Computational Approach To Characterize Causative Factors and Molecular Indicators of Chronic Wound Inflammation

Sridevi Nagaraja, Anders Wallqvist, Jaques Reifman and Alexander Y. Mitrophanov

J Immunol 2014; 192:1824-1834; Prepublished online 22 January 2014;
doi: 10.4049/jimmunol.1302481
http://www.jimmunol.org/content/192/4/1824

Supplementary Material

http://www.jimmunol.org/content/suppl/2014/01/20/jimmunol.1302481.DCSupplemental

References

This article cites 87 articles, 32 of which you can access for free at:
http://www.jimmunol.org/content/192/4/1824.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Computational Approach To Characterize Causative Factors and Molecular Indicators of Chronic Wound Inflammation

Sridevi Nagaraja, Anders Wallqvist, Jaques Reifman, and Alexander Y. Mitrophanov

Chronic inflammation is rapidly becoming recognized as a key contributor to numerous pathologies. Despite detailed investigations, understanding of the molecular mechanisms regulating inflammation is incomplete. Knowledge of such critical regulatory processes and informative indicators of chronic inflammation is necessary for efficacious therapeutic interventions and diagnostic support to clinicians. We used a computational modeling approach to elucidate the critical factors responsible for chronic inflammation and to identify robust molecular indicators of chronic inflammatory conditions. Our kinetic model successfully captured experimentally observed cell and cytokine dynamics for both acute and chronic inflammatory responses. Using sensitivity analysis, we identified macrophage influx and efflux rate modulation as the strongest inducing factor of chronic inflammation for a wide range of scenarios. Moreover, our model predicted that, among all major inflammatory mediators, IL-6, TGF-β, and PDGF may generally be considered the most sensitive and robust indicators of chronic inflammation, which is supported by existing, but limited, experimental evidence. The Journal of Immunology, 2014, 192: 1824–1834.

Inflammation is an essential, nonspecific innate immune response that facilitates survival during infection, injury, and disease (1, 2). In the absence of a persistent initiator, a well-balanced inflammatory response usually resolves in ~2 wk (3, 4). Inflammation is normally reduced when infiltrated leukocytes are eliminated from the inflamed site and the tissue populations of macrophages and lymphocytes return to their normal, preinflammation numbers and phenotypes (2, 3, 5). The inflammatory response is coordinated by a group of cell-derived molecular species known as cytokines, chemokines, and growth factors. Most cytokines are multifunctional and are involved in an extensive network that carries out positive and negative regulation of cell activation and behavior (6–8). Dysregulation of the inflammatory response may lead to prolonged arrest in an inflamed state, possibly resulting in host tissue damage and pathological chronic inflammation.

Chronic inflammation can be generally defined as a physiological state that is characterized by a prolonged and heightened inflammatory response (9, 10). It has been associated with various autoimmune, infectious, and neoplastic pathologies, including tumorigenesis, CNS disorders, diabetes, psoriasis, atherosclerosis, rheumatoid arthritis, asthma, and chronic wounds, among many others (2, 10, 11). Despite its central role in disease, the mechanistic details underlying the initiation and progression of chronic inflammation remain largely unresolved. In addition, reliable molecular indicators for the early detection of chronic inflammation have not been identified because of a lack of relevant data for human subjects. Chronic inflammatory pathologies have many manifestations, such as abnormal apoptotic neutrophil loading in diabetic ulcers (12) and increased presence of classically activated macrophages in chronic ischemic wounds (13). Yet, the most conspicuous and often-reported feature of many chronic (or delayed) inflammatory scenarios is the persistent presence of elevated levels of pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-6 (12, 14–17).

Animal model studies of chronic inflammation in wounds and diseases, such as obesity and atherosclerosis, have elucidated gene- and protein-level differences between normal and chronic inflammatory responses (12, 13). Yet, it has not been firmly established whether the expression of the same genes is altered in humans during disease, questioning the validity of such indicators. Any human study of chronic inflammatory diseases takes place well after the disease has already progressed and, thus, fails to provide insights into the factors triggering the chronic state (9, 18–22). Although chronic inflammation can be present in many pathological conditions, it is not causative to disease unless exacerbated by additional genetic and environmental factors (11). Therefore, attempts to alleviate chronic inflammation are confined to cases in which a disease has resulted, at which point the treatment is focused on addressing the symptoms of inflammation as opposed to its causative factors. As a result, many basic, mechanistic questions regarding the chronic state of the inflammatory process have remained unanswered.

Because of the inherent complexity of the inflammatory process and the aforementioned limitations of conventional approaches, these questions are difficult to answer via traditional experimentation alone. A complementary in silico approach has the unique advantage of providing focused and time-efficient integration and analysis of the available literature data, with the capability of generating experimentally testable hypotheses to expedite the investigatory process. Although a number of mathematical models recently have been developed and applied to study inflammation
(23–33), their limited scope and focus predominantly on qualitative representations of inflammation dynamics generally restrict their ability to provide accurate interpretations of existing data sets and generate (semi)quantitative hypotheses. In this article, we introduce a kinetic, inherently quantitative computational model of inflammation whose parameters were derived directly from in vitro data. We validated the model using experimental data on acute inflammation and then extended it to investigate chronic inflammatory scenarios.

Our modeling results suggest that the modulation of two mechanistic parameters, macrophage influx and efflux rates, may be the strongest general trigger of chronic inflammation. Moreover, we predicted that local concentration changes of three molecular mediators—IL-6, TGF-β, and PDGF—may be sensitive and robust indicators of the ongoing or imminent chronic inflammatory response under various scenarios. Our results are in agreement with existing experimental and clinical data and suggest that key dynamic features of the inflammatory response can be explained and predicted using a parsimonious computational modeling approach.

Materials and Methods

Computational model and simulations

Our mathematical model represents local inflammation in a wound. The model consists of 15 ordinary differential equations and 1 delay differential equation (DDE; Table I), and it has 69 main parameters representing different molecular and cellular processes, such as neutrophil and macrophage phenotype conversion, phagocytosis of apoptotic neutrophils, and the production and degradation of cytokines and growth factors (Supplemental Table I; note that the 19 chemotaxis function parameters in the model are regarded as a separate group and are not included among the main parameters). In the model, we included the cell types, cytokines, and growth factors that are commonly regarded as key components of the inflammatory response (Fig. 1). The DDE in the model is used to describe pro-inflammatory macrophage dynamics. In the bloodstream, macrophages exist in the form of their precursors (i.e., monocytes), which migrate at rates similar to those for neutrophil migration (34) and then differentiate into active macrophages at the site of inflammation within 12–48 h (16). Because we did not explicitly define monocyte kinetics in our model, we represented monocyte differentiation by incorporating a 12-h delay in the argument of the chemotaxis function that drives pro-inflammatory macrophage migration in the model (33) (Table I).

The time courses for the concentrations of these cell types and molecular species constitute the output of our model. Its main input is the initial platelet concentration (default value: 2×10^8 platelets/ml), which represents an injury initiating local inflammation (all other model variables are initially set to 0). The model equations were solved numerically using the MATLAB solver DDE23 with default tolerance values. Our model is intrinsically quantitative, because all of its variables and main parameters (except the dimensionless feedback functions discussed below) are expressed in absolute units, and the majority of the parameter values were derived directly from experimental data. We performed all computations in MATLAB 2012a (MathWorks, Natick, MA). Each simulation covered a 20-d time interval after inflammation initiation.

In the model, we assumed that the inflammatory response is initiated only by TGF-β released by platelets postinjury. Although the inflammatory response also can be stimulated by other locally secreted chemotactants [such as PDGF, TNF-α, MIP-1α, and CXCL8 (35–37)], TGF-β has been characterized as the strongest inflammatory cell chemotactant in vitro (38, 39) and is used in our model as a proxy for all initiating chemotactic signals. In the model, we assume that anti-inflammatory macrophages are generated by phenotype conversion of pro-inflammatory macrophages triggered by phagocytosis of apoptotic neutrophils, which is suggested by experimental data (40–42). Yet another modeling assumption pertains to the activity of TGF-β and IL-1β. When released from various cellular sources, TGF-β exists in a latent state (43) and is subsequently activated by the presence of injury- and infection-related enzymes, as well as the acidic and elevated-temperature environment of the inflamed site (44). Analogously, the biological activity of IL-1β requires its maturation into an activated form, which occurs during or after secretion through the cell membrane and is preceded by inflammasome-mediated cleavage of the translated IL-1β (45, 46). We do not explicitly define the kinetics of TGF-β or IL-1β activation and use the simplifying assumption that, because inflammation is present, any latent TGF-β or IL-1β that is released will be in its activated form.

Estimation of production rates

Among its 69 main parameters, our computational model contains 26 production rates. Using published data from in vitro experiments, the production rates were estimated as follows:

$$k = \frac{C}{Mt}$$

where k is the production rate for a cytokine or growth factor, C is the concentration of the cytokine (growth factor) measured in the supernatant from the cell culture after incubation, M is the initial concentration of macrophage suspension in the cell culture experiment, and t is the time of incubation of macrophages with a stimulus (e.g., bacterial load or endotoxin). In cases where measurements were available for multiple time points, linear regression was used to calculate slopes, which were subsequently divided by the initial macrophage concentration to give the final production rate values. As an illustration, Fig. 2A and 2B show the IL-1β, TNF-α, and IL-10 production rate estimation for pro- and anti-inflammatory macrophages. To approximate the chemotactic migration data for neutrophils and monocytes (38, 39), we used a combination of quadratic and linear functions with at least three parameters (Fig. 2C, 2D).

Estimation of degradation rates

The model contains 12 degradation/removal rates. Half-life estimates for the catabolic breakdown of cytokines and growth factors were obtained from the literature. Assuming a first-order decay of the molecular species, the degradation rates were calculated as follows:

$$k = \frac{0.693}{t_{1/2}}$$

where $t_{1/2}$ is the half-life of a cytokine or growth factor, and k is the corresponding degradation rate.

Estimation of the parameters describing phagocytosis of apoptotic neutrophils by pro-inflammatory macrophages

Pro-inflammatory macrophages undergo a change in phenotype upon phagocytizing apoptotic neutrophils and cellular debris (40–42). In our model, the phagocytosis rate of apoptotic neutrophils and phenotype conversion rate for macrophages were determined by approximating experimental phagocytosis data using hyperbolic functions. For example, the data by Newman et al. (47) characterize the number of apoptotic neutrophils ingested after 4 h of incubation with a fixed initial concentration of macrophages for different initial concentrations of apoptotic neutrophils. These data were converted into rates of apoptotic neutrophil ingestion per pro-inflammatory macrophage per hour for different initial apoptotic neutrophil concentrations (Supplemental Fig. 1A) and were then fitted with the following equation:

$$g(N_{\text{apop}}) = \frac{k_{1,\text{ingest}}N_{\text{apop}}}{k_2,\text{ingest} + N_{\text{apop}}}$$

where N_{apop} is the concentration of apoptotic neutrophils, and $k_{1,\text{ingest}}$ and $k_{2,\text{ingest}}$ are the model parameters that were estimated as a result of the fitting (Supplemental Table I). The fitting was performed using MATLAB’s curve-fitting toolbox.

An expression similar to Eq. 3 was used to describe the rate of phenotype conversion of pro-inflammatory to anti-inflammatory macrophages, which occurs as a result of apoptotic neutrophil phagocytosis by pro-inflammatory macrophages. However, phagocytosis is not a “one-on-one process” (i.e., a single macrophage can phagocytize up to three apoptotic neutrophils) (41, 48, 49). Using the data reported by Newman et al. (47), we calculated the fraction of macrophages ingesting apoptotic neutrophils per hour for different initial concentrations of apoptotic neutrophils (Supplemental Fig. 1B). These data were then fitted with the following equation:

$$\bar{g}(N_{\text{apop}}) = \frac{\bar{k}_{1,\text{ingest}}N_{\text{apop}}}{\bar{k}_2,\text{ingest} + N_{\text{apop}}}$$

where $\bar{k}_{1,\text{ingest}}$ and $\bar{k}_{2,\text{ingest}}$ are the model parameters that were estimated as a result of the fitting (Supplemental Table I).
Estimation of cytokine feedback functions

Pro- and anti-inflammatory macrophages, neutrophils, and platelets secrete cytokines and growth factors that provide regulatory feedback for the inflammatory response by upregulating (positive feedback) or downregulating (negative feedback) the production of other cytokines. (We generally regard these interactions as feedbacks because they represent the self-modulating effects of extracellular mediators on the intracellular machinery responsible for the production of such mediators.) To reflect these effects in the model, we introduced 10 dimensionless feedback functions denoted f_1, f_2, \ldots, f_{10} (Supplemental Table I) that represent fractional increases or decreases (induced by a particular cytokine or growth factor) in the production rates of other cytokines and growth factors for pro-inflammatory macrophages. The parameters of these functions were estimated by fitting the functions to experimental data using the curve-fitting toolbox in MATLAB (Supplemental Fig. 1C).

Sensitivity analysis

We calculated logarithmic (i.e., relative) local sensitivities, $s_{ij}(t)$, at time moments t, according to the standard definition (see, e.g., Ref. 50):

$$s_{ij}(t) = \frac{\partial \log X_j(t)}{\partial \log p_i} = \frac{(dX_j/X_j)/(dp_i/p_i)}{\log 10}$$

(5)

where $X_j(t)$ is the model’s ith variable and p_i is the model’s jth parameter (of the model’s 69 main parameters). By definition, each of these sensitivities reflects the magnitude of the relative change in a model’s output variable induced by a local (i.e., small) relative change in a model’s parameter. To obtain numeric approximations of the derivatives in Eq. 5, each parameter was individually perturbed by $\pm 1\%$ of its value, and the derivative was approximated using the second-order central finite difference formula. We performed local sensitivity analysis in the vicinity of the default parameter set, as well as for 10,000 random parameter sets in which individual parameters were sampled independently from intervals, permitting up to 2-fold deviations (up or down) from the corresponding default values. This random sampling was intended to represent possible natural variations in the molecular environment of the inflamed site for different subjects under different inflammatory scenarios. To generate the random parameter sets, we used Latin hypercube sampling, as previously described (51) (we used the MATLAB function LHSDesign). In all analyses, we calculated local sensitivities for each of the 21 evenly spaced time points that discretize the total 20-d simulation interval into 1-d sub-intervals (i.e., day 0, day 1, and so forth). To compare and rank sensitivities, we used their absolute values.

Results

Model captures essential kinetic features of acute inflammation

We tested our model’s ability to capture typical features of the time course of acute inflammation by comparing modeling predictions with published experimental data. The model includes descriptions for key mechanisms involved in the inflammatory response (Fig. 1), with the parameters quantifying these mechanisms derived from acute inflammatory response data (Fig. 2). The model predicted the occurrence of a neutrophil peak at ~ 1 d and a macrophage peak at ~ 2 d after inflammation initiation (Fig. 3A, 3B). These predictions are in accord with experimental measurements showing that a single, well-pronounced peak typically occurs at 1–3 d after inflammation initiation for neutrophils and at 2–4 d for macrophages (3, 52). Furthermore, it is expected that the concentrations of the inflammatory cells and cytokines return to their basal level within 2–3 wk after the onset of inflammation (3, 4, 52). Our model predicted the return of all variables in the model to their default values within 20 d after inflammation initiation (Fig. 3A–3C). Moreover, our model predicted the kinetics of individual neutrophil and macrophage phenotypes (Supplemental Fig. 2).

To further validate our computational model, we compared its predictions with the dynamics of acute inflammatory response in a number of animal and human in vivo models (those datasets were not used to estimate the model parameters). The computational model successfully predicted key features (such as the overall curve shape, peak time, and resolution time) for neutrophil and macrophage time courses, as observed in human wounds (52), and for peritoneal infection in mice (16) (Fig. 3A, 3B). We validated TGF-β concentration predictions using experimental data from rats with excisional wound injury (53) (Fig. 3C). Most of the cytokines and chemokines in our model showed good qualitative or semiquantitative agreement with available inflammation data. As an illustration, we show modeling predictions and their experimental validation (with experimental data taken from Ref. 54) for two representative cytokines with pro-inflammatory (IL-1β) and anti-inflammatory (IL-10) properties in Fig. 3D and 3E. Interestingly, for two of the cytokines [IL-12 (Fig. 3F) and IL-6 (data not shown)], our model gave quantitatively accurate kinetic predictions. Opportunities for a more extensive quantitative validation were limited as the result of interassay and interlaboratory variations in the measured concentrations of inflammatory cells and molecular mediators.

Modeling predicts macrophage influx and efflux modulation to be the strongest mechanistic trigger of chronic inflammation

Our analysis of chronic inflammation was based on the general assumption that delayed resolution of inflammation results from dysregulation of certain key mechanisms that are represented by the main parameters in our model. We used this assumption to extend our acute inflammation model to represent chronic inflammatory scenarios. This was achieved by performing an extensive sensitivity analysis to identify the parameters that may display a strong functional association with chronic inflammation.

Experimental data suggest that the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 are consistently and considerably increased in chronic inflammation induced by infection or disease, such as diabetes (12, 14–17). We initially used local sensitivity analysis in the vicinity of the default parameter set (see Materials and Methods) to identify the parameters whose change induced the largest variation in the concentrations of TNF-α, IL-1β, and IL-6 (analyzed independently). We found that, for each of the three cytokines, the largest relative changes (for the majority of the time points considered in the sensitivity analysis) were induced by modulating the same two parameters of the total 69 main parameters. These two parameters represented the pro-inflammatory macrophage influx rate and the rate of efflux of both pro- and anti-inflammatory macrophages (designated as $k_{M_{in}}$ and $k_{M_{out}}$ in the model, respectively; Table I, Supplemental Table I). For earlier time points in the simulation (~2–10 d after inflammation initiation), macrophage influx rate had the highest impact on the cytokine concentrations (Fig. 4A), whereas macrophage efflux rate had the second highest influence on those outputs (data not shown). At later time points (~7–20 d after inflammation initiation), the macrophage efflux rate emerged as the strongest modulator of the levels of all three cytokines (Fig. 4A), and the macrophage influx rate was the second strongest (data not shown).

Overall, these two parameters represented the dominant factors leading to the overproduction of TNF-α, IL-1β, and IL-6 in our model.

We tested the robustness of these results by performing local sensitivity analysis in the vicinities of 10,000 randomly selected parameter sets. Specifically, we identified the parameters that induced the largest variations in the concentrations of the three cytokines (i.e., TNF-α, IL-1β, and IL-6) across 10,000 simulations with random parameter sets (see Materials and Methods). We verified that, for >70% of the simulations, the sensitivities for the two parameters (i.e., macrophage influx and efflux rates) were the highest for the majority of the considered simulation time points. (Specifically, the macrophage influx rate was the most sensitive parameter at days 4–9 after inflammation initiation for TNF-α; at
Mock text output
To test the robustness of these indicators, we analyzed the logarithmic sensitivities for the 10,000 randomly selected parameter sets. For each of the considered 21 simulation time points and each of the 11 variables, we calculated the fractions of the random parameter sets for which a given variable demonstrated the highest, second-highest, or third-highest sensitivity with respect to macrophage influx or efflux rate perturbations. Figs. 6 and 7 show the results for 4 d in the simulation (days 2, 4, 10, and 16 after inflammation initiation). These fractions were then averaged over the first 10 d after inflammation initiation, because we focused on the clinically important, early phases of inflammation development. We found that IL-6 concentration ranked as the most sensitive variable for an average of 84% of the randomly selected parameter sets when the perturbed parameter was macrophage influx rate and for an average of 67% of the randomly selected parameter sets when the perturbed parameter was macrophage efflux rate. TGF-β concentration ranked as the second most sensitive variable for 66 and 61% (on the average) of the parameter sets when the perturbed parameters were macrophage influx rate and macrophage efflux rate, respectively. Likewise, for these two efflux parameters, PDGF concentration ranked as the third most sensitive variable for 68 and 50% of the parameter sets, respectively.

These results demonstrate that, among all of the inflammatory mediators represented in the model, IL-6, TGF-β, and PDGF had the largest relative changes induced by chronic inflammation triggers. Although the levels of TNF-α and IL-1β [often reported in the literature as chronic inflammation indicators (12, 14–17)] also can be increased by macrophage flux modulation, the relative magnitude of those increases in our modeling predictions appeared to be generally smaller than those for IL-6, TGF-β, and PDGF. Our findings suggest that these three molecular mediators (particularly IL-6) can be used as reliable early indicators of chronic inflammation in clinical settings. Interestingly, this conclusion is consistent with a recent clinical study of combat wounds by Hawksworth et al. (19), which identified local IL-6 level as the best predictor of dehiscence in traumatic wounds.

Model robustness analysis

We verified the robustness of the constructed computational model in the vicinity of the default parameter set using local sensitivity analysis, as described in Materials and Methods. Specifically, we confirmed that none of the model’s 16 output variables was overly sensitive [i.e., \(s_\alpha (t) > 10 \)] to any of the parameter perturbations. Because a major source of complexity in the inflammatory system is the functional (feedback) interactions between different inflammatory mediators, we chose to limit such feedbacks represented in the model (Supplemental Table I) to only those whose elimination (modeled by setting the corresponding feedback functions to 1) significantly (i.e., by \(\pm 5\% \)) affected at least one of the model outputs. One such feedback, present in an earlier version of the model, represented the downregulation of the production of the pro-inflammatory chemokine CXCL8 by the anti-inflammatory cytokine IL-10. This functional connection did not meet the above selection criterion and was excluded from the current version of the model. Interestingly, all of the major results reported in the preceding subsections for the current version of the model also held for the version in which that feedback interaction was present.

We found that elimination of a single feedback induced a \(\pm 5\% \) change only in the variable that the feedback directly modulated (i.e., its “affected” variable; see Supplemental Table I). However, it is conceivable that eliminating all feedbacks associated with one or more “effector” variables (i.e., the independent variable of the corresponding feedback functions; see Supplemental Table I) could considerably influence other variables in addition to the feedbacks’ “affected” variables. To investigate this possibility, we performed simulations in which we simultaneously eliminated all feedbacks driven by the anti-inflammatory mediators TGF-β and IL-10 (feedback functions \(f_\alpha, f_\beta, f_{\alpha\beta}, f_{\beta\alpha}, f_{\alpha\beta} \), respectively; see Supplemental Table I) for the acute and chronic inflammatory scenarios. Indeed, elimination of these two groups of feedbacks induced a \(\pm 5\% \) change in the neutrophil and macrophage concentrations for both acute and chronic inflammation (Supplemental Fig. 3C, 3D), demonstrating the importance of interactions among feedbacks. The resulting changes for chronic inflammation were comparatively large (up to \(\sim 50\% \) and \(\sim 100\% \) for neutrophils and macrophages, respectively; compare dashed and dash-dotted lines in Supplemental Fig. 3C, 3D) and exceeded those for acute inflammation. This indicates that functional contributions of feedbacks can have increased significance when the inflammatory process is pathologically perturbed.

To investigate the effects of feedback control exerted by pro-inflammatory mediators, we performed a simulation in which TNF-α (and therefore all of the associated feedbacks) was “knocked out” (which was modeled by setting all of the TNF-α
production rates to 0). The simulated TNF-α knockout resulted in decreased concentration peaks for neutrophils and macrophages, which is consistent with the experimentally observed decrease in the leukocyte levels in the wounds of the TNF-α receptor p55–knockout mice (58) (Supplemental Fig. 3A, 3B). Taken together, our findings support the notion that feedback regulation is important for fine-tuning the inflammatory response.

The first working version of our model comprised only 11 variables and 28 parameters and was much simpler than the current version (which is discussed in this article). It did not contain the positive- and negative-feedback interactions between the cytokines shown in Supplemental Table I. Moreover, it described the chemotactic effects of only two (TGF-β and PDGF) of the five (TGF-β, PDGF, CXCL8, TNF-α, and MIP-1α) molecular mediators whose chemotactic effects are reflected in the current version of the model. Yet, perhaps surprisingly, even that simpler model gave kinetic predictions that were in good agreement with experimentally detected acute inflammatory behavior (data not shown). This finding suggests that, although the current version of the model is a simplified representation of the complexity of the inflammatory process in vivo, our omission of many of its functional details did not seem to have precluded the generation of reasonable predictions. Furthermore, local sensitivity analysis of our original model predicted the same two mechanisms crucial for triggering chronic inflammation as the more comprehensive, current version of the model. The most sensitive indicator of chronic inflammation predicted by the original, simpler model was IL-6, whereas TNF-α and TGF-β appeared among the three most sensitive indicators. These results suggest that key properties of the inflammatory process might be largely insensitive to the details of many complex interactions occurring in the system and can be understood by considering only the essential molecular and cellular mechanisms.

Table I. Model variables and equations

| Model variables: volume concentrations for different cell types and molecular species |
|--|-----------------|-----------------|-----------------|
| N_{act} | Active neutrophils | TGFβ | Transforming growth factor-β |
| N_{apop} | Apoptotic neutrophils | PDGF | Platelet-derived growth factor |
| M_{pro} | Pro-inflammatory macrophages | IL1β | Interleukin-1β |
| M_{anti} | Anti-inflammatory macrophages | IL6 | Interleukin-6 |
| P | Platelets | MIP1α | Macrophage inflammatory protein-1α |
| CXCL8 | Chemokine CXCL8 | MIP2 | Macrophage inflammatory protein-2 |
| IL12 | Interleukin-12 | IP10 | Interferon-γ-induced protein 10 |
| IL10 | Interleukin-10 | TNFα | Tumor necrosis factor-α |

Model equations

\[
dP/dt = -k_2P; \\
\frac{dN_{act}}{dt} = k_{1n} (f_1 (TGFβ) + f_2 (PDGF) + f (CXCL8)) - k_{N_{act} N_{act}} N_{act}; \\
\frac{dN_{apop}}{dt} = k_{N_{act}} N_{act} - \frac{k_{1n}}{k_{2n} + N_{apop}} M_{pro}; \\
\frac{dM_{pro}}{dt} = k_{M_{apop}} (f_3 (TGFβ (t - 12)) + f_4 (PDGF) + f (TNFα) + f (MIP1α)) - \left(\frac{k_{1n}}{k_{2n} + N_{apop}}\right) M_{pro} - k_{-d_M} M_{pro}; \\
\frac{dM_{anti}}{dt} = \left(\frac{k_{1n}}{k_{2n} + N_{apop}}\right) M_{pro} - k_{-d_M} M_{anti}; \\
\frac{dTNFα}{dt} = k_{TNFα N_{act}} N_{act} + k_{TNFα pro} f_5 f_6 M_{pro} + k_{TNFα anti} M_{anti} - k_{d_{TNFα}} TNFα; \\
\frac{dTGFβ}{dt} = k_{TGFβ P} P + k_{TGFβ pro} M_{pro} + k_{TGFβ anti} M_{anti} - k_{d_{TGFβ}} TGFβ; \\
\frac{dPDGF}{dt} = k_{PDGF P} P + k_{PDGF anti} M_{anti} - k_{d_{PDGF}} PDGF; \\
\frac{dIL1β}{dt} = k_{IL1β N_{act}} N_{act} + k_{IL1β pro} f_3 f_4 M_{pro} + k_{IL1β anti} M_{anti} - k_{d_{IL1β}} IL1β; \\
\frac{dCXCL8}{dt} = k_{CXCL8 pro} M_{pro} + k_{CXCL8 anti} M_{anti} - k_{d_{CXCL8}} CXCL8; \\
\frac{dIL6}{dt} = k_{IL6 N_{act}} N_{act} + k_{IL6 pro} f_5 (f_6 + f_5) M_{pro} + k_{IL6 anti} M_{anti} - k_{d_{IL6}} IL6; \\
\frac{dIL10}{dt} = k_{IL10 N_{act}} N_{act} + k_{IL10 pro} f_5 f_6 M_{pro} + k_{IL10 anti} M_{anti} - k_{d_{IL10}} IL10; \\
\frac{dIL2}{dt} = k_{IL2 pro} M_{pro} - k_{d_{IL2}} IL2; \\
\frac{dMIP1α}{dt} = k_{MIP1α pro} M_{pro} + k_{MIP1α anti} M_{anti} - k_{d_{MIP1α}} MIP1α; \\
\frac{dMIP2}{dt} = k_{MIP2 pro} M_{pro} + k_{MIP2 anti} M_{anti} - k_{d_{MIP2}} MIP2; \\
\frac{dIP10}{dt} = k_{IP10 pro} M_{pro} + k_{IP10 anti} M_{anti} - k_{d_{IP10}} IP10.
\]

All cell concentration variables in our model are expressed in units of cells/ml. Variables for molecular mediators (cytokines, chemokines, and growth factors) are expressed in units of ng/ml. Time is expressed in hours. Feedback and chemotaxis functions for different cytokines were numbered and are described in detail in Supplemental Table I.
FIGURE 4. Sensitivity analysis identifies strong triggers of chronic inflammation. (A) Parameters inducing the largest changes in TNF-α, IL-1β, and IL-6 concentrations identified by local sensitivity analysis in the vicinity of the default parameter set (see Materials and Methods). (B) Summary of local sensitivity analysis results for 10,000 randomly selected parameter sets (see Materials and Methods) for three representative days (4, 10, and 16). Shown is the percentage of the 10,000 simulations for which the macrophage influx (blue) and efflux (red) parameters [identified in the analysis in (A)] induced the largest changes in TNF-α, IL-1β, and IL-6.

Discussion

Chronic inflammation is becoming increasingly recognized as a major contributor to several known pathologies, such as cancer, rheumatoid arthritis, and diabetic ulcers, among many others (10, 11). Yet, mechanistic causative factors of chronic inflammation, as well as its reliable molecular indicators, have not been sufficiently characterized. In this study, we used computational modeling approaches to gain mechanistic insights into chronic inflammation. Our differential equation–based model successfully predicted key kinetic features of the local acute and chronic inflammatory response, as was verified by direct comparisons of modeling predictions with experimental data. Using sensitivity analysis, we predicted that the levels of the pro-inflammatory cytokines IL-6, IL-1β, and TNF-α are affected the most by the same two model parameters: the rates of macrophage influx into and efflux out of the inflamed site. Because the levels of these cytokines are typically elevated in chronic inflammation, our results suggest that the two macrophage flux parameters may represent the mechanisms whose malfunction often delays normal resolution of inflammation. Furthermore, using our computational model, we established that different model variables respond differently to macrophage flux modulation. Of the 11 model variables representing inflammatory mediators, the concentrations of IL-6, TGF-β, and PDGF (in order of decreasing effect magnitude) were most affected by macrophage influx and efflux rate modulation. This finding indicates the possibility of using these three proteins, which can be measured in the local environment at the site of inflammation, as reliable predictive and/or diagnostic indicators of the development of chronic inflammation.

Macrophages are regarded as the most multifunctional immune cells, influencing nearly all phases of the inflammatory response. The possibility of their targeted manipulation has naturally been the subject of extensive investigations (59–61). Because macrophages are the major producers of cytokines with pro- or anti-inflammatory properties (41, 59, 61), any significant disruption in macrophage behavior may be expected to alter the balance of cytokines in the inflammatory milieu. Elevated levels of macrophage infiltration can lead to wound fibrosis (59). At the same time, severe early inhibition of macrophage signaling (as well as macrophage ablation during later stages of inflammation) results in delayed healing in mouse wound models (62, 63), suggesting that initial macrophage availability (and, therefore, their sufficient influx) is necessary for normal inflammatory response. Thus, our modeling prediction regarding macrophage flux modulation as possibly the strongest overall inducer of chronic inflammation can perhaps be readily rationalized. Nevertheless, it is noteworthy that, in our model, macrophage flux rates have a larger impact on cytokine production than any of the cytokines’ individual production and degradation rates. This effect might be (at least partially) due to the functional redundancy exhibited by some cytokines, so that a change in the production or degradation rate of one cytokine can be compensated for by the action of the others. For example, TNF-α and MIP-1α act as chemoattractants for macrophages and perform positive regulation of the production of other pro-inflammatory

FIGURE 5. Modeling predictions capture experimentally observed chronic inflammatory kinetics. Modeling predictions and experimental validation for acute inflammation, taken from Fig. 3 (w), are shown here for comparison purposes. In Fig. 3A–D, the computational predictions and experimental data were normalized (separately) to the maximum value. (Note that normalization in this figure is different from that for Fig. 3A and 3B, because the maximum values in the data sets were different.) Solid (acute inflammation) and dashed (chronic inflammation) lines show model predictions, ● show experimental data for acute inflammation; ■ show experimental data for chronic inflammation. Chronic inflammation in the computational model was induced by increasing macrophage influx rate (P7) 5-fold from its default value. Chronic inflammation with delayed healing in mice was obtained by a 100-fold higher endotoxin dose given i.p. (16). Shown are the total neutrophil (A) and macrophage (B) concentrations.
cytokines (Supplemental Table I). In contrast, because of a lack of compensatory mechanisms, a disruption in the migration of pro- and/or anti-inflammatory macrophages has a direct and global impact on cytokine production and downstream processes.

A need for guided therapy has been well documented in the treatment of chronic wounds resulting from military trauma (19, 64). A treating clinician’s decision to surgically close a wound is commonly based on subjective and somewhat arbitrary measures, such as the patient’s general condition, the appearance of bones and soft tissues, and visual signs of infection or necrosis (65), which are poor indicators of the local inflammatory condition (66). This often has led to wound dehiscence and nonhealing wounds. Our work was largely motivated by the need to find molecular indicators that are characteristic of the local wound environment and are less susceptible to systemic influences and, therefore, better reflect ongoing local inflammation.

Our modeling analysis showed that three molecular mediators (IL-6, TGF-β, and PDGF) may be expected to demonstrate consistently large relative changes in their local concentrations induced by independent variations in macrophage influx or efflux rates (Figs. 6, 7). In our analysis, the IL-6 level ranked as the most sensitive indicator of local changes in both macrophage flux parameters. This is consistent with a recent clinical study by Hawksworth et al. (19), who identified IL-6 as an informative indicator of delayed wound healing. However, the comparatively small subject group and limited temporal resolution of this study indicate the need for additional evidence. Our modeling analysis, which involved an extensive parameter randomization, complements these clinical results and suggests that IL-6 may be considered an informative molecular indicator of chronic inflammation for a wide range of scenarios. Furthermore, the model-predicted high sensitivity of TGF-β to macrophage flux modulation correlates with its known diverse and numerous roles in the inflammation process (38, 39, 67–69). Although the clinical study by Hawksworth et al. (19) did not report results for TGF-β and PDGF, our computational findings may provide motivation for experimental and clinical testing of these growth factors as additional diagnostic or predictive indicators of chronic inflammation.

FIGURE 6. Sensitivity analysis identifies IL-6, TGF-β, and PDGF as the most sensitive indicators of chronic inflammation induced by macrophage influx manipulation. Shown are the percentages of the total 10,000 random parameter sets for which different molecular species in the model demonstrated the largest (solid bars), second largest (striped bars), and third largest (stippled bars) relative change induced by modulation of macrophage influx. Model predictions are shown for day 2 (**A**), day 4 (**B**), day 10 (**C**), and day 16 (**D**) after inflammation induction.

FIGURE 7. Sensitivity analysis identifies IL-6, TGF-β, and PDGF as the most sensitive indicators of chronic inflammation induced by macrophage efflux manipulation. Shown are the percentages of the total 10,000 randomized parameter sets for which different molecular species in the model demonstrated the largest (solid bars), second largest (striped bars), and third largest (stippled bars) relative change induced by modulation of macrophage efflux. Model predictions are shown for day 2 (**A**), day 4 (**B**), day 10 (**C**), and day 16 (**D**) after inflammation induction.
The importance of macrophage flux control elucidated in this study is consistent with the existing view of macrophage dynamics (i.e., monocyte migration, macrophage phenotype conversion, and signaling) as the main driver of effective continuation and resolution of inflammation (61, 70, 71). The migrating blood monocytes are polarized into a wide spectrum of macrophage phenotypes, and the two ends of that spectrum can be characterized as pro-inflammatory macrophage phenotypes (similar to the “classically activated,” or M1, phenotype induced in vitro by bacterial LPS and IFN-γ) and anti-inflammatory phenotypes (similar to the “alternatively activated,” or M2, phenotype induced in vitro by IL-4 and IL-13), respectively. According to the scenario modeled in this work, M1-type macrophages differentiate into M2-type macrophages, which are responsible for inflammation resolution (59, 60, 70, 71). However, other scenarios of macrophage phenotype progression are conceivable and are supported by existing data. For example, in mouse wounds, distinct circulating monocyte subsets can be recruited to the injury site in a temporally ordered manner and subsequently differentiate into distinct macrophage phenotypes (59). Specifically, the first and second groups of monocytes sequentially entering the wound site give rise to macrophages with phenotypes resembling those for classical and alternative activation, respectively. Interestingly, this scenario is IL-4 and IL-13 independent, as evidenced by the presence of M2-type macrophages in the wounds of IL-4Ra-knockout mice and by the negligible levels of IL-4 and IL-13 at the wound site (59, 72). Furthermore, in some cases, accumulation of substantial numbers of M2-type macrophages is driven primarily by IL-4-dependent proliferation of tissue-resident macrophages, independently of blood monocyte recruitment (73). Such scenarios potentially can be stimulated and modulated in vivo by a myriad of molecular and cellular processes. Indeed, it was suggested that the M1-type to M2-type phenotypic transitions are impacted by various factors, including macrophage interaction with the extracellular matrix, neutrophils, cellular debris, and other soluble molecular mediators, such as IL-10 and TGF-β (59, 60, 74, 75).

In addition to local regulation, systemic influences, including immune complexes, PGs, and glucocorticoids, may determine the phenotypic fate of the monocytes migrating to the inflammation site. For example, macrophages differentiated in the presence of the glucocorticoid dexamethasone exhibit increased sensitivity to TGF-β resulting from an increase in TGF-β receptor expression and induced lipid uptake (76). However, the relative contributions of these numerous factors to macrophage polarization, as well as the complex and synergistic interactions between the factors, are unknown.

The choice of driver for the macrophage phenotypic transition for our model (i.e., pro-inflammatory macrophage phagocytosis of apoptotic neutrophils) was based on the availability of experimental data that could be translated into a modeling framework. Indeed, this mechanism, which is supported by experimental evidence (40–42, 59, 75), robustly drove the macrophage phenotypic transitions in our simulations. Although IL-4 and IL-13 might further modulate this mechanism, their primary contribution in vivo appears to be the connection between innate and adaptive immune systems, because their sustained production is predominantly due to adaptive immune system cells (74). However, because of our emphasis on the self-modulating function of innate immunity and the limitations in our understanding of the interactions between innate and adaptive immunity, we do not model that connection in this study. The possible contributions of other molecular mediators to the functional effects of macrophage polarization were partially reflected through the IL-10- and TGF-β-mediated reduction in pro-inflammatory cytokine production rates. Although our approach to modeling macrophage phenotype conversion is, by necessity, an oversimplification of the molecular and cellular events shaping the transition to the inflammation-resolution phase, it may provide a reference point for future studies specifically focused on macrophage-polarization mechanisms.

The main limitations of this study arise from the simplifications needed to develop a mathematical description of the incredibly complex cellular and molecular interactions that occur during normal and pathological inflammation. First, our model focuses on general aspects of inflammation and does not reflect the specifics of certain inflammation scenarios, such as burns or bacterial infection. Moreover, we do not explicitly define tissue-specific cells, such as resident macrophages, mast cells, and connective tissue cells. Our model is based on the notion that key participants (neutrophils and macrophages) and interactions in the local inflammatory process may be sufficiently similar across many, or most, inflammatory situations (3, 11, 14, 16, 52, 57, 77, 78). Therefore, although we modeled chronic inflammation in (traumatic) wounds, we expect that our findings may be applicable in other contexts, which is supported by comparisons of our modeling results with experimental studies of noninjury-induced inflammation (Figs. 3, 5).

Second, our main goal was to develop a computational model relevant for human inflammation, yet our model training and validation were performed using data for rat and mouse (in addition to human) experimental models. Although interspecies differences in the details of the inflammatory response may occur, the use of animal models is a mainstay of immunity research (79). As a result, several experimental datasets that were indispensable for our modeling efforts had been obtained with animal models, whereas analogous datasets for human experimental models were not available. Third, in most cases, we assume constant (but cell phenotype dependent) cytokine production and cell activation rates and do not explicitly consider intracellular signaling pathways that regulate such production and activation. We chose this approach because separation of intra- and intercellular kinetic scales could sharpen our focus on cell phenotype dynamics and general molecular mediator–production patterns, which aligned with the main goals of this work. Fourth, in the model, we reduced the variety of macrophage phenotypes that are known to exist at inflammatory sites to only two, which gave us the benefit of modeling tractability. Finally, our model represents pro-inflammatory macrophage phenotype conversion as the only source of anti-inflammatory macrophages, whereas independently activated, “second-wave” migration of anti-inflammatory macrophages into the inflammation site is a plausible alternative (60, 71). Further studies are needed to develop and validate more detailed representations of the inflammatory process and its perturbations.

Because of the recognition of the role of chronic inflammation in different pathologies, the need for efficient therapies and early diagnostic molecular tools for chronic inflammation has rapidly increased. Our modeling suggests that narrowly targeting one single mechanism may not always be an efficacious strategy to treat chronic inflammation, because it can be triggered and maintained by different mechanistic factors at different time points (Fig. 4). This might explain the limited efficacy of some currently used therapeutic interventions, such as nonsteroidal anti-inflammatory drugs, which target the production of PGs (80). Likewise, targeted neutralization of a single pro-inflammatory cytokine, such as IL-1β or TNF-α, used to treat chronic inflammatory pathologies associated with cancer (81), rheumatoid arthritis (82), infection (83), and impaired cutaneous wounds (84, 85), has seen limited success. Rigorous experimental testing and extensive clinical evaluation...
of our computational modeling results might contribute to the development of timely therapies for chronic inflammation and provide a panel of informative molecular indicators for objective clinical assessment of inflammatory scenarios in injury or disease.

Software availability

The MATLAB code for our computational analyses is freely available and can be downloaded from the Journal of Immunology Web site.

Acknowledgments

We thank the three anonymous reviewers whose comments helped to improve the article.

Disclosures

The authors have no financial conflicts of interest.

References

11. Hunter, P. 2012. The inflammation theory of disease. The growing realization of our computational modeling results might contribute to the development of timely therapies for chronic inflammation and provide a panel of informative molecular indicators for objective clinical assessment of inflammatory scenarios in injury or disease.

Software availability

The MATLAB code for our computational analyses is freely available and can be downloaded from the Journal of Immunology Web site.

Acknowledgments

We thank the three anonymous reviewers whose comments helped to improve the article.

Disclosures

The authors have no financial conflicts of interest.

References

11. Hunter, P. 2012. The inflammation theory of disease. The growing realization of our computational modeling results might contribute to the development of timely therapies for chronic inflammation and provide a panel of informative molecular indicators for objective clinical assessment of inflammatory scenarios in injury or disease.

Software availability

The MATLAB code for our computational analyses is freely available and can be downloaded from the Journal of Immunology Web site.

Acknowledgments

We thank the three anonymous reviewers whose comments helped to improve the article.

Disclosures

The authors have no financial conflicts of interest.

Supplemental Material

“Computational approach to characterize causative factors and sensitive molecular indicators of chronic wound inflammation” by Sridevi Nagaraja, Anders Wallqvist, Jaques Reifman, and Alexander Y. Mitrophanov
Supplemental Table I. Model Parameters and Functions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
<th>Units</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_{N_{in}})</td>
<td>Chemotactic migration of neutrophils to the wound site (TGF-(\beta) dependent)</td>
<td>300</td>
<td>mL(^{-1})</td>
<td>Assumed*</td>
</tr>
<tr>
<td>(k_{N_{dect}})</td>
<td>Rate of neutrophil apoptosis</td>
<td>0.1</td>
<td>h(^{-1})</td>
<td>(1)</td>
</tr>
<tr>
<td>(k_{1_{ingest}})</td>
<td>Rate of apoptotic neutrophil phagocytosis by pro-inflammatory macrophages</td>
<td>2.00</td>
<td>N·M(^{-1})·h(^{-1})</td>
<td>(2)</td>
</tr>
<tr>
<td>(k_{2_{ingest}})</td>
<td>Apoptotic neutrophil phagocytosis parameter</td>
<td>4.71 × 10(^6)</td>
<td>cells/mL</td>
<td>(2)</td>
</tr>
</tbody>
</table>

Parameters for macrophage dynamics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
<th>Units</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_{M_{in}})</td>
<td>Chemotactic migration of neutrophils to the wound site (TGF-(\beta) dependent)</td>
<td>400</td>
<td>mL(^{-1})</td>
<td>Assumed*</td>
</tr>
<tr>
<td>(\tilde{k}{1{ingest}})</td>
<td>Rate of macrophage phenotype conversion</td>
<td>0.1</td>
<td>h(^{-1})</td>
<td>(2)</td>
</tr>
<tr>
<td>(\tilde{k}{2{ingest}})</td>
<td>Macrophage phenotype conversion parameter</td>
<td>1.0 × 10(^6)</td>
<td>cells/mL</td>
<td>(2)</td>
</tr>
<tr>
<td>(k_{d_{M}})</td>
<td>Rate of macrophage removal by lymphatic system</td>
<td>8.30 × 10(^{-3})</td>
<td>h(^{-1})</td>
<td>(3)</td>
</tr>
</tbody>
</table>

Parameters for growth factor and cytokine dynamics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
<th>Units</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_{TG_{\beta}_pro})</td>
<td>Rate of TGF-(\beta) production by pro-inflammatory macrophages</td>
<td>1.88 × 10(^6)</td>
<td>ng·cell(^{-1})·h(^{-1})</td>
<td>(4)</td>
</tr>
<tr>
<td>(k_{TG_{\beta}_anti})</td>
<td>Rate of TGF-(\beta) production by anti-inflammatory macrophages</td>
<td>1.60 × 10(^8)</td>
<td>ng·cell(^{-1})·h(^{-1})</td>
<td>(4)</td>
</tr>
<tr>
<td>(k_{d_{TG_{\beta}}})</td>
<td>TGF-(\beta) degradation rate</td>
<td>0.693</td>
<td>h(^{-1})</td>
<td>(5)</td>
</tr>
<tr>
<td>(k_{TN_{\alpha}_act})</td>
<td>Rate of TNF-(\alpha) production by active neutrophils</td>
<td>1.66 × 10(^8)</td>
<td>ng·cell(^{-1})·h(^{-1})</td>
<td>(6)</td>
</tr>
<tr>
<td>(k_{TN_{\alpha}_pro})</td>
<td>Rate of TNF-(\alpha) production by activated macrophages</td>
<td>3.46 × 10(^7)</td>
<td>ng·cell(^{-1})·h(^{-1})</td>
<td>(7)</td>
</tr>
<tr>
<td>(k_{TN_{\alpha}_anti})</td>
<td>Rate of TNF-(\alpha) production by anti-inflammatory macrophages</td>
<td>4.29 × 10(^8)</td>
<td>ng·cell(^{-1})·h(^{-1})</td>
<td>(7)</td>
</tr>
<tr>
<td>(k_{d_{TN_{\alpha}}})</td>
<td>TNF-(\alpha) degradation rate</td>
<td>0.5331</td>
<td>h(^{-1})</td>
<td>(8)</td>
</tr>
<tr>
<td>(k_{IL_{\beta}_act})</td>
<td>Rate of IL-1(\beta) production by active neutrophils</td>
<td>1.70 × 10(^8)</td>
<td>ng·cell(^{-1})·h(^{-1})</td>
<td>(6)</td>
</tr>
<tr>
<td>(k_{IL_{\beta}_pro})</td>
<td>Rate of IL-1(\beta) production by pro-inflammatory macrophages</td>
<td>1.23 × 10(^6)</td>
<td>ng·cell(^{-1})·h(^{-1})</td>
<td>(7)</td>
</tr>
<tr>
<td>(k_{IL_{\beta}_anti})</td>
<td>Rate of IL-1(\beta) production by anti-inflammatory macrophages</td>
<td>2.45 × 10(^7)</td>
<td>ng·cell(^{-1})·h(^{-1})</td>
<td>(7)</td>
</tr>
<tr>
<td>(k_{d_{IL_{\beta}}})</td>
<td>IL-1(\beta) degradation rate</td>
<td>0.1732</td>
<td>h(^{-1})</td>
<td>(9)</td>
</tr>
<tr>
<td>(k_{IL_{6}_act})</td>
<td>Rate of IL-6 production by active neutrophils</td>
<td>8.30 × 10(^{-10})</td>
<td>ng·cell(^{-1})·h(^{-1})</td>
<td>(6)</td>
</tr>
<tr>
<td>(k_{IL_{6}_pro})</td>
<td>Rate of IL-6 production by pro-inflammatory macrophages</td>
<td>1.18 × 10(^{-6})</td>
<td>ng·cell(^{-1})·h(^{-1})</td>
<td>(10)</td>
</tr>
<tr>
<td>(k_{IL_{6}_anti})</td>
<td>Rate of IL-6 production by anti-inflammatory macrophages</td>
<td>1.18 × 10(^{-7})</td>
<td>ng·cell(^{-1})·h(^{-1})</td>
<td>Assumed(^a)</td>
</tr>
<tr>
<td>(k_{d_{IL_{6}}})</td>
<td>IL-6 degradation rate</td>
<td>0.462</td>
<td>h(^{-1})</td>
<td>(8)</td>
</tr>
<tr>
<td>(k_{IL_{10}_pro})</td>
<td>Rate of IL-10 production by pro-inflammatory macrophages</td>
<td>7.60 × 10(^8)</td>
<td>ng·cell(^{-1})·h(^{-1})</td>
<td>(7)</td>
</tr>
<tr>
<td>(k_{IL_{10}_anti})</td>
<td>Rate of IL-10 production by anti-inflammatory macrophages</td>
<td>1.55 × 10(^7)</td>
<td>ng·cell(^{-1})·h(^{-1})</td>
<td>(7)</td>
</tr>
<tr>
<td>(k_{d_{IL_{10}}})</td>
<td>IL-10 degradation rate</td>
<td>0.193</td>
<td>h(^{-1})</td>
<td>(1)</td>
</tr>
<tr>
<td>(k_{PD_{GF}_pro})</td>
<td>Rate of PDGF production by pro-inflammatory macrophages</td>
<td>6.00 × 10(^8)</td>
<td>ng·cell(^{-1})·h(^{-1})</td>
<td>(11)</td>
</tr>
<tr>
<td>(k_{PD_{GF}_anti})</td>
<td>Rate of PDGF production by anti-inflammatory macrophages</td>
<td>6.00 × 10(^{-9})</td>
<td>ng·cell(^{-1})·h(^{-1})</td>
<td>Assumed(^a)</td>
</tr>
<tr>
<td>(k_{d_{PD_{GF}}})</td>
<td>PDGF degradation rate</td>
<td>0.173</td>
<td>h(^{-1})</td>
<td>(12)</td>
</tr>
<tr>
<td>(k_{T_P})</td>
<td>Platelet degradation rate</td>
<td>0.69</td>
<td>h(^{-1})</td>
<td>(13)</td>
</tr>
<tr>
<td>(k_{C_{XCL_{8}}_pro})</td>
<td>Rate of CXCL-8 production by pro-inflammatory macrophages</td>
<td>2.50 × 10(^6)</td>
<td>ng·cell(^{-1})·h(^{-1})</td>
<td>(16)</td>
</tr>
<tr>
<td>(k_{C_{XCL_{8}}_anti})</td>
<td>Rate of CXCL-8 production by anti-inflammatory macrophages</td>
<td>6.94 × 10(^7)</td>
<td>ng·cell(^{-1})·h(^{-1})</td>
<td>(4)</td>
</tr>
<tr>
<td>(k_{d_{C_{XCL_{8}}}_pro})</td>
<td>CXCL-8 degradation rate</td>
<td>0.693</td>
<td>h(^{-1})</td>
<td>(17)</td>
</tr>
<tr>
<td>(k_{IL_{12}_pro})</td>
<td>Rate of IL-12 production by pro-inflammatory macrophages</td>
<td>8.33 × 10(^7)</td>
<td>ng·cell(^{-1})·h(^{-1})</td>
<td>(16)</td>
</tr>
<tr>
<td>(k_{d_{IL_{12}}})</td>
<td>IL-12 degradation rate</td>
<td>0.05775</td>
<td>h(^{-1})</td>
<td>(18)</td>
</tr>
<tr>
<td>(k_{MIP_{1\alpha}_pro})</td>
<td>Rate of MIP-1α production by pro-inflammatory macrophages</td>
<td>3.61 × 10(^8)</td>
<td>ng·cell(^{-1})·h(^{-1})</td>
<td>(19)</td>
</tr>
<tr>
<td>(k_{MIP_{1\alpha}_anti})</td>
<td>Rate of MIP-1α production by anti-inflammatory macrophages</td>
<td>4.25 × 10(^8)</td>
<td>ng·cell(^{-1})·h(^{-1})</td>
<td>(19)</td>
</tr>
<tr>
<td>(k_{d_{MIP_{1\alpha}}})</td>
<td>MIP-1α degradation rate</td>
<td>0.385</td>
<td>h(^{-1})</td>
<td>(17)</td>
</tr>
<tr>
<td>(k_{MIP_{2}_pro})</td>
<td>Rate of MIP-2 production by pro-inflammatory macrophages</td>
<td>1.84 × 10(^7)</td>
<td>ng·cell(^{-1})·h(^{-1})</td>
<td>(19)</td>
</tr>
<tr>
<td>(k_{MIP_{2}_anti})</td>
<td>Rate of MIP-2 production by anti-inflammatory macrophages</td>
<td>1.92 × 10(^7)</td>
<td>ng·cell(^{-1})·h(^{-1})</td>
<td>(19)</td>
</tr>
<tr>
<td>(k_{d_{MIP_{2}}})</td>
<td>MIP-2 degradation rate</td>
<td>0.2772</td>
<td>h(^{-1})</td>
<td>(20)</td>
</tr>
<tr>
<td>Effector variable</td>
<td>Affected variable</td>
<td>Feedback functions</td>
<td>Parameters</td>
<td>Reference</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------</td>
<td>--------------------</td>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Cytokine-mediated down-regulation functions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL10</td>
<td>TNFα</td>
<td>[f_1 = a_1e^{b_1IL10} + c_1]</td>
<td>[a_1 = 0.4666] [b_1 = -1.528] [c_1 = 0.5332]</td>
<td>(22)</td>
</tr>
<tr>
<td></td>
<td>IL6</td>
<td>[f_2 = a_2e^{b_2IL10} + c_2]</td>
<td>[a_2 = 0.3298] [b_2 = -1.189] [c_2 = 0.6695]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IL1β</td>
<td>[f_3 = a_3e^{b_3IL10} + c_3]</td>
<td>[a_3 = 0.6334] [b_3 = -1.794] [c_3 = 0.3667]</td>
<td></td>
</tr>
<tr>
<td>TGFβ</td>
<td>TNFα</td>
<td>[f_4 = a_4e^{b_4TGFβ} + c_4]</td>
<td>[a_4 = 0.6211] [b_4 = -0.8305] [c_4 = 0.4466]</td>
<td>(23)</td>
</tr>
<tr>
<td></td>
<td>IL1β</td>
<td>[f_5 = a_5e^{b_5TGFβ} + c_5]</td>
<td>[a_5 = 0.69] [b_5 = -20.37] [c_5 = 0.31]</td>
<td></td>
</tr>
<tr>
<td>IL6</td>
<td>TNFα</td>
<td>[f_6 = \frac{a_6}{(a_6 + IL6^{b_6})}]</td>
<td>[a_6 = 4.488] [b_6 = 0.1541]</td>
<td>(24)</td>
</tr>
<tr>
<td></td>
<td>IL1β</td>
<td>[f_7 = \frac{a_7}{(a_7 + IL6^{b_7})}]</td>
<td>[a_7 = 4.459] [b_7 = 0.1571]</td>
<td></td>
</tr>
<tr>
<td>TNFα</td>
<td>IL12</td>
<td>[f_8 = a_8e^{b_8TNFα} + c_8]</td>
<td>[a_8 = 0.8671] [b_8 = -2.794] [c_8 = 1.307]</td>
<td>(25)</td>
</tr>
<tr>
<td>Cytokine-mediated up-regulation functions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGFβ</td>
<td>IL6</td>
<td>[f_9 = \frac{a_9TGFβ}{(1 + TGFβ)}]</td>
<td>[a_9 = 0.9821]</td>
<td>(26)</td>
</tr>
<tr>
<td></td>
<td>IL10</td>
<td>[f_{10} = \frac{a_{10}TGFβ}{(1 + a_{10}TGFβ)}]</td>
<td>[a_{10} = 274.5]</td>
<td>(27)</td>
</tr>
<tr>
<td>Chemotaxis functions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGFβ</td>
<td>Active neutrophil concentration</td>
<td>[f_N(TGFβ) = \text{quadratic} + \text{linear}]</td>
<td>[r_Nq = -537.30] [r_Nq = 698.05] [r_{N1} = -12.77] [r_{N2} = 187.78]</td>
<td>(28)</td>
</tr>
<tr>
<td></td>
<td>Pro-inflammatory macrophage concentration</td>
<td>[f_M(TGFβ) = \text{quadratic} + \text{linear}]</td>
<td>[r_Mq = -240.29] [r_Mq = 298.93] [r_{M3} = -0.5926] [r_{M4} = 60.593]</td>
<td>(29)</td>
</tr>
<tr>
<td>PDGF</td>
<td>Active neutrophil concentration</td>
<td>[f_N(PDGF) = r_5PDGF^2 + r_6PDGF]</td>
<td>[r_5 = -1.02] [r_6 = 5.9525]</td>
<td>(30)</td>
</tr>
<tr>
<td></td>
<td>Pro-inflammatory macrophage concentration</td>
<td>[f_M(PDGF) = r_5PDGF^2 + r_6PDGF]</td>
<td>[r_5 = -0.3538] [r_6 = 11.978]</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td>Equation</td>
<td>Constants</td>
<td>References</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
</tr>
</tbody>
</table>
| TNFα | Pro-inflammatory macrophage concentration | $f(\text{TNF } \alpha) = r_9 \text{TNF } \alpha^2 + r_{10} \text{TNF } \alpha$ | $r_9 = -0.3164$
$r_{10} = 10.708$ | (31) |
| CXCL8 | Active neutrophil concentration | $f(\text{CXCL8}) = r_1 \text{CXCL8}^2 + r_2 \text{CXCL8}$ | $r_1 = -0.1045$
$r_2 = 13.678$ | (32) |
| MIP1α | Pro-inflammatory macrophage concentration | $f(\text{MIP1α}) = r_3 \text{MIP1α}^3 + r_4 \text{MIP1α}^2 + r_5 \text{MIP1α}$ | $r_3 = 0.0006$
$r_4 = -0.1481$
$r_5 = 11.36$ | |

*This parameter was used as a multiplier for the chemotaxis functions for both neutrophils and macrophages to compensate for the difference in units reported in experimental data (cells/field) and the concentration units used in our model (cells/mL). These parameters reflect the differences between the volumes of cellular medium used in experiments (~µL ranges) and model simulations (mL).

*Values for these rates, which characterize the production of pro-inflammatory mediators by anti-inflammatory macrophages, were not available in the literature. Therefore, we made an assumption that these rates are equal to 10% of the production rates of the corresponding mediators by pro-inflammatory macrophages.
Supplemental Figure 1. Model implementation of apoptotic neutrophil phagocytosis and IL-10-mediated downregulation of pro-inflammatory cytokines. A and B: Solid lines show fitting of the experimental data with hyperbolic functions (Eqs. 3 and 4, respectively) using the curve fitting toolbox in MATLAB. Diamonds show experimental data on neutrophil phagocytosis from Newman et al. (2). A: rate of apoptotic neutrophil phagocytosis by pro-inflammatory macrophages for different initial concentrations of apoptotic neutrophils. B: fraction of pro-inflammatory macrophages ingesting apoptotic neutrophils per hour for different initial concentrations of apoptotic neutrophils. The calculations of phagocytosis rates for both apoptotic neutrophils and pro-inflammatory macrophages are described in the main text (see Estimation of the parameters describing phagocytosis of apoptotic neutrophils by pro-inflammatory macrophages). C: Solid lines show fitting of the experimental data with exponential functions using the curve fitting toolbox in MATLAB. The three curves represent functions f_1, f_2, and f_3 in Supplemental Table I. Markers show experimental data from Thomassen et al. (22) on fractional reduction in the production rates of IL-6 (diamonds), TNF-α (circles), and IL-1β (squares) by pro-inflammatory macrophages induced by different IL-10 concentrations. The degree of fractional reduction was obtained by normalizing the reported concentrations of the cytokines released in the presence of different IL-10 concentrations by the concentration of the cytokines in the absence of IL-10.
Supplemental Figure 2. Modeling predictions of inflammatory cell phenotypes in acute inflammation. A: active (solid line) and apoptotic (dashed line) neutrophil concentrations. B: pro-inflammatory (solid line) and anti-inflammatory (dashed line) macrophage concentrations.
Supplemental Figure 3. Modeling predictions of cytokine feedback signaling. Brackets designate concentration. A, B: Model predictions of neutrophil and macrophage kinetics for acute inflammation (solid lines) and acute inflammation with TNF-α “knockout” (dashed lines). Symbols show experimental data for wild-type mouse wounds (diamonds) and wounds in mice deficient in the TNF-α receptor p55 (triangles); the data were taken from Mori et al. (33). Modeling predictions and experimental data were normalized to the respective maximum values. C, D: Model predictions of neutrophil and macrophage kinetics for acute inflammation (solid lines), acute inflammation with IL-10- and TGF-β-mediated feedback elimination (dotted lines), chronic inflammation induced by a 5-fold increase in macrophage influx rate (dashed lines), and chronic inflammation with IL-10- and TGF-β-mediated feedback elimination (dash-dotted lines). Modeling predictions were normalized to the respective maximum values for the chronic inflammation simulations (dashed lines).
References

MATLAB Code Description

7 November 2013

Computational approach to characterize causative factors and molecular indicators of chronic wound inflammation
by Sridevi Nagaraja, Anders Wallqvist, Jaques Reifman, and Alexander Y. Mitrophanov

Correspondence about modeling- and software-related technical questions to Sridevi Nagaraja:
snagaraja@bhsai.org
CONTENTS

Overview ... 3
System Requirements ... 3
MATLAB Code Description ... 3
Acute Inflammation Model... 4
Local Sensitivity Analysis ... 8
Extended Sensitivity Analysis (randomized parameter sets).. 9
Overview

The MATLAB code for the inflammation model was developed at the Biotechnology High Performance Computing Software Applications Institute (BHSAI), Ft. Detrick, Maryland, to study the triggers of chronic inflammation as well as to identify the sensitive molecular mediators of chronic inflammation. The software currently implements a set of ordinary differential equations (ODEs) and a delay differential equation (DDE) to simulate acute and chronic inflammatory responses. Local sensitivity analysis was implemented to identify the triggers and sensitive indicators of chronic inflammation. The inputs for the acute inflammation model as well as the sensitivity analyses are embedded in the code. The user can directly change parameter values inside some of the provided MATLAB files. The System Requirements Section contains the details about the computer system that we used to develop and run the code. The rest of this document provides information about using the code for the three different types of analysis described in the paper (inflammation time course modeling, local sensitivity analysis for the default parameter set, and local sensitivity analysis for 10,000 random parameter sets).

System Requirements

We used the following software and hardware components:

Software
- Operating System: Windows 7 Enterprise (64-bit operating system)
- MATLAB version 7.14.0.739 (R2012a) (64-bit operating system)
- MATLAB Statistics Toolbox, Version 8.0 (R2012a)
- Microsoft Excel 2010 for plotting the figures in the paper

Hardware
- Intel® Core(TM) 2 Duo CPU E8400 @ 3.00 GHz and 4.00 GB RAM
- Disk space: 3–4 GB is recommended for a typical installation
For extended sensitivity analysis, we used two server computers with the following specifications:
- CPU: 2x Intel Xeon X5650 (6 cores @ 2.66 GHz)
- RAM: 24 GB @ 1333 MHz
- Disk space: 4x 300 GB @ 10,000 RPM

MATLAB Code Description

The code was developed in MATLAB 2012a. It includes the following files:
Main.m – simulation routine that runs the acute inflammation model

inflammation_delay.m – function comprising model equations, as well as chemotaxis and cytokine feedback functions

Parameters.m – script containing parameter values and initial conditions (also contains the program’s main INPUT)

Graphs_main.m – script that performs basic plotting of all model variables

Param_var_local.m – function for calculating the logarithmic local sensitivity values for a given parameter set

Global_local.m – simulation routine for extended sensitivity analysis (in the vicinities of 10,000 random parameter sets)

sens_param.m – function for calculating the most sensitive parameter for the output variables representing the TNF-α, IL-1β, and IL-6 concentrations

analysis.m – function for plotting the results of parameter sensitivity analysis

sens_var.m – function for calculating and plotting the most sensitive output variables (only molecular mediators) for the parameters representing macrophage influx and efflux rates

Latinhypercube.m – function that generates a user-defined number of random parameter sets

Instructions for downloading and saving the MATLAB files. The files are currently available in “.txt” format. In order to run them in MATLAB, the files need to be converted in “.m” format. Please follow the instructions given below:
1. Download all the files into your current working folder in MATLAB.
2. Open each file one at a time and click File> Save As and change the “.txt” extension at the end of the file name to “.m” and then click “Save”.
3. MATLAB may ask you to specify the filename one more time. Please use the same file name as in the “.txt” file.

Acute Inflammation Model

1. The INPUT to the model is the initial concentration of platelets which reflects the severity of an injury. The default value of this parameter is 2×10^8 platelets/mL. This value is defined in the
“Parameters.m” file under “Initial conditions”. To increase or decrease the severity of an injury, increase or decrease the value of the parameter “P_init” in this file.

Note: Any additional simulation of interest, e.g., chronic inflammation induced by a 5-fold higher macrophage influx rate or by an alteration in the production rate of a specific cytokine, will need to be initiated by changing the respective parameter in the “Parameters.m” file.

2. To run the model, open “Main.m” and click the “Run” icon or type “Main” in the MATLAB command window.

3. After the routine is executed, the kinetic curves of all the model variables will be displayed as outputs in 5 separate figures, as shown below.

Figure 1: Kinetics of total neutrophil and macrophage concentrations
Figure 2: Kinetics of individual neutrophil and macrophage phenotype concentrations
Figure 3: Kinetics of growth factor and platelet concentrations
Figure 4: Kinetics of TNF-α, IL-1β, IL-6, and IL-10 concentrations
Figure 5: Kinetics of CXCL8, IL-12, MIP-1α, and MIP-2 concentrations
4. These output figures show the raw output values calculated by the model. The raw values of all output variables, as well as simulation time points, are stored in the output variable “g” in the MATLAB workspace.

Note: The raw values of all output variables of the model were imported into Microsoft (MS) EXCEL, normalized, and plotted along with normalized experimental data, as shown in Figs. 3 and 5 in the paper. Supplemental Fig. S2 in the paper shows the results plotted in Figure 2 of this simulation without additional processing.

Note: Chronic inflammation simulations shown in Fig. 5 of the paper were performed by executing the file “Main.m” after increasing the macrophage influx rate parameter “kM_in” by 5-fold of its default value in the “Parameters.m” file.

Local Sensitivity Analysis

Simulation: To calculate the local sensitivity values in the vicinity of the default parameter set, open the file “Main.m” and uncomment the last two lines under “Local sensitivity analysis” (lines 34–35). Then, click on the “Run” icon or type “Main” in the MATLAB command window.

Output: The raw sensitivity values for all output variables at 21 simulated time points for each of the 69 main model parameters are stored in the output variable “Gsen_local” (a structure of size 1×73, where each element represents the simulation for a particular parameter variation) in the MATLAB workspace.

Note: The code contains definitions for 73 parameters, some of which were excluded in the current version of the model and assigned zero values. Therefore, all the sensitivity vectors have a size of 73.

Plotting: Fig. 4A in the paper shows values from the first element of the output variable “O_b_l”, which extracts and saves from the sensitivity matrix “Gsen_local”, the identifying numbers of the parameters that demonstrate the highest sensitivity to TNF-α, IL-1β, and IL-6 concentrations for all time points in the simulation.

Note: For a complete list of the parameter identifying numbers, check the file “Parameters.m”. Each parameter is assigned an identifying number shown in the comment next to its initialization.
Extended Sensitivity Analysis (randomized parameter sets)

Simulation: To calculate sensitivity values for a number of random parameter sets, follow the instructions given below:

1. Open “Global_local.m”.

2. Change the value of the parameter “iter” to choose the number of randomly generated parameter sets (default value used in the paper: 10,000).

3. Change the value of the parameter “rangepfactor” to increase or decrease the uniform distribution sampling range for the extended sensitivity analysis [default value used in the paper: 2, i.e, the parameter values in the generated sets are chosen randomly from a 4-fold range (2-fold higher and 2-fold lower than default value)].

Note: To perform the sensitivity analysis on one parameter set using one node takes approximately 5 minutes. Therefore, to compute the sensitivity values for 10,000 parameter sets, we used 12 parallel nodes, and the simulation took approximately 16 hours to complete. The user is recommended to start with smaller values of “iter” (e.g., 50 or 100). If using parallel processing, replace the “for” command in “Global_local.m”, line 30, by “parfor” and specify the number of nodes that will be used in “matlabpool” command right before using “parfor”.

4. Click on the “Run” icon or type “Global_local” in the MATLAB command window.

Output: The raw sensitivities for all the model outputs with respect to all the 69 parameters at 21 time points for the 10,000 random parameter sets are stored in the output variable “Gsen” in the MATLAB workspace. The size of this file is ~2.3 GB. The sensitivity values of the output variables TNF-α, IL-1β, and IL-6 with respect to all the model parameters across all the 10,000 parameter sets are extracted from “Gsen”, ranked in descending order, and stored in the output variable “O_val”. The identifying numbers assigned to the parameters corresponding to the respective sensitivity values are stored in the output variable “O_b” in the MATLAB workspace. The kinetic curves for all output variables for each of the randomly generated parameter sets are stored in the variable “Ymain_d” in the MATLAB workspace.

Plotting inflammation triggers: To plot the results for the most important parameters/mechanisms, follow the instructions given below:

1. Uncomment the three lines under the “Plotting the critical triggers of chronic inflammation” section (lines 37–39) in the file “Global_local.m”.

9
2. Specify the number of most important parameter/mechanisms you want to plot by changing the parameter “\texttt{rnk}”. (Default value: 3, which plots the identifying numbers of the parameters with highest, second-highest, and third-highest sensitivities for TNF-\(\alpha\), IL-1\(\beta\), and IL-6 at every simulated time point.)

3. Copy and paste the three lines into MATLAB command window. The output will generate “\texttt{rnk}” number of figures. A sample figure for the model parameters with the highest sensitivity (Rank = 1) for TNF-\(\alpha\), IL-1\(\beta\), and IL-6, respectively, is shown below:

![Sample Figure](image.png)

4. The figures show the identifying number of parameter whose sensitivity had a given rank (highest, second highest …) for the largest fraction of the 10,000 randomly generated parameter sets for each of the selected output variables (in our case: TNF-\(\alpha\), IL-1\(\beta\), and IL-6) and each of the simulated time points (gray bars, left-hand \(y\)-axis). The actual value of this largest fraction (denoted in the plots as “\texttt{Frequency}”) is displayed on the right-hand \(y\)-axis (shown in red).

\textbf{Note:} These raw sensitivity values were then imported into MS EXCEL and used to calculate the robustness of each parameter as the percentage of the 10,000 parameter sets for which this parameters’ sensitivity ranked as most sensitive for TNF-\(\alpha\), IL-1\(\beta\), and IL-6 at 3 different simulated time points (shown as the pie charts in Fig.4B of the paper).
5. To visualize the most sensitive parameters for another output variable (other than TNF-α, IL-1β, and IL-6), change the output variable identifying numbers in the vector “P_param” in the file “Global_local.m” and copy/paste the three lines (37–39) into the MATLAB command window. (For a complete list of output variable identifying numbers, check the file “inflammation_delay.m”. Each output variable is assigned an identifying number shown in the comment next to its initialization). Use only three output variable identifying numbers at a time.

Plotting sensitive molecular mediators: To analyze and plot the results for the most sensitive molecular indicators, follow the instructions given below:

1. Uncomment the lines under “Plotting the most sensitive molecular mediators of chronic inflammation” section (lines 43–45) in the file “Global_local.m” and comment back the previous section “Plotting the critical trigger of chronic inflammation” (lines 37–39).

2. Specify the number of most sensitive molecular indicators you want to plot by changing the parameter “rnk”. (Default value: 3; which plots the top three molecular mediator outputs most sensitive to parameter #7 (i.e., macrophage influx rate) and parameter #10 (i.e., macrophage efflux rate).

3. Copy and paste the three lines into the MATLAB command window. The output will comprise “rnk” number of figures. A sample figure for the model output variables with highest sensitivity (Rank =1) is shown below.

4. The figures show the identifying number of model output variable whose sensitivity had a given rank (highest, second-highest, …) for the largest fraction of the 10,000 randomly generated parameter sets for each of the selected parameters (in our case: macrophage influx and efflux rates denoted in the MATLAB code as kM_in and kd_M) and each of the simulated time points (gray bars, left-hand y-axis). The actual value of this largest fraction (denoted in the plots as “Frequency”) is displayed on the right-hand y-axis (shown in blue).

Note: These raw sensitivity values were then imported into MS EXCEL and used to calculate the robustness of each parameter as the percentage of the 10,000 parameter sets for which this output variables’ sensitivity ranked as highest, second-highest, and third-highest for kM_in and kd_M at 4 different simulated time points (shown as bar graphs in Figs. 6 and 7 of the paper).
5. To visualize the most sensitive molecular mediators for another parameter/mechanism (other than $k_{M_{in}}$ and $k_{d_{M}}$), change the parameter identifying numbers in the vector “P_var” in the file “Global_local.m” and copy/paste the three lines (43–45) in to the MATLAB command window. (For a complete list of parameter identifying numbers, check the file “Parameters.m”. Each parameter is assigned an identifying number shown in the comment next to its initialization). Use only two parameters identifying numbers at a time.