equal amounts of protein were resolved by SDS-PAGE. Proteins were transferred to nitrocellulose membranes (Amersham Life Sciences, Little Chalfont, U.K.) and probed with Abs using standard procedures. Nitrocellulose-bound Abs were detected by chemiluminescence with ECL (Amersham Life Sciences).

p65 NF-κB nuclear translocation

Freshly isolated monocytes were treated with 10 ng/ml LPS in the presence or absence of 100 ng/ml NGF for 30 min. After treatment, cells were fixed for 20 min in 4% paraformaldehyde in PBS, permeabilized in cold methanol for 5 min, blocked with 2% BSA for 20 min, and immunostained for p65 NF-κB. Confocal images were acquired using the Olympus Fluoview FV1000 confocal microscope equipped with FV10-ASW version 2.0 software (Olympus), and fluorochrome unmixing was performed by the acquisition of automated sequential collection of multichannel images to reduce spectral crosstalk between channels. Quantification of p65 NF-kB nuclear fluorescence intensity was calculated using FV10-ASW Olympus software (Olympus). Briefly, nuclei were delimitated using Hoechst labelling, and mean fluorescence intensity (MFI) of p65 NF-kB labeling was quantified in nuclear, cytoplasmic, and total cell areas. A minimum of three different fields and at least 40–60 nuclei were analyzed per condition. A total of 220 nuclear and cytoplasmic MFIs were acquired for each condition in four independent experiments.
production is dose dependent, with a maximal effect at 100 ng/ml (aNGF; 5 μg/ml). The reduction of inflammatory cytokines is blocked by neutralizing anti-NGF Ab (aNGF; 5 μg/ml). The addition of 100 ng/ml NGF significantly decreases IL-6 release. This reduction was neutralized using anti-NGF Abs. When we tested the effect of NGF on the expression and production of inflammatory cytokines in TLR-activated monocytes, the effect of NGF on cytokine production induced by TLR activation. The addition of 100 ng/ml (Fig. 1E). In the absence of TLR stimulation, addition of NGF (100 ng/ml) did not induce cytokine release. IL-6, IL-1β, and TNF-α concentrations were undetectable in conditioned media of both unstimulated (Us) and NGF-treated monocytes. In these experiments, anti-NGF Abs abolished the effect of NGF. The effect of NGF on the production of inflammatory cytokines in TLR-activated monocytes was dose dependent, with a maximal effect at a concentration of 100 ng/ml (Fig. 1E). In the absence of TLR stimulation, addition of 100 ng/ml of NGF alone did not induce cytokine release. IL-6, IL-1β, and TNF-α concentrations were undetectable in conditioned media of both unstimulated (Us) and NGF-treated mono-

Patients with JIA

JIA is a term that collectively refers to a group of chronic childhood arthropathies that represent the most common rheumatic condition in children (26). Twenty-five children with JIA were included in the study. Diagnosis of JIA and of JIA subtypes was based on the International League of Associations for Rheumatology classification criteria. Fifteen patients had persistent oligoarticular JIA, 7 had extended oligoarticular JIA, and 3 had polyarticular JIA. The mean age was 8.9 y (range 1.77–18.88), and the mean disease duration was 4.5 y (range 0.19–13.73). All patients had active disease at the time of sampling. Synovial fluid samples were obtained at the time of intrarticular steroid injection. PBMC and mononuclear cells from synovial fluid (SFMC) were isolated by standard Ficoll-Hypaque density centrifugation and immediately frozen for mRNA extraction and analysis or for protein extraction and Western blot. In one set of experiments, freshly purified PBMC and SFMC from JIA patients were used to assess the effect of NGF on cytokine production. Cells were cultured at a concentration of 1 × 10^6/ml in RPMI 1640, 10% FCS with or without the addition of 10 ng/ml LPS, and 100 ng/ml NGF, and the supernatants were collected after 18 h. The study was approved by the Ethical Committee of the Bambino Gesù Children’s Hospital, and written informed consent was obtained from the parents of each child.

Statistical analysis

Data are presented as mean ± SEM or SD, as appropriate. Statistical analysis of the results was performed using nonparametric tests. All statistical analyses were performed using the Prism software (GraphPad, La Jolla, CA). Data were considered statistically significant when p < 0.05.

Results

Effects of NGF on TLR-induced inflammatory cytokine production

To gain more information on the effects of high levels of NGF in inflamed tissues (3), monocytes were stimulated with TLR2 and TLR4 ligands in the presence or absence of NGF. As shown in Fig. 1A, the addition of NGF at the time of stimulation with TLR ligands (LPS, PAM, and LTA) induced in human monocytes a reduction of IL-6 release. This reduction was neutralized by neutralizing anti-NGF Ab (aNGF; 5 μg/ml). The effect of NGF on cytokine production induced by TLR activation. The reduction of inflammatory cytokines is blocked by neutralizing anti-NGF Ab (aNGF; 5 μg/ml). The effect of NGF on cytokine production is dose dependent, with a maximal effect at 100 ng/ml (e). The graphs in (A), (B), and (D) represent the mean of nine independent experiments ± SEM. (E) is representative of three independent experiments, and data are represented as percentages of variations in cytokine release in LPS-tr. samples with and without NGF. *p < 0.05, **p < 0.01 comparing TLR ligands with and without NGF.
NGF DOWNREGULATES TLR INFLAMMATORY RESPONSE

Effects of NGF on TLR-induced anti-inflammatory cytokine production

To evaluate whether NGF affects the production of anti-inflammatory mediators, released as a negative-feedback loop, we analyzed, in the same experimental conditions, the production of IL-10 and IL-1ra. In the absence of TLR ligands, IL-10 mRNA is expressed in negligible amounts (Us, 0.021 ± 0.003 AU), and no effect of NGF is observed (+NGF, 0.023 ± 0.004 AU). In the presence of LPS or LTA stimulation, addition of NGF increased mRNA expression (Fig. 2A) and release of IL-10 (Fig. 2B).

Although IL-10 itself inhibits the expression of proinflammatory cytokines and thereby limits the inflammatory response, IL-1ra binds to the IL-1Rs. IL-1ra is known to be induced by inflammatory stimuli, including TLR ligands (27), and regulates IL-1 activity. In the presence of NGF, IL-1ra secretion induced by LPS was increased (Fig. 2C). Taking into account the previously shown increase in IL-1β release (Fig. 1C), NGF addition resulted in a significant decrease in the IL-1β/IL-1ra molar ratio from 1.58 ± 0.3 in LPS-treated monocytes to 0.75 ± 0.2 in LPS + NGF–treated cells (p < 0.01).

FIGURE 2. NGF enhances release of anti-inflammatory cytokines induced by TLR activation. After TLR stimulation, monocytes release IL-10 and IL-1ra, but the addition of 100 ng/ml NGF significantly increased IL-10 (A, B) and IL-1ra production (C). IL-10 mRNA expression (A) was quantified by real-time PCR. Results in (A) are expressed as AU obtained after normalization with the housekeeping gene actin and represent the mean of four independent real-time PCR experiments ± SEM. IL-10 (B) and IL-1ra (C) secretion in supernatants was quantified by ELISA and represents the mean of six independent experiments ± SEM. *p < 0.05, **p < 0.01, comparing TLR ligands with and without NGF.

Effects of TLR ligands on TrkA expression

We then characterized in our experimental conditions the expression of p75NTR and TrkA, the latter being considered necessary to elicit NGF biological responses. Freshly isolated monocytes expressed TrkA (Fig. 3A) and p75NTR (Fig. 3B), with TrkA expression being more abundant than p75NTR, with a mean ratio of TrkA/p75NTR of 3.8 ± 0.5. After 24 h in culture, the expression of both TrkA and p75NTR was downregulated (Fig. 3A, 3B) with the ratio between the two receptors being unchanged (3.5 ± 0.8). However, incubation with TLR ligands resulted in a marked increase in TrkA mRNA expression with no evident modification in p75NTR mRNA levels (Fig. 3C, 3D). Similar findings were obtained at the protein level for TrkA by Western blot (Fig. 3E). These results confirm and extend previous observations showing the increase in TrkA expression induced by LPS in mononuclear cells (20, 21).

Effects of NGF on TLR signaling in monocytes

As the expression of only one of the two NGF receptors, TrkA, is markedly upregulated following TLR activation, we hypothesized that NGF affects TLR signaling through TrkA-activated pathways. TLR stimulation results in activation of specific inflammatory, as well as anti-inflammatory, intracellular pathways. The latter include the PI3K pathway, which has been shown to inhibit inflammatory cytokine production and activate anti-inflammatory mechanisms in monocytes (16, 28). Because it is well known that in neuronal cells (9) NGF binding to TrkA activates the PI3K pathway, we focused on this pathway involved in both TrkA- and TLR-driven signaling.

We found that NGF addition at the time of TLR activation enhanced Ser473 phosphorylation of Akt (Fig. 4A), a downstream effector of PI3K activated in a phosphatidylinositol 3,4,5-triphosphate–dependent manner. In Us monocytes and in the absence of TLR ligands, no significant changes in Akt phosphorylation were observed after NGF addition. In monocytes activated with LPS or LTA, the effect of NGF on Akt phosphorylation was confirmed by densitometric analyses of immunoblots from four independent experiments, which indicated a significant increase in the level of phospho-Akt (p < 0.05; Fig. 4A1). One essential function of Akt is the phosphorylation and subsequent inactivation of GSK3 (29). We found that NGF significantly increased inhibitory phosphorylation in Ser473 of GSK3 (Fig. 4B, 4B1) as assessed with densitometric analysis of four independent experiments (p < 0.05). Inhibition of Akt phosphorylation using two pharmacological inhibitors of PI3K, wortmannin and LY294002, abolished the NGF-induced reduction in IL-6 release (Fig. 4C). Indeed, as expected (30, 31), both inhibitors enhanced IL-6 production in monocytes treated with either LPS or LTA + NGF. In keeping with the involvement of this pathway, pretreatment of monocytes with LiCl and AR-18 (32), two GSK3 inhibitors, led to a strong decrease in IL-6 production, amplifying the inhibitory effect of NGF (Fig. 4C).

Because the production of inflammatory cytokines after TLR activation in monocytes is primarily under the control of the NF-κB pathway, we also investigated the effects of NGF treatment on this pathway. The addition of NGF resulted in decreased IκB phosphorylation (Fig. 4D, with densitometric quantification of four independent experiments in Fig. 4D1). Consistent with a reduced degradation of IκB, we observed a reduced p65 NF-κB nuclear translocation in LPS-activated monocytes treated with NGF (Fig. 4E). The videodensitometric analysis of the fluorescence intensity (Fig. 4F) showed that NGF addition induced a significant decrease in the p65 NF-κB immunofluorescence in the nuclear compartment of LPS-treated cells (p < 0.001). Although translocation of p65 NF-κB in the nucleus is reduced, p50NF-κB DNA-
binding activity to specific DNA sequences is significantly increased after NGF treatment in LPS-stimulated monocytes, as assessed by TransAM p50NF-κB transcription factor assay (Fig. 4G). Taken together, these data show that the addition of NGF during TLR ligand stimulation leads simultaneously to upregulation of the PI3K/Akt pathway and downregulation of p65 NF-κB activity, altering cytokine production and shifting the intracellular equilibrium toward the inhibition of inflammatory responses.

Effects of TrkA inhibition on TLR signaling in monocytes

To demonstrate that the effects of NGF on cytokine production and intracellular signaling are mediated through TrkA, we used two TrkA-specific antagonists, the soluble TrkA receptor and a neutralizing TrkA Ab. The soluble TrkA receptor is a recombinant chimeric molecule with the extracellular portion of TrkA fused to the Fc region of human IgG1 (TrkA-Fc chimera). These antagonists inhibit the binding of NGF to TrkA through two different mechanisms, as demonstrated in neuronal cells (33, 34). As our results indicate, this inhibition also occurs in monocytes: the incubation of LPS-activated monocytes with the neutralizing TrkA Ab abolished TrkA phosphorylation induced by NGF (Fig. 5A). In LPS-activated monocytes, NGF induces a strong phosphorylation in Ser473 of Akt that was abolished by treating the cells with TrkA inhibitors (Fig. 5B). Similarly, the use of TrkA inhibitors abolished the NGF effect on GSK3 in LPS-activated monocytes, as demonstrated by the reduction in the inhibitory phosphorylation of GSK3β at Ser9 (Fig. 5B). The two TrkA antagonists also abolished the inhibitory effect on IkB phosphorylation induced by NGF in LPS-activated monocytes (Fig. 5C), and this was associated with increased nuclear translocation of p65 NF-κB (Fig. 5D).

In this group of experiments, the MFI in the nuclear compartment was 765.8 ± 367 in LPS + NGF-treated cells and 1358.7 ± 389 in LPS + NGF + anti-TrkA Ab–treated cells (p < 0.001). Moreover, in the presence of TrkA antagonists, NGF addition to LTR-activated monocytes did not cause a decrease in IL-6 production (Fig. 5E) or an increase in IL-10 production (Fig. 5F), demonstrating that these effects are mediated by NGF binding to TrkA. Taken together, these results show that blocking of TrkA in the presence of TLR stimulation abolishes both the NGF-induced downregulation of the NF-κB pathway and the NGF-induced upregulation of the intracellular anti-inflammatory pathways. TrkA signaling is therefore essential in mediating the effect of NGF on TLR intracellular pathways and in shifting the balance between proinflammatory and anti-inflammatory intracellular signaling in LPS-activated monocytes.

TrkA expression in JIA patients

To the best of our knowledge, the expression of TrkA in immune cells from patients with chronic inflammatory diseases has not been investigated. We analyzed the levels of TrkA mRNA in PBMC and SFMC of children with JIA. As shown in Fig. 6A, in PBMC of JIA patients, TrkA mRNA expression was significantly lower than in PBMC of healthy children (p < 0.001). In matched samples of PBMC and SFMC of JIA patients, the expression of TrkA mRNA is marginally increased in SFMC compared with PBMC (Fig. 6B). It should be noted that even at the inflammatory sites (i.e., synovial fluids), TrkA mRNA levels in JIA SFMC were markedly lower than those found in PBMC of healthy children. The decrease in TrkA expression in JIA patients in both PBMC and SFMC was confirmed by Western blot analysis (Fig. 6C). We then analyzed NGF production in SFMC cells and compared it with the concentration of NGF measured in matched synovial fluids. SFMC obtained from the inflamed knees of JIA patients released extremely low amounts of NGF when cultured ex vivo, although high concentrations of NGF were measured in the synovial fluids from which the cells were isolated (Fig. 6D), suggesting that in inflamed joints NGF is not produced by mononuclear cells, but rather by other cells, possibly synovial fibroblasts.

Our data lead to the hypothesis that, although NGF is present in high amounts in the inflamed synovia, decreased expression of TrkA might render these cells unresponsive to NGF. To demonstrate that in JIA patients NGF is unable to activate the anti-inflammatory pathway due to low TrkA expression, we stimulated control and JIA patient PBMC as well as SFMC with LPS with or without the addition of NGF. In control cells stimulated with LPS, the production of IL-6 (median value 6,942 pg/ml; interquartile range [IQR] 11,300–5073) was reduced in the presence of NGF by 32%. In contrast, in JIA PBMC and SFMC, IL-6...
FIGURE 4. Effects of NGF on TLR signaling and cytokine production. Freshly isolated monocytes were starved for 3 h in RPMI 1640 0.1% FBS, stimulated with LPS or LTA in the presence or absence of NGF for 30 min, and then lysed. In TLR-activated monocytes, the addition of NGF enhances Akt phosphorylation in Ser473 (A) and GSK3β inhibitory phosphorylation in Ser9 (B). Figures in (A) and (B) are representative of one of four experiments, and (A1) and (B1) show the mean values obtained from the densitometric analysis. Monocytes were pretreated with inhibitors of Akt, wortmannin (WT; 1 μM), and LY294002 (LY; 25 μM) or with inhibitors of GSK3 (iGSK3), LiCl (40 mM), and AR-18 (25 μM) for 30 min and then incubated with LPS in the presence or absence of NGF for 18 h (C). IL-6 secretion was enhanced in the presence of Akt inhibitors, and the effect of NGF (Figure legend continues)
production (median value 3591 pg/ml; IQR 11224–2157; and median value 618 pg/ml; IQR 1478–270, respectively) was not reduced in the presence of NGF. Overall, these data suggest that reduced expression of TrkA in JIA patients may contribute to the downregulation of a physiological anti-inflammatory mechanism mediated by NGF.

was abolished. In contrast, the inhibition of GSK3 strongly reduced IL-6 synthesis. The results represent the mean of five independent experiments ± SEM. **p < 0.01 comparing LPS + NGF and LPS without NGF, according to Wilcoxon statistical analysis. Freshly isolated monocytes were treated with LPS in the presence or absence of NGF for 30 min and then lysed to evaluate IκB phosphorylation (pIκB) (A), p50 NF-κB DNA binding (G), p50 NF-κB DNA binding activity was assessed in 10 μg of nuclear extracts by TransAM Kit. Bars represent means of the OD (450 nm) ± SEM of five independent experiments. *p < 0.05, **p < 0.01.

FIGURE 5. Effect of TrkA inhibition on TLR signaling and cytokine production. Freshly isolated monocytes were stimulated overnight with LPS (10 ng/ml) to increase TrkA expression and then incubated with the neutralizing TrkA Ab (3 μg/ml) for 3 h. NGF (50 ng/ml) was added for 5 min to evaluate TrkA phosphorylation (pTrkA) (A). The neutralizing anti-TrkA Ab (aTrkA) strongly reduced the binding of NGF to TrkA as indicated by the decrease in tyrosine residue phosphorylation of TrkA. To determine the effects of TrkA inhibition on TLR signaling, freshly isolated monocytes were pretreated for 3 h with TrkA Ab (3 μg/ml) or with Chimera TrkA (chTrkA; 1 μg/ml) and then stimulated with LPS for 30 min with or without the addition of NGF (50 ng/ml) to evaluate Akt phosphorylation (pAkt) in Ser473, GSK3 phosphorylation (pGSK3) in Ser9 (B), and phosphorylation of IκB (pIκBα) (C). (A)–(C) are representative of one of three independent experiments. Freshly isolated monocytes pretreated for 3 h with TrkA Ab and then stimulated with LPS for 30 min with or without addition of NGF, as described in (B) and (C), were also immunostained for confocal microscopy analysis of p65 NF-κB nuclear translocation (D). The images are representative of three independent experiments. Green, p65 NF-κB; dark blue, nucleus; white/yellow, p65 NF-κB in the nucleus. Scale bar, 20 μm. IL-6 (E) and IL-10 (F) secretion in supernatants after 18 h of treatment was quantified by ELISA. The results represent the mean of four independent experiments ± SEM. *p < 0.05, **p < 0.01.
Discussion

In this study, we show that, by binding to TrkA, NGF dampens the inflammatory response in monocytes activated with TLR ligands, and we identify TrkA-activated pathways that interact with TLR signaling.

The results obtained in the current study show that although monocytes express both TrkA and p75NTR, only the expression of TrkA is selectively upregulated in the presence of TLR stimulation, whereas the expression of p75NTR remains stable. These results confirm and extend previous studies on TrkA expression in monocytes (20, 21, 35), demonstrating that the increase in TrkA expression is a characteristic response not only to TLR4 ligand activation but also to TLR2 ligand activation, suggesting that this could be a generalized phenomenon induced by TLRs. We found that this upregulation of TrkA expression, induced by TLR activation, allows NGF to limit the production of inflammatory cytokines, dampening the inflammatory response.

Stimulation of monocytes by TLRs leads to a cascade of intracellular signaling events that ultimately result in the production of inflammatory mediators that are crucial for effective clearance of pathogens. Dysregulation of TLR signaling pathways leads to increased expression of cytokines and chemokines, causing tissue damage and chronic inflammation (18). As a number of studies have shown, when TLRs are stimulated, there is a concomitant activation of inflammatory and anti-inflammatory pathways (28), the latter being needed to limit the inflammatory response and avoid tissue damage. Hence, a balance needs to be maintained between activation and downregulation of this response. Our findings show that, after TLR activation, NGF binding to TrkA activates intracellular pathways that interfere with TLR signaling, potentiating endogenous negative-feedback mechanisms that regulate excessive inflammation.

We show that the addition of NGF to TLR-activated monocytes inhibits the production of proinflammatory cytokines, including IL-1β, IL-6, and TNF-α and increases the production of the anti-inflammatory cytokines IL-10 and IL-1ra. These results are in keeping with a previous observation showing increased release of IL-10 by LPS-activated monocytes in the presence of NGF (23).

The anti-inflammatory action of NGF is mediated by the TrkA receptor. Our data show for the first time, to our knowledge, that in TLR-stimulated monocytes, similarly to what happens in neuronal cells, NGF binding to TrkA specifically autophosphorylates tyrosine residues of this receptor and activates signaling through the PI3K/Akt pathway, which influences the downstream signaling of TLRs. Several studies have shown that in monocytes, the PI3K/Akt pathway, activated in response to TLR stimulation, is one of the main pathways responsible for the downregulation of TLR ligand-induced inflammatory responses (16, 29). Indeed, phosphorylation of Akt, a downstream effector of PI3K, inhibits GSK3 activity (36, 37) and results in the suppression of NF-κB–dependent transcription of proinflammatory cytokine genes, while concomitantly inducing the expression of IL-10 and IL-1ra (27, 34). The

![FIGURE 6. TrkA mRNA expression in JIA patients. TrkA mRNA expression was analyzed in PBMC and SFMC of 25 children affected with JIA. As shown in (A), the expression of TrkA is extremely reduced in JIA PBMC compared with PBMC of healthy children of similar age (control [Ctrl]). A similar decreased expression of TrkA characterizes SFMC of the inflamed synovia. The results are expressed as AU and obtained after normalization with the housekeeping gene actin. The box plot indicates median, 25th, and 75th percentile values, and the bars represent the minimum and maximum values obtained from sample analysis. In the matched samples, the expression of TrkA mRNA in the cells obtained from the inflamed synovia (SFMC) is only slightly increased (B) compared with JIA PBMC and does not even reach the constitutive expression levels of PBMC from healthy donors (A). Western blot confirmed that TrkA is almost absent in PBMC and SFMC from JIA patients, whereas is constitutively expressed in PBMC from controls (Ctrl) (C). A similar reduced expression of TrkA, SFMC from JIA patients have a barely detectable constitutive secretion of NGF (9.4 ± 1.3 pg/ml). On the contrary, the NGF concentration in the matched synovial fluids (syn fluid) is ∼2 ng/ml (D). JIA PBMC and SFMC were stimulated ex vivo with LPS with or without the addition of NGF. The production of IL-6 induced by LPS activation was decreased by NGF in Ctrl PBMC, whereas in PBMC and SFMC of JIA patients, the addition of NGF was not able to downregulate IL-6 production (E). **p < 0.01. norm. exp., normalized expression.]
key role of the PI3K/Akt pathway in mediating the observed effects of NGF on cytokine production is supported by the use of pharmacological inhibitors of Akt, such as wortmannin and LY294002 (30), which restored the production of IL-6 while inhibiting the production of IL-10 (38).

We found consistently that, in TLR-activated monocytes, NGF significantly enhances phosphorylation of Akt and inhibition of GSK3, which, as one might expect (39), affects the NF-κB pathway. Indeed, we found that IkB phosphorylation, necessary for IkB degradation, resulting in NF-κB activation and nuclear translocation (40), is reduced by NGF addition to LPS-activated monocytes. In these cells, as expected, we observed an associated decrease in p65 NF-κB nuclear localization. While reducing nuclear translocation of p65 NF-κB, NGF treatment enhances p50 NF-κB levels in the nucleus of LPS-activated monocytes as indicated by the increase in p50 homodimer DNA binding activity. The increase in p50 homodimer activity is known to represent an important anti-inflammatory mechanism used to repress inflammatory cytokine production in monocytes and macrophages (40, 41). All of these effects of NGF on NF-κB pathway are consistent with our data on the NGF-induced decrease in inflammatory cytokines for which production is under NF-κB control.

The central role of the TrkA receptor in mediating these anti-inflammatory effects of NGF was demonstrated by using two TrkA antagonists, an anti-TrkA–neutralizing Ab and the TrkA-soluble receptor (TrkA chimera), which block the binding of NGF to TrkA (33, 34) through two different mechanisms. Addition of these two inhibitors to LPS-activated monocytes led to blocking of NGF-induced TrkA phosphorylation and, consequently, reduced Akt phosphorylation, decreased inhibitory phosphorylation of GSK3 in Ser3, and enhanced phosphorylation of IkB and NF-κB nuclear translocation. As a consequence, blocking TrkA resulted in an increase in the production of IL-6 and IL-1β and a decrease in the production of IL-10 by LPS-activated monocytes.

We have previously shown that NGF decreases HLA-DR and CD86 expression in LPS-activated monocytes, reducing the Ag-presenting capacity and costimulatory function of monocytes (23). This observation, together with the results of the current study, leads to the hypothesis that the monocyte lineage is the target of the anti-inflammatory immunosuppressive effects of NGF through the TrkA receptor, for which expression is induced by TLR activation to maintain homeostasis and avoid prolonged inflammation and subsequent tissue damage.

Our in vitro findings regarding the anti-inflammatory effect of NGF provide a possible mechanistic explanation for the effects of in vivo manipulation of NGF in animal models of inflammation. Indeed, administration of NGF in experimental autoimmune encephalomyelitis (EAE) delays the onset of clinical symptoms and subsequent tissue damage.

Whatever the complexity of the downstream effects of NGF, it appears reasonable to hypothesize a physiological loop in which inflammatory stimuli, while activating TLR and an inflammatory response, also upregulate TrkA and NGF expression, which, in turn, modulates TLR signaling and activates regulatory anti-inflammatory pathways to limit excessive tissue damage. As previously mentioned, it is well known that chronic inflammatory diseases, such as JIA or rheumatoid arthritis, are characterized by high levels of NGF in the inflamed tissues (45–47). To evaluate whether these high levels of NGF exert their full inhibitory potential, we investigated the levels of TrkA expression in PBMC or SFMC of patients with JIA and compared them with age-matched controls. Our results demonstrate markedly reduced expression of TrkA in mononuclear cells of JIA patients. This reduced expression characterizes not only PBMC but also from the site of inflammation (i.e., synovial fluid). Even in SFMC, the expression of TrkA is lower than the constitutive expression levels of quiescent PBMC obtained from healthy controls. Analysis of the matched synovial fluids has shown that a high concentration of NGF is present locally but does not seem to modulate inflammatory cytokine production. However, based on the decreased expression of TrkA, we hypothesized that the high levels of NGF present at inflammatory sites may not exert their full regulatory potential. Confirming the hypothesis, we found in ex vivo experiments that the addition of NGF to LPS-activated PBMC and SFMC from JIA patients fails to reduce the production of IL-6, in contrast with our observations in LPS-activated PBMC of healthy donors following addition of NGF. These data suggest that, although NGF is present in high concentrations in the inflamed joints, its anti-inflammatory action is impaired by TrkA downregulation. The decreased expression of TrkA therefore promotes an imbalance between proinflammatory and anti-inflammatory intracellular pathways. This imbalance might represent a novel mechanism contributing to the development and maintenance of chronic inflammation. Further studies aimed at evaluating TrkA expression in other inflammatory diseases that target tissues other than the synovium may help to clarify whether this is a general mechanism in chronic inflammatory diseases. Studies aimed at understanding the mechanisms and factors that affect TrkA expression during the course of inflammatory diseases might provide useful additional information before these findings are translated into possible approaches for the treatment of chronic inflammatory diseases.

In summary, NGF, through the TrkA receptor, is one of the signals that is involved in endogenous regulatory feedback mechanisms during the inflammatory response; by showing reduced expression of TrkA in children with chronic arthritis, we provide evidence that this regulatory feedback mechanism may be altered in chronic inflammatory disease.

Disclosures
The authors have no financial conflicts of interest.

References