Requirement for MyD88 Signaling in B Cells and Dendritic Cells for Germinal Center Anti-Nuclear Antibody Production in Lyn-Deficient Mice

Zhaolin Hua, Andrew J. Gross, Chrystelle Lamagna, Natalia Ramos-Hernández, Patrizia Scapini, Ming Ji, Haitao Shao, Clifford A. Lowell, Baidong Hou and Anthony L. DeFranco

J Immunol 2014; 192:875-885; Prepublished online 30 December 2013; doi: 10.4049/jimmunol.1300683

http://www.jimmunol.org/content/192/3/875
Requirement for MyD88 Signaling in B Cells and Dendritic Cells for Germinal Center Anti-Nuclear Antibody Production in Lyn-Deficient Mice

Zhaolin Hua,* Andrew J. Gross,‡ Chrystelle Lamagna,§ Natalia Ramos-Hernández,‡ Patrizia Scapini,§,* Ming Ji,† Haitao Shao,* Clifford A. Lowell,§ Baidong Hou,*‡ and Anthony L. DeFranco†

The intracellular tyrosine kinase Lyn mediates inhibitory receptor function in B cells and myeloid cells, and Lyn−/− mice spontaneously develop an autoimmune and inflammatory disease that closely resembles human systemic lupus erythematosus. TLR-signaling pathways have been implicated in the production of anti-nuclear Abs in systemic lupus erythematosus and mouse spontaneously develop an autoimmune and inflammatory disease that closely resembles human systemic lupus erythematosus. Consistent with this view, IgG anti-nuclear Abs were absent if T cells were deleted (TCR−/− mice) as the result of mutation of the adaptor molecule SAP. Thus, the autoimmunity of these Abs in the glomeruli of the kidneys, leading to glomerulonephritis in Lyn−/− mice, were completely abolished by selective deletion of Myd88 in B cells, and autoantibody production and glomerulonephritis were delayed or decreased by deletion of Myd88 in DCs. The reduced autoantibody production in mice lacking Myd88 in B cells or DCs was accompanied by a dramatic decrease in the spontaneous germinal center (GC) response, suggesting that autoantibodies in Lyn−/− mice may depend on GC responses. Consistent with this view, IgG anti-nuclear Abs were absent if T cells were deleted (TCRβ−/− mice) or if T cells were unable to contribute to GC responses as the result of mutation of the adaptor molecule SAP. Thus, the autoimmunity of Lyn−/− mice was dependent on T cells and on TLR/MyD88 signaling in B cells and in DCs, supporting a model in which DC hyperactivity combines with defects in tolerance in B cells to lead to a T cell–dependent systemic autoimmunity in Lyn−/− mice. The Journal of Immunology, 2014, 192: 875–885.

The online version of this article contains supplemental material.

Copyright © 2014 by The American Association of Immunologists, Inc. 0022-1767/14/$16.00

Received for publication March 12, 2013. Accepted for publication November 18, 2013.

This work was supported by research grants from the National Institutes of Health (R01-AD072058 and P01-AD078869 to A.L.D. and P01-AD078869 and R01-AR068150 to C.A.L.), as well as by the National Natural Science Foundation of China (Grants 31110710148 to B.H. and 31200669 to Z.H.). B.H. is supported by an award from the National Thousand Talent Plan of China (2011).

Address correspondence and reprint requests to Dr. Anthony L. DeFranco or Dr. Baidong Hou, Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143; Department of Laboratory Medicine, University of California, San Francisco, CA 94143; and Division of Pathology, Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy

†Department of Medicine, University of California, San Francisco, San Francisco, CA 94143; and ‡Department of Pathology, University of California, San Francisco, San Francisco, CA 94143; and §Division of Pathology, Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy

‡Department of Laboratory Medicine, University of California, San Francisco, CA 94143; and Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; †Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143; Department of Pathology, University of California, San Francisco, San Francisco, CA 94143; and Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China (B.H.). E-mail addresses: anthony.defranco@ucsf.edu (A.L.D.) or baidong_hou@sun5.ibp.ac.cn (B.H.)

Copyright © 2014 by The American Association of Immunologists, Inc. 0022-1767/14/$16.00

www.jimmunol.org/cgi/doi/10.4049/jimmunol.1300683
encoding the other components of Lyn-dependent inhibitory pathways contribute significantly to lupus susceptibility in humans. Recent studies (15) in several mouse models of lupus implicated TLR9 and TLR7 in the spontaneous production of anti-dsDNA and anti-RNP IgG, respectively. For example, MRL/lpr mice are protected from the development of glomerulonephritis when combined with loss-of-function mutation of TLR7, either alone or in combination with mutation of TLR9 (16). Similarly, deletion of the TLR-signaling component MyD88 prevents spontaneous lupus-like disease in Lyn-deficient mice (17). Conversely, the Yaa autoimmune accelerator locus of mice turns out to be a duplication onto the Y chromosome of a small region of the X chromosome that includes TLR7, resulting in increased expression of TLR7 (18–20). The possible relevance of TLR7 and TLR9 to lupus-like autoimmunity was initially suggested by in vitro studies of Marshall-Rothstein and coworkers (15), demonstrating a marked synergy for B cell activation in vitro between BCR engagement and TLR9 or TLR7 engagement. This synergy was shown to operate in vivo as well (21). Although those studies strongly suggest that the contribution of TLR7 and TLR9 to lupus-like autoimmunity is by their action in nucleic acid–recognizing B cells, TLR7 and TLR9 are also potent activators of dendritic cells (DCs) and, moreover, induce type 1 IFN production by plasmacytoid DCs (22). A number of studies implicated type 1 IFNs in the pathogenesis of human lupus (23), so it is also possible that the nucleic acid–recognizing TLRs play key roles in DCs for the development or propagation of lupus-like autoimmunity.

Recently, we used cell type–specific deletion of the key TLR-signaling component MyD88 to dissect the cellular basis for TLR9 stimulation of Ab responses to immunization. We found that in vivo IgG responses to soluble protein–CPG oligonucleotide conjugates were dependent primarily on TLR9/MyD88 signaling in DCs, whereas IgG responses to virus-like particles or inactivated influenza virus particles were primarily dependent on TLR7/MyD88 signaling in B cells (24). In this study, we addressed the relevance of MyD88 signaling in B cells and in DCs for the spontaneous development of lupus-like autoimmunity in Lyn−/− mice. We found that anti-dsDNA and anti-RNP IgG in this model were likely produced by germinal center (GC) responses that were highly dependent on TLR7/MyD88 signaling in B cells. TLR7/MyD88 signaling in DCs also played a major, although less essential, role in autoantibody production. In contrast, TLR7/MyD88 signaling in DCs was essential for accumulation of activated T cells and splenomegaly, reinforcing the notion that Lyn-deficient autoimmune disease has both autoantibody and inflammatory components and that TLR/MyD88 signaling contributes to both disease manifestations.

Materials and Methods

Mice

B6 (000664; C57BL/Jd) mice were from The Jackson Laboratory. Lyn−/− Myd88−/− mice (B6.129P2-Myd88−/−), Myd88−/− Cd11c−/− mice, and Myd88−/− Cd79a−/− mice were described previously (25–27) and were backcrossed onto the C57BL/6 background for ≥10 generations. These mice were bred to generate Lyn−/− Myd88−/−, Lyn−/− Myd88−/− Cd11c−/−, or Lyn−/− Myd88−/− Cd79a−/− mice used in this study. Sex-matched littermates were used in all experiments, and data were pooled and analyzed according to the age group. Sap−/− mice (28) were obtained from Dr. Pamela Schwartzberg (National Institutes of Health, Bethesda, MD). tcrβ−/− tcrα−/− mice (29, 30) were from The Jackson Laboratory. Animals were housed in specific pathogen-free animal facilities at the University of California, San Francisco or the Institute of Biophysics under conditions that met the respective institutional and national guidelines. Animal use in each facility was approved by the respective Institutional Animal Care and Use Committee.

Anti-nuclear Ab immunofluorescence

Serum was diluted to 1:40 or 1:160 in PBS containing 1% FBS and applied to fixed and permeabilized HEp-2 anti-nuclear Ab (ANA) slides (Bio-Rad). After overnight incubation at 4°C, ANAs were detected by Alexa Fluor 488–conjugated goat anti-mouse IgG (Fcy fragment specific; Jackson Immunoresearch). DAPI was included in the last wash of slides. Slides were visualized with a regular fluorescence microscope under a 40× objective lens and imaged with an Olympus digital camera. Nuclear regions were defined with DAPI staining, and the average Alexa 488 fluorescence intensity of nuclear regions was quantified with ImageJ (National Institutes of Health).

Serum Ig and autoantibody measurement

Levels of serum IgM and IgG were measured using ELISA-based quantification kits (Bethyl Laboratories), according to the manufacturer’s instructions. For anti-dsDNA Ig ELISA, 96-well flat-bottom plates (BD Falcon) were coated with 20 ng/well linearized pUC19 plasmid in 100 mM Tris-HCl (pH 7.3). For anti-Smith Ag ribonucleoprotein (SmRNP) Ig ELISA, plates were coated with 2 U/ml Smith Ag RNP complex Ag (ImmunoVision) in carbonate buffer (pH 9.6). After overnight incubation at 4°C, plates were blocked with PBS containing 1% BSA and 0.05% Tween 20 for 1 h. Serially diluted sera were added to the plates and incubated for 2 h at room temperature. After washing with PBS containing 0.05% Tween 20, autoantibodies were detected by HRP-conjugated goat anti-mouse IgM Ab (μ chain specific) or anti-mouse total IgG (Fcy fragment specific; both from Bethyl Laboratories). The assays were developed by adding HRP substrate 3,3′,5′-tetramethylbenzidine (Vector Laboratories) and stopped by the addition of 2 N sulfuric acid. The absorbance at 450 nm was measured with a microplate reader (Spectra Max Plus; MDS Analytical Technologies). For total IgM or IgG, the concentration was calculated according to standard samples supplied by Bethyl Laboratories. For anti-dsDNA or anti-smRNP Ig, the relative amount was represented as absorbance values at the same dilutions (1:40 for IgM and 1:160 for IgG).

Histology and immunofluorescence analysis

For kidney histological analysis, both kidneys from a mouse were cut in half laterally, fixed in 10% formalin, embedded in paraffin, and stained with H&E at the Department of Pathology. The presence and severity of nephritis were evaluated in a blinded fashion, by one of the authors, with stained sections that contained glomeruli away from the medulla. Scoring of glomerulonephritis or interstitial nephritis was done using a 0 to 3 scale (0 = absent, 1 = mild, 2 = moderate, 3 = severe): scoring for glomeruli was based on glomerular size, glomerular hypercellularity, and presence of glomerular sclerosis; whereas for interstitial disease, it was based on the degree of inflammatory infiltrate and alteration in tissue architecture.

For histological analysis of the GC response, spleen samples from 5–7-mo-old mice were placed in Tissue-Tek O.C.T. compound (Sakura) and immediately frozen with a mixture of ethanol and dry ice. Cryostat sections (7 μm in thickness) were fixed in ice-cold acetone and stained with biotinylated rabbit anti-mouse GL-7 (BD Bioscience) and alkaline phosphatase–conjugated anti-FITC (Jackson ImmunoResearch) were used as secondary Abs. Enzyme reactions were developed with conventional substrates for peroxidases (diaminobenzidine/H2O2) and alkaline phosphatase (Fast Red; both from Sigma). Sections were counterstained with hematoxylin (Fisher).

To detect complement 3 (C3) deposition, kidneys were placed in O.C.T. compound and snap-frozen in methyl-butyl-chilled liquid nitrogen. Cryostat sections (15 μm in thickness) were fixed in ice-cold acetone and stained with FITC-conjugated anti-mouse GL-7 (BD Bioscience). HRP-conjugated extravidin (Sigma) and alkaline phosphatase–conjugated anti-FITC (Jackson ImmunoResearch) were used as secondary Abs. Enzyme reactions were developed with conventional substrates for peroxidases (diaminobenzidine/H2O2) and alkaline phosphatase (Fast Red; both from Sigma). Sections were counterstained with hematoxylin (Fisher).

To detect complement 3 (C3) deposition, kidneys were placed in O.C.T. compound and snap-frozen in methyl-butyl-chilled liquid nitrogen. Cryostat sections (15 μm in thickness) were fixed in ice-cold acetone and stained with FITC-conjugated anti-mouse C3 (Cappel Laboratories) for 1 h at room temperature. The average intensity of FITC in the glomerular regions was quantified by ImageJ.

Flow cytometry

Splenocytes were obtained by treating the organs with digestion medium (RPMI 1640, 25 mM HEPES, 50 μg/ml Liberase [Roche] and 100 μg/ml DNase I [Worthington]). Bone marrow cells were obtained by flushing tibia and femur with medium. Kidney cells were prepared as previously described (8). Briefly, kidneys were pressed through a 70-μm cell strainer (BD Falcon). After washing, the cells were resuspended in 33% Percoll solution and centrifuged at 2000 rpm for 20 min at room temperature. Kidney-infiltrating cells were obtained from cell pellets. For staining for flow cytometry, single-cell suspensions were blocked with anti-CD16/CD32 Ab and then stained with fluorescent Abs in ice-cold flow cytometry buffer (PBS supplemented with 2 mM EDTA, 1% heat-inactivated FBS, and 0.02% sodium azide). The Abs included FITC-labeled anti-Ly6G (1A8), anti-Ly6C (HK1.4), anti-CD44 (IM7), anti-GL-7, and anti-CD43 (S7) Abs; PE-labeled anti-CD86 (GL1), anti-PI-1 (RMP-1-30), anti-TCRβ (H57-597), and anti-CD23 (B3B4) Abs;
PerCP-Cy5.5–labeled anti-F4/80 (BM8), anti-ICOS (7E.17G9), and anti-IgM (RM1-1) Abs; PE-Cy7–labeled anti-CD11b (HL3), anti-CD45.2 (104), and anti-CD62L (M1/70), and anti-CD45.2 (104) Abs; alphophycocyanin- or Alexa Fluor 647–labeled anti-CD11c (HL3), anti-CD8 (53-6.7), and anti-CD138 (281-2), and anti-CD29 (9073). Lyn (Lyn) as
respectively) were generated, housed under specific pathogen–free
conditions, and examined for autoimmune phenotypes at
different ages.

The development of autoantibodies by these mice was initially
screened by ANA immunofluorescence, with mouse sera collected
at 5–7 mo of age. As previously described (4, 5), most Lyn−/−
mice exhibited elevated titers of ANAs by this age (Fig. 1A, 1B).

The development of IgG ANAs was almost completely abolished in
Lyn−/− B-Myd88−/− mice, and it was substantially attenuated in
mice lacking MyD88 selectively in DCs (Fig. 1A, 1B).

Next, we used ELISA to examine the development of Abs to
dsDNA and smRNP, two major types of ANAs seen in SLE
patients (1), as well as in animal models of SLE. All Lyn−/− mice
developed IgM autoantibodies against both of these nuclear Ags,
typically by 4 mo of age, and a substantial majority also
developed IgG anti-dsDNA and IgG anti-smRNP. Deletion of
MyD88 in DCs delayed production of these autoantibodies, but
8–10-mo-old mice still had substantial titers of IgG and IgM
anti-dsDNA and IgM anti-smRNP. In contrast, deletion of
Myd88 in B cells prevented the production of IgG autoanti-
bodies in Lyn−/− B-Myd88−/− mice at all time points tested and
attenuated the production of IgM autoantibodies (Fig. 1C–F).

Statistical analysis
Statistical significance for data with multiple groups was calculated with
a one-way ANOVA; if a significant difference was observed between
groups, the Bonferroni posttest was used to assess the statistical
difference between specific groups and either the wild-type (WT) group or the Lyn−/−
group. In cases in which there was a large difference between the WT
group and the three groups with Lyn deficiency (B cell number data, Fig.
5E, Fig. 6B, Supplemental Fig. 1B), this analysis was inadequate to detect
differences between the Lyn-deficiency groups, because all were greatly
different from the WT group. In these cases, a secondary statistical anal-
ysis was performed with just the Lyn-deficiency groups. In the figures,
this secondary statistical analysis is denoted by different symbols. When there
were three such groups, this secondary analysis again used one-way ANOVA;
however, in cases in which only two groups remained, the Mann–Whitney
U test was used. All p values ≤ 0.05 were considered significant and are
indicated in the figures.

Results
Ablation of MyD88 signaling in either B cells or DCs
attenuates autoimmunity in Lyn−/− mice

To examine the contribution of TLR signaling in B cells and DCs
to the spontaneous autoimmunity caused by Lyn deficiency, mice
with a conditional allele of Myd88 (Myd88fl/fl) were crossed to
Lyn−/− mice, and transgenic Cre alleles that express selectively
in B cells (Cd79a-Cre) or in DCs (Cd11c-Cre) were also intro-
duced. Progeny of genotypes Lyn−/− Myd88−/−, Lyn−/− Myd88−/−
Cd79a-Cre, or Lyn−/− Myd88−/− Cd11c-Cre (hereafter referred to as
Lyn−/−, Lyn−/− B-Myd88−/−, and Lyn−/− DC-Myd88−/− mice, respectively) were generated, housed under specific pathogen–free

To address this issue, we first examined Lyn−/− mice for the
frequency of GC phenotype B cells. The frequency of CD95+GL-7+ GC B cells relative to the number of splenic B cells already was
significantly increased in Lyn−/− mice compared with WT mice

The Journal of Immunology 877

Downloaded from http://www.jimmunol.org/ by guest on April 14, 2017

Downloaded from http://www.jimmunol.org/ by guest on April 14, 2017
by 2–4 mo, and this increase became more dramatic at 5–7 mo (Fig. 3C, 3D), correlating with the time course of the development of IgG ANAs. However, it should be noted that Lyn−/− mice have substantially fewer splenic B cells than do WT mice (Supplemental Fig. 1B), so the absolute numbers of GC B cells were similar in Lyn−/− mice and WT mice (Fig. 3E). In agreement with flow cytometry analysis, staining of spleen sections also clearly revealed the existence of IgDlowGL-7+ GC structures in multiple follicles of Lyn−/− mice (Fig. 3F) at 5–7 mo of age. In contrast, GCs were not common in WT mice housed in the same mouse room (data not shown). Interestingly, the spontaneous GC response seen in Lyn−/− mice was greatly reduced upon deletion of Myd88 in B cells (Fig. 3D, 3E). In contrast, the mesenteric lymph nodes of Lyn−/− and Lyn−/−B-MyD88−/− mice contained similar numbers of GC B cells (data not shown), suggesting that the latter mice did not have a general defect in mounting GC reactions.

To examine whether Th cells and the GC reaction contribute to the generation of IgG ANAs, we crossed Lyn−/− mice to mice deleted for TCR genes (tcrβ−/− tcrδ−/−) or to mice lacking the SAP signaling adaptor protein, which is critical for follicular helper T (Tfh) cells to interact with GC B cells and promote GC Ab responses (35, 36). Lyn-deficient mice lacking T cells or lacking the SAP adaptor molecule made greatly attenuated levels of anti-dsDNA IgG Abs, as measured by ELISA (Fig. 3G). These genetic results strongly support the hypothesis that there is a GC-origin of lupus-like autoantibodies in Lyn-deficient mice.

Activation and expansion of self-reactive T cells in Lyn−/− mice require MyD88 signaling in DCs and B cells

Lyn−/− mice exhibit a dramatic expansion of activated T cells as autoimmune disease progresses (8, 37). Therefore, we investigated the role of MyD88 in DCs and B cells in the hyper-reactivity of T cells in Lyn−/− mice. As previously reported (8), Lyn−/− mice accumulate increasing numbers of CD4+ and CD8+ T cells with an activated or effector memory phenotype (CD44+ CD62Llow) as they age. As Lyn-deficient mice lacking MyD88 in...
expansion of these cells in
letion of
Splenic B cells and DCs in
mo of age was roughly normal in
4F). In another recent study (38), the number of Tfh cells at 4–5
WT mice, and they especially increased in older mice (Fig. 4E,
signaling in both DCs and B cells.

** and are representative of two separate experiments.

Numbers of inflammatory cells in the kidneys were
measured by flow cytometry in six mice of each
genotype at 8–10 mo of age. Data are mean ± SE
and are representative of two separate experiments.
*p < 0.05, **p < 0.01.

B cells or in DCs aged, these populations did not increase at all
(CD4+ T cells) or nearly as much (CD8+ T cells) (Fig. 4A–C,
Supplemental Fig. 1C, 1D). Thus, increased spontaneous activa-
tion of T cells in
Lyn
2/2
mice at 2–4 mo of age compared with
WT mice, and they especially increased in older mice (Fig. 4E,
4F). In another recent study (38), the number of Th cells at 4–5
mo of age was roughly normal in
Lyn
2/2
mice. Importantly, de-
letion of Myd88 in either DCs or B cells substantially reduced the
expansion of these cells in
Lyn
2/2
mice (Fig. 4E, 4F).

Splenic B cells and DCs in
Lyn
2/2
mice have elevated
expression of MHC class II and CD86 that is not dependent on
Myd88 signaling
TLR agonists have well-established adjuvant properties for pro-
moting T cell responses (39). To investigate the possibility that
TLRs of DCs or B cells promote their ability to present self-Ags to
T cells, we examined the expression of MHC class II and of the
costimulatory molecule CD86 on splenic B cells and on DCs of
Lyn
2/2
mice with or without DC or B cell Myd88. In
Lyn
2/2
mice, an increased proportion of B cells exhibited elevated levels
of MHC class II and CD86 by 2–4 mo of age (Fig. 5A, 5B). The
number of such B cells was not dependent on the expression of
Myd88 in B cells (Fig. 5A, 5B), suggesting that the loss of Lyn-
based attenuation of BCR signaling in B cells may be sufficient for
this phenotypic alteration. Similarly, DCs in young
Lyn
2/2
mice had spontaneously elevated MHC class II expression and CD86
expression. Deletion of Myd88 in DCs had little effect on their
expression of MHC class II and CD86 (Fig. 5C, 5D). Together,
these data indicate that the requirement for Myd88 in B cells and
in DCs for development of autoimmunity in
Lyn
2/2
mice was not
caused by changes in the expression of MHC class II and CD86.

Next, we examined the role of Myd88 signaling in DCs and
B cells in
Lyn
2/2
mice for the induction of cytokines that have
been implicated in the pathogenesis of autoimmunity and in-
flammation in this model (8, 40). In total splenocytes from
Lyn
2/2
mice at 2 mo of age, increased mRNA expression of the cytokines
IL-12p40 and BAFF was readily detected (Fig. 5E–G), demon-
strating that enhanced inflammatory responses arise even before
the development of overt autoimmunity in these mice. Interest-
ingly, deletion of Myd88 in DCs substantially reduced the ex-
pression of IL-12p40 and IL-6 in the spleens of young
Lyn
2/2
mice (Fig. 5E, 5F), suggesting that Lyn-deficient DCs are sensi-
tized to have enhanced responses to endogenous or ubiquitous
TLR ligands and are a major producer of proinflammatory cyto-
kines in these mice. This is in agreement with other recent reports
(10, 11) describing a proinflammatory role for Lyn-deficient DCs.
As mentioned above, the incidence of splenomegaly was greatly
reduced in aged (8–10 mo)
Lyn
2/2
DC-Myd88
2/2
mice com-
pared with
Lyn
2/2
mice (Fig. 3A, 3B). In comparison, deletion of

FIGURE 2. Effect of ablation of MyD88 signaling in B cells and in DCs for complement deposition and inflammation in the kidneys of
Lyn
2/2
mice. Deposition of C3 was detected by immunofluorescent
staining of frozen kidney sections of 5–7-mo-old mice of the indicated genotype; representative images (original magnification ×20) (A) and summarized
data (B) are shown. (C) Kidney sections of the different genotypes at 8–10 mo of age were stained with
H&E to assess pathological changes associated with glomerulonephritis (original magnification ×40). (D) Sections from individual mice were graded, in a
blinded fashion, on a scale of 0 to 3 (0 = absent, 1 = mild, 2 = moderate, 3 = severe) for the degree of
histological abnormality in the glomeruli and for the
degree of inflammation in the interstitial regions. (E)
Numbers of inflammatory cells in the kidneys were
mild, 2 = moderate, 3 = severe) for the degree of
histological abnormality in the glomeruli and for the
degree of inflammation in the interstitial regions. (E)
Numbers of inflammatory cells in the kidneys were
mild, 2 = moderate, 3 = severe) for the degree of
histological abnormality in the glomeruli and for the
degree of inflammation in the interstitial regions.
B cell
Myd88
had little or no effect on the expression of IL-12p40 or BAFF (Fig. 5E–G).

Effect of cell-intrinsic MyD88 signaling on peripheral numbers of B cells in Lyn−/− mice

Lyn deficiency has substantial B cell–intrinsic effects on the numbers of B cells in the spleen (8), decreasing their overall numbers (Supplemental Fig. 1B), apparently as a result of enhanced cell death at the T1 or T2 immature stages in the spleen and decreased maturation to the follicular mature state and/or decreased survival of these cells (41–43). Interestingly, although deletion of Myd88 in Lyn−/− B cells did not affect bone marrow populations of B cell precursors or immature B cells compared with Lyn−/− mice (Fig. 6A), the decreased number of B cells in the spleens of young Lyn−/− mice was further exacerbated by deletion of Myd88 in B cells (Fig. 6B). The reduction in B cells in Lyn−/− B-Myd88−/− mice began at the T1 stage in the spleen and persisted in subsequent developmental stages until maturation (Fig. 6B, 6C). Despite these decreases in mature B cell number, the numbers of plasma cells in the spleen were elevated in Lyn−/− and Lyn−/− B-Myd88−/− mice compared with WT mice.
These results suggest that MyD88 signaling in B cells promotes their survival at the immature T1 stage in the spleen, but it does not greatly affect maturation or survival at subsequent stages of development in the spleen and is not required for differentiation into plasma cells, in agreement with the circulating levels of total IgM and IgG in these mice (Fig. 1G, 1H). We observed a modest increase in the percentage of CD93+CD23+IgMlow T3 B cells and a small decrease in the percentage of follicular B cells in the spleens of Lyn2/2 Myd882/2 mice, such that the ratio of T3/ follicular B cells was slightly, but significantly, increased by the loss of MyD88 in B cells (Fig. 6D). The T3 B cell population previously was shown to include many anergic autoreactive B cells (44). Our data suggest that intrinsic MyD88 signaling may keep some self-reactive B cells from becoming anergic, although other explanations are possible.

Discussion

Lyn is an intracellular protein tyrosine kinase that is critical for inhibitory receptor function in B cells and in DCs, and Lyn2/2 mice spontaneously develop a lupus-like autoimmune and inflammatory disease (4, 5). To address the mechanism by which nucleic acid–recognizing TLRs contribute to spontaneous production of ANAs in the Lyn2/2 mouse model of SLE, we used cell type–specific deletion of the gene encoding MyD88, a key adaptor molecule required for intracellular signaling by most TLRs, including TLR7 and TLR9. Deletion of Myd88 selectively in B cells completely blocked production of the anti-dsDNA and anti-RNP IgG Abs, which are among the most characteristic autoantibodies seen in human SLE and are rarely produced in other human diseases (1), and ameliorated glomerulonephritis. In addition, deletion of Myd88 selectively in DCs delayed production of IgG anti-dsDNA, blocked production of IgG anti-smRNP, largely abrogated accumulation of activated phenotype T cells in the spleen, and ameliorated glomerulonephritis. These results demonstrate that TLR/ MyD88 signaling is required in both B cells and DCs for the development of autoimmune disease in these mice.

The demonstration that MyD88/TLR signaling in B cells is required for anti-nuclear IgG production in Lyn2/2 mice adds to the accumulating evidence indicating that dual stimulation of DNA- and RNP-specific B cells by the BCR and by TLR9 or TLR7, respectively, is a key underlying mechanism in the breakdown of tolerance to nuclear self-Ags in mouse models of lupus (15, 45, 46). Although TLR signaling can boost Ab responses in multiple ways (47), we recently showed that it can boost GC responses dramatically in response to virus-like particles and inactivated virions (24). It is likely that an analogous mechanism, perhaps in response to fragments from apoptotic cells, participates in the production of anti-dsDNA and anti-RNP IgG Abs in Lyn2/2 mice, because it was largely dependent on Myd88 expression in B cells, on the presence of T cells, and on the expression of SAP, which is required for GC responses (Fig. 3G). SAP is an adaptor for SLAM family adhesion molecules, and its function in T cells is important at early stages of the GC response by acting to stabilize interactions between activated B cells and cognate Th cells (36). Moreover, a recent report from another group (38) found that Lyn2/2 IL-212/2 mice failed to produce anti-dsDNA IgG Abs, which is also consistent with an...
important role for the GC response in the production of these Abs, given the known role of IL-21 in the GC response. Curiously, in that study, glomerulonephritis was not ameliorated despite a substantial decrease in most IgG autoantibodies. Thus, a number of results strongly implicate the GC response in the production of anti-nuclear IgG Abs in Lyn-deficient mice.

Our finding of a requirement for T cells in the autoimmunity of Lyn
2
/2 mice is consistent with previous data demonstrating that the T cell production of IFN-γ plays a critical role in the autoimmune phenomena of Lyn-deficient mice (8) and that IL-10 from B cells decreases the inflammatory reaction generated by T cells in these mice (9). Interestingly, a previous study (48) found that CTLA4-Ig blockade of T cell costimulation via CD28 prevented IgG ANAs production but there was now production of IgA. The mechanism of IgA ANA production in these treated mice is unclear at this time.

The GC response has been implicated in lupus-like autoantibody production in several other mouse models of SLE, including the NZB × NZW F1 mouse (46, 49, 50). However, it should be noted that autoantibody production occurs independently of T cells in BAFF-overexpressing transgenic mice (34), or in MRL/lpr mice expressing a rheumatoid factor Ig transgene (21). Therefore, the nature of the genetic alterations causing susceptibility to SLE apparently can affect, to some degree, the underlying immunological mechanism of autoantibody production. These results suggest that human SLE may also be mechanistically diverse; therefore, it will be of interest to develop methods for analyzing immune cells from SLE patients to assess such possible heterogeneity because this may be relevant to their treatment.

In previous studies (24) of the role of MyD88 signaling in B cells versus DCs for Ab responses to Ag–CpG oligonucleotide conjugates, we found that the cellular requirement for an optimal IgG response to the Ag depended on the physical form of the Ag. When soluble protein Ags, such as OVA or the ragweed pollen Ag Amb a1, were used, MyD88 in DCs was required, and MyD88 in B cells did not contribute to the response. In contrast, when virus-like particles containing TLR9 or TLR7 ligands or chemically inactivated influenza virus particles were used as immunogen, the IgG response to viral coat proteins was greatly augmented by MyD88 signaling in B cells but not by MyD88 signaling in DCs. Moreover, for virus-like particles, the magnitude of the TLR effect was dependent on the epitope density of the Ag on the particle, indicating that stronger BCR signaling enabled TLR7 or TLR9 in B cells to enhance the response (24). This enhancement occurred by promotion of the GC component of the response (24). Conversely, weak BCR signaling, as likely occurs with the soluble protein Ags, did not enable B cell TLR9 to boost the IgG response. Based on the results obtained in this study and the results obtained previously, we propose that the true autoantigen in SLE is a particulate form of chromatin and/or RNPs, such as occurs on
Also shown are the absolute numbers (CD19+CD93+IgM+CD23) of B cell precursors, immature B cells, and mature B cells in the bone marrow (A), or spleen (B, C) of 2–4-mo-old Lyn−/− mice. Also shown for comparison purposes are B cell populations from WT mice. (A) Percentage of bone marrow cells that were CD19+CD93+IgM− pro- and pre-B (Pro/Pre), CD19+/CD93+IgM+CD23− newly formed immature B cells, CD19+/CD93+IgM+CD23+ T2 B (T2), and CD19+/CD93− IgM+CD23+ recirculating B cells. Also shown are the absolute numbers (B) and percentage (C) of CD19+/CD93+IgM+CD23− T1 B (T1), CD19+/CD93+IgM+CD23+ T2 B (T2), CD19+/CD93−IgMlo+CD23+ T3 B (T3), CD19+/CD93− IgM+CD23+ follicular B (Fo), CD19+/CD93+lo+CD21hi+IgMlo+CD43+ marginal zone (MZ), and CD19+/CD93−CD23−CD21lo−/negCD43+ B1 B cells (B1) in the spleens. (D) Ratio of T3 B cells/follicular B cells in the spleens of Lyn−/− and Lyn−/−-B-Myd88−/− mice. Data are mean ± SE (n = 4–6 mice/group) and are representative of three separate experiments. *p < 0.05, **p < 0.01, ANOVA. As described in Materials and Methods, a secondary statistical analysis in which the WT group was excluded was also performed on the data in (B): ‡p < 0.05, §§p < 0.01.

FIGURE 6. Effect of cell-intrinsic MyD88 signaling on B cell development in Lyn−/− mice. Effect of ablation of Myd88 in B cells for the numbers of B cell precursors, immature B cells, and mature B cells in the bone marrow (A) or spleen (B, C) of 2–4-mo-old Lyn−/− mice. Also shown for comparison purposes are B cell populations from WT mice. (A) Percentage of bone marrow cells that were CD19+/CD93+IgM− pro- and pre-B (Pro/Pre), CD19+/CD93−IgM+CD23− newly formed immature B cells, CD19+/CD93+IgM+CD23+ T2 B (T2), and CD19+/CD93− IgM+CD23+ recirculating B cells. Also shown are the absolute numbers (B) and percentage (C) of CD19+/CD93+IgM+CD23− T1 B (T1), CD19+/CD93+IgM+CD23+ T2 B (T2), CD19+/CD93−IgMlo+CD23+ T3 B (T3), CD19+/CD93− IgM+CD23+ follicular B (Fo), CD19+/CD93+lo+CD21hi+IgMlo+CD43+ marginal zone (MZ), and CD19+/CD93−CD23−CD21lo−/negCD43+ B1 B cells (B1) in the spleens. (D) Ratio of T3 B cells/follicular B cells in the spleens of Lyn−/− and Lyn−/−-B-Myd88−/− mice. Data are mean ± SE (n = 4–6 mice/group) and are representative of three separate experiments. *p < 0.05, **p < 0.01, ANOVA. As described in Materials and Methods, a secondary statistical analysis in which the WT group was excluded was also performed on the data in (B): ‡p < 0.05, §§p < 0.01.

The observation mentioned above—that strong BCR signaling is required to enable TLR7 or TLR9 signaling in B cells to enhance their GC response—suggests that Lyn deficiency of B cells creates a strong susceptibility for the development of anti-dsDNA and anti-RNP IgG Abs. Low-affinity DNA- or RNP-reactive mature or anergic follicular B cells in WT mice presumably have weak BCR signaling that is attenuated by the Lyn/CD22/SHP-1 feedback-inhibitory pathway; therefore, even if they acutely encounter apoptotic blebs, their low level of BCR signaling does not synergize with TLR7 or TLR9 signaling to promote a GC response. In contrast, Lyn-deficient B cells of the same specificity have exaggerated BCR signaling; therefore, we hypothesize that they can enter into and participate in GC responses, leading to the production of class-switched and affinity-matured pathogenic autoantibodies.

Several recent studies (10, 11) implicated dysregulation of DCs by loss of Lyn as also being an important contributor to the autoimmune phenomena in Lyn−/− mice. Consistent with this view is our demonstration that MyD88 signaling in DCs contributes importantly to the autoimmune phenotypes of Lyn−/− mice. The characteristic expansion of activated phenotype T cells that is seen in Lyn−/− mice as they get older was abrogated by deletion of Myd88 in DCs (Fig. 4), indicating that TLR/MyD88 signaling in DCs provides a necessary activation signal that synergizes with the effects of loss of Lyn-dependent inhibitory signaling in these cells. This interpretation is supported by the recent report (11) that mice in which Lyn is deleted only in DCs also develop a severe lupus-like autoimmunity. Thus, we propose that Lyn−/− mice develop a severe lupus-like autoimmunity and inflammatory disease as a result of the combination of at least two defects: the deficiency of Lyn in B cells compromises their cell-intrinsic tolerance mechanisms by allowing TLR7 and TLR9 to promote activation of self DNA- and RNP-reactive B cells, and the dysregulation of Lyn-deficient DCs leads to excessive activation of T cells, which, in turn, can promote increased affinity IgG responses of the DNA- and RNP-specific B cells. In addition, Lyn-deficient DCs and the T cells activated by them provide a self-reinforcing inflammatory response that can also contribute to inflammatory disease (8, 11). This latter component of the disease of Lyn-deficient mice is especially evident if Lyn is selectively deleted in DCs (11) or if the B cells are unable to produce IL-10 to inhibit it (9).

Studies in mouse models indicate that the presence of genetic susceptibility loci is required for spontaneous breakdown of tolerance to nuclear autoantigens. Although most natural susceptibility loci in human and mouse remain poorly understood, a subset of identified loci alters regulation of BCR signaling, including ablation of Lyn (4, 31), B cell–specific deletion of SHP-1 (52), deletion of CD22 (53), and a point mutation of CD45 that increases the activity of some Src family tyrosine kinases while decreasing the activity of Lyn (4, 31), B cell–specific deletion of SHP-1 (52), deletion of CD22 (53), and a point mutation of CD45 that increases the activity of some Src family tyrosine kinases while decreasing the activity of Lyn (54, 55). Strikingly, Lyn, CD22, and SHP-1 work together in a feedback-inhibitory pathway to limit BCR signaling, especially in mature B cells (4, 56). Genetic analysis in human SLE patients suggests that this pathway is likely compromised in some SLE patients (12, 13). Thus, the Lyn−/− mouse model of lupus is highly relevant to a subset of human SLE patients. Our results indicate that TLR/MyD88 signaling is likely to be necessary for ANA production in this subset of patients.

Acknowledgments
We thank Derek Rookhuizen for helpful discussions related to analysis of Th cells by flow cytometry and Yongmei Hu for assistance with animal husbandry.

Supplemental Figure 1. A, numbers of CD11b\(^+\) myeloid cells and of dendritic cells from the spleens of 8-10 month old mice of the indicated genotypes (mice analyzed in Figure 3). B, numbers of splenic B cells from the indicated mice analyzed in Figure 3. C and D, numbers of activated phenotype CD4\(^+\) T cells (C) and of activated phenotype CD8\(^+\) T cells (D) per spleen for the mice shown in Figure 4B and 4C. E, numbers of plasma cells from the indicated mice (age: 2-4 months); see legend to Figure 6 for details.