IL-2 Phosphorylates STAT5 To Drive IFN-γ Production and Activation of Human Dendritic Cells

Florence Herr, Roxane Lemoine, Fabrice Gouilleux, Daniel Meley, Ihab Kazma, Audrey Heraud, Florence Velge-Roussel, Christophe Baron and Yvon Lebranchu

J Immunol 2014; 192:5660-5670; Prepublished online 14 May 2014;
doi: 10.4049/jimmunol.1300422
http://www.jimmunol.org/content/192/12/5660

Supplementary Material
http://www.jimmunol.org/content/suppl/2014/05/14/jimmunol.1300422.DCSupplemental

References
This article cites 54 articles, 29 of which you can access for free at:
http://www.jimmunol.org/content/192/12/5660.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
IL-2 Phosphorylates STAT5 To Drive IFN-γ Production and Activation of Human Dendritic Cells

Florence Herr,*† Roxane Lemoine,*† Fabrice Gouilleux,* Daniel Meley,*
Ihab Kazma,* Audrey Heraud,* Florence Velge-Roussel,* Christophe Baron,*† and
Yvon Lebranchu*††

Human dendritic cells (hDCs) produce IL-2 and express IL-2R α-chain (CD25), but the role of IL-2 in DC functions is not well defined. A recent study suggested that the main function of CD25 on hDCs was to transpresent IL-2 to activate T lymphocytes. Our results demonstrate the expression of the three chains of the IL-2R on hDCs and that IL-2 induces STAT5 phosphorylation. Interestingly, use of inhibitors of p-STAT5 revealed that IL-2 increases LPS-induced IFN-γ through STAT5 phosphorylation. Finally, we report that IL-2 increases the ability of hDCs to activate helpless CD8+ T cells, most likely because of IL-2–triggered IFN-γ synthesis, as we previously described. For the first time, to our knowledge, we disclose that IL-2 induces monocyte-derived hDC’s functional maturation and activation through IL-2R binding. Interestingly, our study suggests a direct effect of anti-CD25 mAbs on hDCs that may contribute to their clinical efficacy. The Journal of Immunology, 2014, 192: 5660–5670.

The cytokine IL-2, first known as T cell growth factor (1), is considered mainly synthesized by T cells in response to Ags. IL-2 is a four-bundle α-helical cytokine promoting the development and homeostasis of thymic regulatory T cells (2) and activating memory T lymphocytes as well as B cells and NK cells.

IL-2R consists of three chains. The β-chain (CD122, shared with IL-2 and IL-15 receptors) and γ-chain (CD132, common to IL-2, -4, -7, -9, -15, and -21 receptors) transduce the signal, and the α-chain (CD25) stabilizes the complex to create the high-affinity form of the receptor (3). CD25 expression is tightly regulated in target cells and greatly enhances the IL-2 signaling effect in cells expressing high levels of this molecule (4). IL-2 binding to CD25 triggers the grouping with IL-2R β and γ-chains, thus leading to signal transduction through STAT5, MAPK, and PI3K (5–8).

Anti-CD25 mAbs blocking the IL-2 binding site of CD25 (9) have been designed to inhibit T cell activation and are widely used in organ transplantation to prevent acute allograft rejection (10–12). Thus, their effects on human T lymphocytes have been extensively studied (13, 14). In contrast, their impact on human dendritic cells (hDCs) has been seldomly investigated, and the role of IL-2 in hDCs has not been firmly established (15, 16). IL-2 secretion by DCs starts early after activation by TLR ligands or CD40L and is necessary to the optimal proliferation of T lymphocytes (17–19). We previously demonstrated that IL-2 could modulate several hDCs functions but did not investigate the precise mechanisms (15). CD25 was previously suggested to function as a transpresenter of IL-2 to T lymphocytes in hDCs (16).

In this study, we report on another mechanism involving a direct effect of IL-2 on hDC signaling. IL-2 greatly increases IFN-γ production in hDCs by phosphorylating STAT5, thus leading to increased ability of hDCs to activate helpless CD8+ T lymphocyte cytotoxicity.

Materials and Methods
Generation of human monocytoid-derived DCs

PBMCs were obtained from cytopheresis of healthy volunteers who gave their informed written consent for use of blood. PBMCs were isolated by Ficoll Hypaque density-gradient centrifugation (Lymphoprep; AbCys), and monocytes were isolated by positive selection (Miltenyi Biotec; purity >95%) or obtained from elutriation (for Western blot experiments) (purity >97%). Monocytes were then plated in RPMI 1640 containing 10% inactivated FCS (Life Technologies), 50 IU/ml penicillin, 50 IU/ml streptomycin (Life Technologies), 2 mM l-glutamine (Life Technologies) (complete medium), 25 ng/ml recombinant human (rh)IL-4 (Miltenyi Biotec), and 333 IU/ml rhGM-CSF (Miltenyi Biotec). At day 6, immature hDCs were washed, and the hDC phenotype was characterized by staining for CD14 and DC-specific ICAM3-grabbing nonintegrin. For quantitative PCR (qPCR), immature hDCs were selected again by negative selection (Miltenyi Biotec; purity >98%). Then hDCs were stimulated for an additional 48 h with LPS (50 ng/ml; Invitrogen), TNF-α (20 ng/ml; R&D Systems), PGE2 (1 μg/ml; Merck), IL-6 (150 ng/ml; PeproTech), IL-1β (10 ng/ml; PeproTech), or TNF-α (50 ng/ml; PeproTech). At day 6, hDCs were treated with anti-CD25 (basiliximab; Novartis, 100 μg/ml or the indicated doses), control Ab (rituximab; 100 μg/ml or the indicated dose), anti-CD25 F(ab′)2 (100 μg/ml; LX294002 (1 μM), rapamycin (10 μM), pimozone (1 μM; all Sigma-Aldrich), or N-[11H-indolol[3,2-c]quinolin-6-yl]-N,N-dimethylhane-1,2-diamine (IQDMA; Calbiochem; 2 μM) for 30 min before IL-2 (100 U/ml or the indicated doses; R&D Systems).

†Unite´ Mixte de Recherche 7292, Centre National de la Recherche Scientifique, 37032 Tours, France. E-mail address: herr.florence@gmail.com
*Unité Mixte de Recherche 7292, Centre National de la Recherche Scientifique, 37032 Tours, France; and *Service de Néphrologie et d’Immunologie Clinique, Centre Hospitalier Régional Universitaire de Tours, 37044 Tours, France
†F.H. and R.L. contributed equally to this work.
‡C.B. and Y.L. contributed equally to this work.
Received for publication February 12, 2013. Accepted for publication April 18, 2014. Address correspondence and reprint requests to Dr. Florence Herr, L’Équipe d’Accueil 4245, Faculté de Médecine, Université François Rabelais, 10 Boulevard Tonnellé, 37032 Tours, France. E-mail address: herr.florence@gmail.com
Copyright © 2014 by The American Association of Immunologists, Inc. 0022-1767/14/$16.00

The online version of this article contains supplemental material.

Abbreviations used in this article: DC, dendritic cell; hDC, human dendritic cell; IQDMA, N-[11H-indolol[3,2-c]quinolin-6-yl]-N,N-dimethylhane-1,2-diamine; LPS-hDC, LPS-treated hDC; qPCR, quantitative PCR; rh, recombinant human; TNF-α–hDC, TNF-α–treated hDC.
Isolation of CD8⁺ T cells and allogeneic MLR

Allogeneic CD8⁺ T cells were obtained from PBMCs of subjects unrelated to hDC donors by positive selection (Dynabeads; Invitrogen; purity >95%). For proliferation assay, lymphocytes were stained with 3 μM CFSE (Sigma-Aldrich) in 5% FCS for 30 min at 37°C and washed three times in complete medium. At day 8, hDCs were washed and mixed with CD8⁺ T cells at a 1:5 ratio. After 6 d of coculture, CFSE dilution, percentage basal lysis was normalized by basal lysis, determined by staining of PBMCs incubated alone, as follows: percentage specific lysis = (100 \cdot [\text{percent CFSE dilution} \text{ of CD8⁺ T cells vs hDCs}])/(100 \cdot [\text{percent basal lysis}])

F(ab')₂ preparation

The F(ab')₂ fragment was prepared by use of a kit (Pierce Protein Biology Product; Thermo Scientific). The purity of F(ab')₂ was assessed by SDS-PAGE and then Coomassie brilliant blue staining.

Cytotoxicity assay

Cytotoxicity of activated CD8⁺ T lymphocytes was assessed with PBMCs from the same donors of hDCs. PBMCs were stained with 3 μM CFSE in 5% FCS for 30 min at 37°C and washed three times in complete medium. At day 6, activated CD8⁺ T lymphocytes were mixed with PBMCs at a 1:10 ratio for 7 h before being stained with 7-aminoactinomycin D (Sigma-Aldrich) and undergoing FACS analysis. Percentage specific lysis was normalized by basal lysis, determined by staining of PBMCs incubated alone, as follows: percentage of specific lysis = (100 \times [\text{percent sample lysis} – \text{percent basal lysis}])/100 \times \text{percent basal lysis}.

ELISA of cytokine production assay

ELISA (eBioscience) was used to determine IFN-γ, IL-12, IL-6, or TNF-α concentration in culture supernatant. Samples were tested in duplicate and quantified against standard curves. Optical densities were measured by use of an ELISA plate reader at 450-nm wavelength. The results are presented as the means of duplicate wells.

Flow cytometry

A total of 1 × 10⁵ hDCs or CD8⁺ T cells were incubated with fluorescent-conjugated Abs at 4°C for 30 min for extracellular staining. The Abs for CD25, -allophycocyanin (clone M-A251; IgG1), CD83-FITC (clone HB15c; IgG1), CD86-PE (clone CB23; IgG1), CCR7-PE (clone B27; IgG1), granzyme B–FITC (clone GB11; IgG1), granzyme A–PE (clone CB9; IgG1), and isotype controls were from BD Biosciences; CD80-PE (clone AG134; IgG1), HLA-ABC–FITC (clone G46-2.6; IgG1), HLA-DR–allophycocyanin (clone G46-46; IgG2a), and isotype controls were from R&D Systems. For intracellular staining, cells were incubated with GolgiStop solution for the last 4 h and permeabilized with use of a Cytofix/Cytoperm kit (BD Biosciences). IFN-γ was stained with GolgiPlug solution (BD Biosciences), which was incubated with Abs against phosphorylated AKT (p-Ser473, p-Thr308), total AKT, phosphorylated ERK (p-Thr202/204), total ERK, STAT5 (p-Tyr694), and total STAT5 (Cell Signaling Technology). Staining of PHA-activated PBMCs with 2RB Ab against CD122 with or without rhCD122 competition. Gray-filled histograms indicate stained hDCs, and open histograms represent the appropriate isotype control. (A) Staining of immature and mature hDCs with isotype controls. (B) Staining of PHA-activated PBMCs with 2RB Ab against CD122 with or without rhCD122 competition. Gray-filled histograms indicate stained hDCs, and open histograms represent the appropriate isotype control (data are representative of two donors). (C) Staining of PHA-activated PBMCs with 2RB Ab against CD122 with or without rhCD122 competition. Gray-filled histograms indicate stained hDCs, and open histograms represent the appropriate isotype control (data are representative of two donors). (D) CD122 mRNA expression in PHA-treated PBMCs, immature hDCs, LPS-hDCs, and TNF-α–hDCs assessed by RT-PCR (data are representative of two donors).

Western blot analysis

At day 8, hDCs were washed and plated in complete medium for 3 h before treatment, and the maturation phenotype was analyzed by FACS. hDCs were washed at 4°C and lysed in Laemmli buffer (Bio-Rad). Cell extracts were separated by SDS-PAGE and blotted onto nitrocellulose membrane (Amersham Biosciences), which was incubated with Abs against phosphorylated AKT (p-Ser473, p-Thr308), total AKT, phosphorylated ERK (p-Thr202/204), total ERK, STAT5 (p-Tyr694), and total STAT5 (Cell Signaling Technology; STAT5α and STAT5b were from Invitrogen). Membranes were probed with the ECL detection system (GE Healthcare) with use of an ECL detection system (GE Healthcare) with use of anti-p53 (clone M14; IgG1), anti-phospho-p53 (clone 1B4; IgG1), anti-CD80 (clone 2D6/CCR5; IgG2a), CD107a-FITC (clone H4A3; IgG1), CD122-PE (clone 2RB; IgG1), CD132-PE (clone AG184; IgG1), HLA-ABC–FITC (clone G46-2.6; IgG1), HLA-DR–allophycocyanin (clone G46-46; IgG2a), and isotype controls were from BD Biosciences; CD80-PE (clone AG134; IgG1), CCR7-PE (clone B27; IgG1), granzyme B–FITC (clone GB11; IgG1), granzyme A–PE (clone CB9; IgG1), and isotype controls were from BD Biosciences. Cells were analyzed with an ECL detection system (GE Healthcare) with use of an ECL detection system (GE Healthcare) with use of a Cytofix/Cytoperm kit (BD Biosciences). A proportion of marker-positive cells and geometric mean fluorescence intensity was determined by use of Diva software (BD Biosciences).

PCR and qPCR

mRNA was isolated from hDCs and PBMCs by use of the RNAeasy mini kit (Qiagen). An amount of 3.33 μg total RNA was used to synthesize cDNA (Invitrogen) after DNase treatment (Invitrogen). Sequences for primers were for CD25 (forward 5′-TTTGAGAACCTTGCTGAT-3′, reverse 5′-TACTGGAGGCTCTGGAGATT-3′), IFN-γ (forward 5′-TACCGGAT-
CD25 (encoding CD122 protein) (Fig. 1D), which confirms CD122 expression in hDCs. CD25 expression was absent in immature hDCs, and LPS or the cytokine mixture strongly induced CD25 during cell maturation (Fig. 1A). In contrast, TNF-α weakly induced CD25 (Fig. 1B). Because of contradictory reports of the expression of CD122 by hDCs, we tested three commercially available Abs for CD122. As compared with 2RB, Mik-β2 and TU27 induced a lower shift of hDC or PBMC staining (Fig. 1B and data not shown). We therefore tested the specificity of 2RB Ab by rhCD122 competition in activated PBMCs. rhCD122 decreased the staining of anti-CD122 Ab (Fig. 1C), which demonstrates the specificity of the 2RB clone. Finally, RT-PCR of highly purified immature hDCs, LPS-treated hDCs (hereafter LPS-hDCs), or TNF-α–treated hDCs (hereafter TNF-α–hDCs) demonstrated transcription of the IL2Rβ gene (encoding CD122 protein) (Fig. 1D), which confirms CD122 expression in hDCs.

IL-2 increases the capacity of hDCs to activate allogeneic CD8+ T cells without affecting hDC surface maturation phenotype

Allogeneic CD8+ T lymphocytes were incubated for 5 d with LPS-hDCs or TNF-α–hDCs with and without IL-2 pretreatment during maturation. IL-2–treated hDCs produced increased proliferation of CD8+ T cells, as measured by CFSE dilution, which was dose dependent (Fig. 2A, 2B). Furthermore, IL-2–treated hDCs produced increased expression of membrane CD25 and intracellular IFN-γ in CD8+ T cells (Fig. 2A, Supplemental Fig. 1). IL-2 increased the capacity of hDCs to activate the cytotoxic functions of allogeneic CD8+ T cells, as assessed by specific lysis of PBMCs.
autologous to the donor of hDCs or expression of CD107a,
granzyme A, or granzyme B (Fig. 2C, 2D).

We tested the ability of a therapeutic mAb anti-CD25 to
modulate hDC functions and found that proliferation of CD8+
T lymphocytes and expression of CD25 and IFN-γ in CD8+
T cells were reduced with anti-CD25 Ab as compared with no
treatment (Fig. 3A). Anti-CD25 dose-dependently inhibited the
IL-2–mediated increase in capacity of TNF-α–hDCs to activate
CD8+ T cells (Fig. 3B). We also tested CD8+ T lymphocyte cy-
totoxicity induced by anti-CD25–treated hDCs. Ag-specific cy-
totoxicity as well as the expression of CD107a and granzyme A
and B were reduced with anti-CD25 pretreatment of hDCs.
FIGURE 4. IL-2 increases IFN-γ synthesis and STAT5 phosphorylation in hDCs. (A) ELISA of IFN-γ secretion by LPS-hDCs in culture supernatants with or without rhIL-2 treatment during maturation. Each symbol represents one donor, with data from 15 donors (data for untreated donor cells were normalized to 1). (B) Intracellular staining of IFN-γ in LPS-hDCs or TNF-α-hDCs with or without rhIL-2. Black histograms represent untreated cells, dark gray rhIL-2–treated cells, and light gray the isotype control (data are representative of five independent donors). (C) Intracellular IFN-γ staining of LPS-hDCs (left panel) or TNF-α-hDCs (right panel) with increasing doses of rhIL-2. Each symbol represents an experiment, and (Figure legend continues)
IL-2 increases the mature hDCs production of IFN-γ via STAT5 signaling

As we previously described (24), helpless CD8+ T cell activation requires IFN-γ production by hDCs. Thus, we assessed the synthesis of IFN-γ in IL-2–treated hDCs. IL-2 dose-dependently and strikingly increased IFN-γ secretion from maturing hDCs (Fig. 4A–C). In contrast, IL-2 did not affect IL-12, IL-6, and TNF-α secretions by hDCs (Table I).

We next explored pathways leading to IFN-γ transcription after IL-2 binding to its receptor. The main pathways involved in IL-2 transduction signals in T lymphocytes, such as JAK/STAT, MAPK, and PI3K–Akt, differ by lymphocyte subset (25, 26). Thus, we used Western blot analysis to examine these distinct pathways in LPS-hDCs, an inflammatory condition inducing high CD25 expression in hDCs. IL-2 did not induce phosphorylation of ERK or Akt (Fig. 4D, 4E). In addition, we analyzed the effects of two inhibitors of the PI3K–Akt pathway: a PI3K-specific inhibitor (LY294002) and a mammalian target of rapamycin C1 inhibitor (rapamycin). Although these inhibitors decreased the LPS-induced IFN-γ production, neither inhibited the capacity of IL-2 to increase IFN-γ production by hDCs (Supplemental Fig. 3A). In addition, IL-2 increased the ability of inhibitor-treated hDCs to activate CD8+ T cells (Supplemental Fig. 3B).

In contrast and importantly, IL-2 induced an immediate increase in phosphorylation of STAT5 in mature hDCs (Fig. 4F). Although the STAT5 phosphorylation intensity and kinetics varied among donors (Supplemental Fig. 4A), the increased phosphorylation was always evident after 30 min of treatment and was sustained for several hours (data not shown). Of note, LPS-hDCs expressed both forms of STAT5, STAT5a, and STAT5b, and IL-2 treatment did not affect their protein levels (Supplemental Fig. 4B). Anti-CD25 mAb could significantly reduce the phosphorylation of STAT5 when added 30 min before IL-2, which confirmed the specificity of the STAT5 activation (Fig. 5A). Furthermore, anti-CD25 Ab dose-dependently decreased IFN-γ production in hDCs, as assessed by intracellular staining or ELISA (Fig. 5B–D). Blocking anti-CD25 Abs inhibited 55 and 100% of the IL-2-induced IFN-γ secretion by LPS-DC and TNF-α–DC, respectively. Likewise, the mean inhibition of IL-2–induced IFN-γ staining in LPS-DC and TNF-α–DC was 51 and 76%, respectively. Finally, use of the F(ab’)_2 fragment had the same effect as anti-CD25 Ab, which negates any role for the Fc portion of the Ab (Fig. 5E).

STAT5 can upregulate the promoter activity of both IL2RA (27, 28) and IFNG (29) genes (encoding CD25 and IFN-γ protein, respectively) in T cells. We analyzed whether IL-2–dependent STAT5 phosphorylation also induced the transcription of CD25 and IFN-γ in highly purified LPS-hDCs with IL-2 treatment with and without p-STAT5 inhibitors [pimozide (30) and IQDMA (31)]. Both inhibitors decreased STAT5 phosphorylation responding to IL-2 without impacting cell viability (Fig. 6A and data not shown). IL-2 greatly increased CD25 mRNA level, which was almost totally abrogated by the inhibitors (inhibition of 85.3 ± 22.6 and 92.5 ± 3.6% for pimozide and IQDMA, respectively) (Fig. 6B). Similar results were obtained for IFN-γ (inhibition of 85.2 ± 27.3 and 88.1 ± 11.7%, respectively). Moreover, the p-STAT5 inhibitors decreased IFN-γ protein synthesis, which implies that IL-2, by activating STAT5, is directly involved in IFN-γ production (Fig. 6C). Thus, IL-2 increases the production of IFN-γ by mature hDCs through STAT5 signaling. Finally, we explored connection between the increase of IFN-γ secretion induced by IL-2 pretreatment and further CD8+ T cell activation and cytotoxicity. As shown in Fig. 7, left panel, the increase of CD8+ T cell proliferation was only slightly and not significantly inhibited by blocking IFN-γ during coculture. In contrast, the increase of CD8+ cytotoxicity induced by IL-2 pretreatment and upregulation of CD25 during maturation (15, 20, 32, 33), but the role of hDC-derived IL-2 and the effect of IL-2 on hDC activity are not well

<table>
<thead>
<tr>
<th>LPS-hDC</th>
<th>IL-12 (pg/ml)</th>
<th>IL-6 (pg/ml)</th>
<th>TNF-α (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-2–treated hDC</td>
<td>1,008.0 ± 1,428.3</td>
<td>11,360.4 ± 5,683.8</td>
<td>2,637.5 ± 998.4</td>
</tr>
<tr>
<td>LPS-hDC versus IL-2–treated hDC</td>
<td>877.1 ± 1,241.8</td>
<td>11,657.2 ± 6,443.0</td>
<td>3,814.1 ± 3,032.3</td>
</tr>
</tbody>
</table>

Table I. IL-2 does not affect proinflammatory cytokine secretion by hDCs

[p and SD of 17 (IL-12) or 6 (TNF-α and IL-6) donors. Wilcoxon analysis.]

(3C, 3D). Of note, even in the absence of exogenous rhIL-2, anti-CD25 pretreatment inhibited the allostimulatory capacity of hDCs as assessed by specific lysis and CD107a and granzyme B expression by CD8+ T cells (Fig. 3C, 3D), suggesting the presence of endogenous IL-2 in the coculture, presumably produced by allogeneic CD8+ T lymphocytes. Moreover, pretreatment of hDCs with anti-CD25 Abs reduced the IL-2–mediated increase in capacity of hDCs to activate CD8+ T cells (Fig. 3E).

Discussion

Human and mouse DCs produce IL-2 (17–19) and upregulate CD25 during maturation (15, 20, 32, 33), but the role of hDC-derived IL-2 and the effect of IL-2 on hDC activity are not well

Gray bars are the mean of five independent donors. (D) Western blot analysis of ERK phosphorylation in LPS-hDCs in response to 100 U/ml rhIL-2 added after 3 h of GM-CSF and IL-4 deprivation (left panel), quantification of ratio of ERK p-Tyr202/204 to ERK level (middle panel), and positive control on Jurkat cells activated or not (right panel). Data for untreated donor cells were normalized to 1. Data are mean ± SD from three donors. Phosphorylation of Akt (p-Ser473 and p-Thr308) (E) and STAT5 (p-Tyr694) (F) with the same protocol. Data are mean ± SD from four (E) or five (F) experiments. *p < 0.05, **p < 0.01, Wilcoxon analysis. mfi, mean fluorescence intensity.
FIGURE 5. Anti-CD25 Ab inhibits IL-2-induced IFN-γ production. (A) Phosphorylation of STAT5 in anti-CD25–treated LPS-hDCs with rhIL-2 treatment (data are representative of three donors). (B) Intracellular staining of IFN-γ in LPS-hDCs or TNF-α–hDCs pretreated with rhIL-2 with or without anti-CD25 blocking Ab. Empty histograms represent untreated cells, black histograms represent rhIL-2–treated cells, dark gray rhIL-2 and anti-CD25 treatment, and light gray the appropriate isotype control (data are representative of five donors). (C) Intracellular staining of IFN-γ in LPS-hDCs (left panel) or TNF-α–hDCs (right panel) pretreated with rhIL-2 and increasing doses (Figure legend continues).
defined (34). In this study, we demonstrated for the first time, to our knowledge, that STAT5 phosphorylation by IL-2 has a key role in the activation of human monocyte-derived DCs. Our results are in line with a previous study by Naranjo-Gómez et al. (33), who reported that treatment of plasmacytoid hDCs with IL-2 increased the secretion of several proinflammatory cytokines. However, these authors did not analyze the signaling downstream the IL-2R in plasmacytoid hCs. In our study, we showed that

![Diagram A](image1.png)

FIGURE 6. IL-2 induces the transcription of both CD25 and IFN-γ genes via phosphorylation of STAT5. (A) Western blot analysis of STAT5 phosphorylation in LPS-hDCs in response to 100 U/ml rhIL-2 with or without treatment with pimozide or IQDMA (STAT5 inhibitors). Data are representative of two independent donors. (B) RT-PCR analysis of mRNA levels of CD25 (left panel) and IFN-γ (right panel) in LPS-hDCs with and without pimozide or IQDMA and/or rhIL-2 treatment for 4 h. Each symbol represents one experiment, and gray bars are the mean of six independent donors (data for untreated donor cells were normalized to 1). (C) Normalized mean fluorescence intensity (MFI) of intracellular IFN-γ staining in LPS-hDCs with and without pimozide or IQDMA and/or rhIL-2 treatment. Gray bars are the mean of five independent donors (data for untreated donor cells were normalized to 1). *p < 0.05, Wilcoxon analysis.

of anti-CD25. Each symbol represents one experiment, and gray bars are the mean of five independent donors. (D) ELISA of IFN-γ secretion in culture supernatant by LPS-hDCs treated with and without rhIL-2 (100 U/ml) and/or anti-CD25 (100 μg/ml). Each symbol represents one donor, and gray bars are the mean of five independent donors. (E) Intracellular staining of IFN-γ in LPS-hDCs and TNF-α-hDCs treated with and without rhIL-2 and/or anti-CD25 or F(ab')2 of anti-CD25. Open dark histograms are rhIL-2–treated hDCs; open gray histograms are rhIL-2 plus anti-CD25– or rhIL-2 plus F (ab')2–treated hDCs; and gray histograms are the isotype control (data are representative of two donors). *p < 0.05, Wilcoxon analysis. mfi, mean fluorescence intensity.
mature monocyte-derived DCs expressed the three chains of IL-2R. IL-2R γc-chain was constitutively expressed by both immature and mature DCs, as we and others reported (15, 23). Moreover, in contrast to a recent report (16), we found that monocyte-derived hDCs also expressed the β-chain. The discrepancy might be due to the different Abs used in studies. Indeed, in comparing staining by three different CD122-specific Abs, two weakly stained hDCs and PBMCs, and only one, 2RB, produced intense staining of hDCs. The decreased staining with the addition of rhCD122 demonstrated the specificity of the 2RB clone. Furthermore, bone marrow–derived mouse DCs show transcription of the CD122 gene (22) and CD34γc-derived hDCs can express the three IL-2R chains (21). These data are consistent with our findings of the expression of CD122 in hDCs and therefore the high-affinity form of the receptor in mature hDCs.

In addition, we demonstrated that although IL-2 does not modify the cell-maturation phenotype, it increases the ability of hDCs to activate helpless CD8+ T cells by hDC-derived IFN-γ appeared to be rather independent of their proliferation. Of note, such regulation of cytotoxic function independent of cellular proliferation has been previously reported in CD8+ T cells (46–48).

We demonstrated for the first time, to our knowledge, that IL-2 induces the phosphorylation of STAT5 in hDCs. This result is in sharp contrast with a recent study that did not reveal IL-2R transducing STAT5 phosphorylation in monocyte-derived hDCs, which led the authors to conclude that the function of CD25 in hDCs was for transpresentation of IL-2 to T lymphocytes (16), a mechanism well described for IL-15. This discrepancy might be due to technical aspects, because the authors did not starve cells in GM-CSF before assessing STAT5 phosphorylation, which is known to be highly induced by GM-CSF and IL-4 in hDCs (49, 50). Most of the studies with IL-15 analyzed the transpresentation aspects of IL-15/IL-15Rα, but the signal transduced by β- and γ-chains (composing IL-15R and IL-2R) in DCs has been rarely investigated. However, one study showed a direct effect of IL-15, mediated by β- and γ-chains, on apoptosis of mouse DCs (51). In agreement, other groups described increased production of proinflammatory cytokines by DCs cultured with IL-15 (36, 37, 39).

These data strongly suggest that the β- and γ-chains, expressed in DCs, transduce signals in response to IL-15 or IL-2.

We demonstrate that IL-2 could not signal through ERK or PI3K–Akt pathways in hDCs, contrary to what was reported for effector T lymphocytes (2). Nonetheless, such preferential signaling has been described in regulatory CD4+ T cells, with the PI3K–Akt pathway not activated by IL-2R (25, 52). The distinct signaling patterns between effector and regulatory T lymphocytes result from the upregulation of phosphatase and tensin homolog in regulatory T cells that negatively regulates PI3K signaling (53). Determining whether phosphatase and tensin homolog is active in DCs would be of interest to explain the lack of PI3K activation.

Finally, we used inhibitors of p-STAT5 and demonstrated that IL-2–induced STAT5 phosphorylation boosts IFN-γ synthesis in hDCs. This result suggests a functional STAT5-binding site in the promoter of the IFN-γ gene in hDCs, which is consistent with previous results from PBMCs, NK, and CD4+ T cells (29, 54). Moreover, we demonstrated that a clinically used anti-CD25 mAb could block STAT5 activation and IFN-γ production, which suggests new therapeutic perspectives to specifically target this receptor in hDCs.

In summary, we demonstrate that IL-2 induces IFN-γ synthesis through STAT5 phosphorylation in hDCs, for increased capacity to activate helpless CD8+ cytotoxic T cells. IL-2Rx production by hDCs has been reported to mediate transpresentation of IL-2 to lymphocytes (16). Our study assigns a new and crucial role of this receptor in activating hDCs that highlights new perspectives for specific immunotherapy.

Acknowledgments
We thank Dr. Marc Gregoire for providing euriluted monocytes. We also thank Etablissement Français du Sang du Centre Atlantique of Tours for providing blood samples from healthy donors.

Disclosures
The authors have no financial conflicts of interest.

References
Supplementary Figure 1: IL-2 increases the ability of hDCs to activate allogeneic CD8+ T lymphocytes. Representative FACS histograms of CD8+ T lymphocyte proliferation assessed by CFSE (up), surface expression of CD25 (middle) and intracellular expression of IFN-γ (bottom) for CD8+ T lymphocytes activated by mature hDCs with or without rhIL-2 pretreatment (100 U/ml) during maturation. CD8+ T cells activated by LPS-hDCs (left column) and TNF-α-hDCs (right column). Data are representative of 7 independent experiments.
Supplementary Figure 2: IL-2 has no effect on expression of hDC surface molecules induced by maturation. (A) Surface expression of CD83, CD25, CCR5 and CCR7, CD80, CD86 (MFI ratio= MFI of the relevant staining/MFI of control isotype), on immature hDCs, LPS-hDCs or TNF-α-hDCs with or without treatment with rhIL-2 (100 U/ml) or anti-CD25 (100 µg/ml) during maturation. Data are mean ± SD of 8 to 15 experiments. (B-D) Representative FACS histograms of stained LPS-hDCs (B, C) or TNF-α-hDCs (D). Empty histograms represent the control isotype. (C) Surface expression of HLA-A, B, C and HLA-DR on LPS-hDCs treated or not with rhIL-2 or anti-CD25. Data are representative of 8 to 15 (B-D) or 3 (C) independent experiments.
Supplementary Figure 3: Phosphoinositide 3-kinase (PI3K) and mammalian target of rapamycin C1 (mTORC1) inhibitors do not inhibit IL-2 effect on hDCs. (A) Quantification of intracellular staining of IFN-γ in LPS-hDCs treated with and without rapamycin or LY294002 and/or rhIL-2. Each symbol represents an experiment, and grey bars are the mean of 3 independent experiments. (B) Proliferation of CD8+ T lymphocytes activated by LPS-hDCs with or without rapamycin or LY294002 and/or rhIL-2 during maturation. Data are mean ± SD of 3 experiments.
Supplementary Figure 4: Intensity and kinetics of STAT5 phosphorylation varies with IL-2. (A) Western blot analysis of STAT5 phosphorylation in LPS-hDCs in response to 100 U/ml rhIL-2 added after 3 hr of treatment with recombinant human granulocyte macrophage-colony stimulating factor (rhCM-CSF) and rhIL-4. (B) Western blot analysis of STAT5a and STAT5b levels in LPS-hDCs with or without rhIL-2 treatment (data are representative of 3 experiments).