Human Lymphoid Development in the Absence of Common γ-Chain Receptor Signaling

Lisa A. Kohn, Christopher S. Seet, Jessica Scholes, Felicia Codrea, Rebecca Chan, Sania Zaidi-Merchant, Yuhua Zhu, Satiro De Oliveira, Neena Kapoor, Ami Shah, Hisham Abdel-Azim, Donald B. Kohn and Gay M. Crooks

J Immunol 2014; 192:5050-5058; Prepublished online 25 April 2014;
doi: 10.4049/jimmunol.1303496
http://www.jimmunol.org/content/192/11/5050

Supplementary Material
http://www.jimmunol.org/content/suppl/2014/04/25/jimmunol.1303496.DCSupplemental

References
This article cites 75 articles, 31 of which you can access for free at:
http://www.jimmunol.org/content/192/11/5050.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Human Lymphoid Development in the Absence of Common γ-Chain Receptor Signaling

Lisa A. Kohn,* Christopher S. Seet,**† Jessica Scholes,‡ Felicia Codrea,‡ Rebecca Chan,* Sania Zaidi-Merchant,* Yuhua Zhu,* Satiro De Oliveira,§ Neena Kapoor,¶ Ami Shah,§,¶ Hisham Abdel-Azim,¶ Donald B. Kohn,¶,ll and Gay M. Crooks*§

Despite the power of model systems to reveal basic immunologic mechanisms, critical differences exist between species that necessitate the direct study of human cells. Illustrating this point is the difference in phenotype between patients with SCID caused by mutations affecting the common γ-chain (γc) cytokine signaling pathway and mice with similar mutations. Although in both species, null mutations in either IL-2RG (which encodes γc), or its direct downstream signaling partner JAK3, result in T and NK cell deficiency, an associated B cell deficiency is seen in mice but not in humans with these genetic defects. In this study, we applied recent data that have revised our understanding of the earliest stages of lymphoid commitment in human bone marrow (BM) to determine the requirement for signaling through IL-2RG and JAK3 in normal development of human lymphoid progenitors. BM samples from SCID patients with IL-2RG (n = 3) or JAK3 deficiency (n = 2), which produce similar “T-NK-B+” clinical phenotypes, were compared with normal BM and umbilical cord blood as well as BM from children on enzyme treatment for adenosine deaminase-deficient SCID (n = 2). In both IL-2RG- and JAK3-SCID patients, the early stages of lymphoid commitment from hematopoietic stem cells were present with development of lymphoid-primed multipotent progenitors, common lymphoid progenitors and B cell progenitors, normal expression patterns of IL-7RA and TLSPR, and the DNA recombination genes DNTT and RAG1. Thus, in humans, signaling through the γc pathway is not required for prethymic lymphoid commitment or for DNA rearrangement. The Journal of Immunology, 2014, 192: 5050–5058.

S evere combined immunodeficiency is a rare genetic syndrome characterized by a profound deficiency in functional T lymphoid cells and variable degrees of B cell,

*Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095;
†Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095;
‡Broad Stem Cell Research Center Flow Cytometry Core, University of California, Los Angeles, Los Angeles, CA 90095;
§Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles CA 90095;
¶Division of Research Immunology and Bone Marrow Transplant, Children’s Hospital Los Angeles, Los Angeles CA 90027; and
llDepartment of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095

Received for publication January 2, 2014. Accepted for publication March 22, 2014.

This work was supported by National Institutes of Health/National Heart, Lung, and Blood Institute National Research Service Award Grant 1F30HL110458 (to L.A.K.); National Institutes of Health Grant P01 HL073104 (to D.B.K. and G.M.C.); California Institute of Regenerative Medicine Grant RMI-01707 (to G.M.C.) and National Institutes of Health Grant U10 AI093934; and R01 HL04505-01 (to D.B.K.); National Institutes of Health Grant T32HL066992 (to C.S.S.); California State University, Northridge, University of California Los Angeles Bridges to Stem Cell Research Program Grant TB1-01183 (to S.Z.-M.); National Institutes of Health/National Center for Advancing Translational Sciences University of California Los Angeles Clinical and Translational Science Institute Grant UL1TR000124, a Hyundai Hope on Wheels Research grant award, and St. Baldwin’s Foundation Scholar Career Development Award 180637 (to S.D.O.).

Address correspondence and reprint requests to Dr. Gay M. Crooks, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, 3014 TLBS, 610 Charles E. Young Drive, East, Los Angeles, CA 90095-7239. E-mail address: GCrooks@mednet.ucla.edu

The online version of this article contains supplemental material.

Abbreviations used in this article: ADA, adenosine deaminase; B2M, β2-microglobulin; BM, bone marrow; γc, common γ-chain; CD, cord blood; CD62L, L-selectin; CLP, common lymphoid progenitor; EBVFL, early B cell factor 1; FSC, forward light scatter; KO, knockout; LMPP, lymphoid-primed multipotent progenitor; SSC, side scatter; TSLPR, thymic stromal lymphopoietin receptor; X-SCID, X-linked SCID.

Copyright © 2014 by The American Association of Immunologists, Inc. 0022-1767/14 $16.00
deficiency or dysfunction (1). Multiple genetic mutations can cause this syndrome, several of which cause defects in cytokine signaling. Depending on the specific mutation, normal production of B lymphocytes and/or NK cells also is affected. The most common form of SCID, X-linked SCID (X-SCID) (2–7), is caused by null mutations in the IL-2RG gene, whose protein product is a type I cytokine receptor known as the common γ-chain (γc) (7). γc is a cytokine receptor subunit that forms a complex with the ligand-specific receptors for IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21 to provide a common signaling chain for these receptors (8–13).

Mutations of IL-2RG therefore result in a complex immunophenotypic phenotype because of an inability to differentiate or function in response to multiple lymphoid cytokines (8). Human SCID caused by deficiency in γc is characterized by an absence of peripheral T and NK cells and present but functionally impaired B cells (8, 14).

After cytokine ligand stimulation of one of its partner receptor chains, dimerization of γc activates the hematopoietic-restricted tyrosine kinase JAK3/STAT pathway (15–17). Disruption of the gene encoding JAK3 causes an autosomal form of SCID with an otherwise identical clinical phenotype to X-SCID (18–20).

Although IL-2RG- and JAK3 null mutations in mice produce the same profound deficiency of T and NK cells seen in humans, a major species-specific difference is seen in B cell development. Whereas humans with mutations in IL-2RG or JAK3 have normal numbers of circulating B cells (18, 21), mice with similar mutations are unable to develop B cells (22–26). The lack of B cell development in mice with defective γc signaling has been specifically attributed to an inability to respond to IL-7, because mice deficient in IL-7Rα, the IL-7 ligand binding partner to γc, are similarly unable to develop B cells (27). Further demonstrating that IL-7 requirements for B lymphopoiesis are different between the two species, patients with IL-7Ra defects have T cell deficiency but normal numbers of B cells (27, 28).
All stages of hematopoiesis, from early progenitors through many categories of mature lymphoid cells, have been examined in mice that are null for IL-2RG, IL-7Rα, or IL-7 (29); however, examination of how these genes affect lymphoid commitment in humans has been lacking, as patients with these mutations are rare, access to bone marrow (BM) is difficult and the identification of the early lymphoid progenitor stages in normal human BM has lagged behind that of mice (30).

The stepwise process of differentiation from multipotent hematopoietic stem cells (HSC) into functional lymphocytes initially proceeds through specific progenitor stages with progressively more limited lineage potential. Upregulation of CD10 expression on CD34⁺ progenitor cells has long been assumed to herald the onset of lymphoid commitment in human hematopoiesis (31). We have recently identified a lymphoid progenitor stage in human BM (32) that precedes the previously described CD34⁺CD10⁺ common lymphoid progenitor (CLP) in lineage commitment from HSC. This progenitor lacks CD10 expression and is marked by high expression of the homing molecule L-selectin (CD62L). The CD34⁺lin⁻ CD10⁻CD45RA⁻CD62L⁺ progenitors are functionally similar to the lymphoid-primed multipotent progenitor (LMPP) identified in murine BM (33) in that they possess full lymphoid (T, B, and NK), dendritic, and some myeloid (mostly monocytic) potential but lack the ability to generate the erythroid or megakaryocytic lineages. Transcriptional profiling and functional assays of the CD34⁺lin⁻ CD10⁻ CD45RA⁻ CD62L⁺ LMPPs place them as intermediate in development between CD34⁺lin⁻ CD38⁻ HSC and the mostly B cell committed CD34⁺lin⁺CD10⁺ CLP (32). We now apply these recent insights into normal human lymphoid commitment (32) to analyses of BM from patients with SCID to define the impact of γc and JAK3 deficiency on development of the first stages of human lymphopoiesis.

Materials and Methods

Collection of BM, cord blood, and peripheral blood cells

Human BM was collected from patients with SCID at University of California, Los Angeles, and Children’s Hospital of Los Angeles under informed consent through protocols approved by the University of California, Los Angeles, and Children’s Hospital of Los Angeles Institutional Review Boards. Normal human adult BM was obtained from healthy donors as anonymous waste materials isolated from filters after BM harvest and from commercial sources (AllCells, Alameda, CA). Umbilical cord blood (CB) was collected as anonymous waste material from normal deliveries at University of California, Los Angeles.

Cell isolation and analysis

Mononuclear cells were isolated by density gradient centrifugation using Ficoll–Paque (GE Healthcare). Samples were enriched for CD34⁺ cells by the MACS system (Miltenyi Biotec) and frozen for later analysis. For flow cytometry analysis and isolation, CD34⁺ enriched samples were incubated with combinations of mAbs specific for human Ags (allopurinol–indocarbocyanine–conjugated [allopurinol–Cy7] anti-CD34 [581; BioLegend]; and PerCP–indocarbocyanine 5.5 [PerCP-Cy5.5]–anti-CD45RA [HI100], allopurinol–anti-CD38 [HIT2], PE–indocarbocyanine [PE-Cy7]–anti-CD10 [H10a], PE–anti-CD62L [DREG-56]; PE–anti-CD7 [M-T701], PE–anti-CD127 [also known as IL-7Ra] [HIL-7R-M21], FITC anti-CD7 [M-T701], allopurinol–anti-CD19 [4G7 and SJ25C1], PE or allopurinol–Cy7 anti-CD3 [SK7], FITC anti-CD56 [MY31], allopurinol–anti-CD4 [RPA-T4], PE-Cy7 anti-CD8 [RPA-T8], PE anti-CD24 [ML5], FITC anti-CD20 [L27], PE anti-CD20 [2H7], PerCP-Cy5.5 anti- IgM [MMH-88; BioLegend], FITC anti-CD27 [M-T271], allopurinol–anti-CD43 [IG10], FITC anti-CD45RO [UCHL1], allopurinol–anti-thymic stromal lymphopoietin receptor [TSLPR] [1F11/ TSLPR (also known as 1F11 and AB81, 85.1F11)] and FITC–labeled lineage-depletion Abs anti-CD3 [SK7], anti-CD14 [M2E2], anti-CD19 [4G7], anti-CD56 [MY31] and anti-CD25a [GA-82]; all from BD Biosciences unless noted).

HSC and progenitor cells were analyzed and isolated on a FACSAria II (355-, 405-, 488-, 561- and 633-nm lasers; BD Immunocytometry Systems) as described previously (32). The DNA-intercalating dye DAPI was added for analysis of viability.

The full gating sequence for HSC (CD34⁺Lin⁻CD10⁻CD38⁻) was 1) appropriate forward light scatter (FSC) versus side scatter (SSC) (“lymphoid” gate), 2) DAPI negative and lineage marker (CD3, CD14, CD19, and CD56) negative, and finally 3) CD34⁺ and CD38⁻. The full gating sequence for LMPP (CD34⁺lin⁻CD10⁻CD38⁻CD45RA⁻CD62L⁺) was 1) FSC versus SSC (lymphoid gate), 2) DAPI negative and lineage marker negative, 3) CD34⁺ and CD10⁺, and finally 4) CD62L⁺ and CD45RA⁺. The full gating sequence for CLP (CD34⁺lin⁺CD10⁺) was 1) FSC versus SSC (lymphoid gate), 2) DAPI negative and lineage marker negative, 3) CD34⁺, and finally 4) CD10⁺ and CD45RA⁺. A “no-Ab” control defined negative gates. B1 cells were defined as DAPI⁺CD20⁺CD27⁺CD43⁻ as described previously (34, 35); B1 cell gating was defined by negative controls using the fluorescent minus one technique (36).

Quantitative PCR analysis

After isolation of cells by flow cytometry, RNA was extracted with a Qiagen RNAeasy Microkit (Qiagen) and reverse transcribed with Omniscript RT, Oligo DT, random hexamers, and RNAguard (Pharmacia Biotech). An ABI Viia7 was used for real-time PCR with TaqMan Gene Expression Mastermix and TaqMan probe–based gene expression analysis (probes: Hs00172121_m1 [RAG1], Hs00172743_m1 [DNTT], Hs01092694_m1 [EBF1], Hs00233515_m1 [CD2], Hs01062241_m1 [CD3E1], and Hs00984350_m1 [β2-microglobulin (B2M)] [Life Technologies]). Each biologic sample was assayed in technical triplicate. The optimal reference gene for BM populations was previously determined to be B2M (32, 37), and B2M expression was detected in all populations and samples tested (Supplemental Fig. 1). Quantitative PCR results were normalized through the use of the change-in-cycling-threshold methods (ΔΔCT).

Statistical analysis

Prism version 5 (GraphPad Software) was used for statistical analysis and graphic generation. Flow cytometry data were analyzed with FlowJo software.

Results

Clinical and immunologic characteristics of subjects

Clinical data of subjects with SCID and healthy control subjects who provided BM samples are presented in Table I. BM samples from three male infants with IL-2RG–deficient SCID (aged 2 wk–3 mo), and one female and one male infant with JAK3-deficient SCID (both aged 3 mo) were analyzed to assess the effects of γc pathway signaling defects. BM samples from three adults and a 6-y-old child were used as healthy donor controls. For closer age-matched controls, we also examined marrow from two children (ages 3 and 21 mo) with adenosine deaminase (ADA) deficient (ADA-SCID) both of whom were on polyethylene glycol–ADA enzyme replacement therapy with partial immune recovery at the time of BM collection and flow cytometry analysis (38). Analysis of umbilical CB was included as a reflection of normal newborn hematopoiesis.

As expected based on findings in peripheral blood, BM aspirates from patients with IL-2RG– and JAK3-deficient SCID showed an almost complete absence of contaminating T lymphoid cells (Fig. 1A). Of note, in three of the five patients whose peripheral blood was analyzed, maternal engraftment of T lymphocytes was detected by fluorescent in situ hybridization. Consistent with maternal engraftment, the few CD3⁺ T cells detectable in SCID marrow aspirates were predominantly mature CD45RO⁺ cells, in contrast to normal adult BM and CB in which naive CD45RA⁺ T cells predominated (Fig. 1B). Concordant with their peripheral blood phenotype, NK cells were barely detectable (<1%) in the BM of SCID patients (Fig. 1C).

Human lymphoid commitment is not dependent on IL-2RG/JAK3 signaling

We have previously shown in human BM that IL-2RG transcription is significantly upregulated during differentiation of HSC into LMPP (CD34⁺Lin⁻CD10⁻CD45RA⁻CD62L⁺), and expression continues to increase between the LMPP and CLP (CD34⁺Lin⁻
CD10⁺CD45RA⁺) stages (32). We thus investigated whether absence of IL-2RG/JAK3 signaling would affect the generation of these early stages of human lymphoid commitment. The frequency of immunophenotypic HSC based on expression of the progenitor Ag CD34⁺ and absence of CD38 and other lineage-specific Ags (CD34⁺lin[−]CD38[−] cells) was similar in normal BM and SCID BM samples (Fig. 2A, Supplemental Table I). The CD10[−]ILMP and CD10⁺ CLP populations were both readily detectable in BM from infants with IL-2RG-deficient SCID and JAK3-deficient SCID as well as infants on treatment for ADA-deficient SCID (Fig. 2B, 2C, Supplemental Table I). Thus, although IL-2RG is expressed in the earliest stages of human lymphoid commitment, signaling through IL-2RG/JAK3 is not required to generate these progenitors. As we have previously noted, the profile of lymphoid progenitors in umbilical CB was markedly different to that of all normal and SCID BM samples, with no clear population of immunophenotypic LMPP and a relatively low frequency of immunophenotypic CLP.

IL-7Rα and TSLPR are expressed normally in the absence of IL-2RG/JAK3 signaling

Consistent with BM from healthy infants, CD34⁺ progenitor cells from all IL-2RG- and JAK3-deficient SCID patients were heavily skewed toward B cell commitment, consisting of mostly fully B cell-committed CD34⁺CD10[−]CD19⁺ progenitors and, to a lesser extent, the more immature CD34⁺CD10⁺CD19[−] CLP population (which has predominantly B cell potential but also can generate small numbers of NK and T cells) (Fig. 3A) (32, 39–41). Surface expression of IL-7Rα (the receptor chain that binds IL-7 and its alternative dimerizing partner, TSLPR [gene name CRLF2], was also detected on CLPs from all normal and SCID samples examined (Fig. 3C). Thus, signaling through γ_c or its downstream partner JAK3 is not required for normal generation of B lymphoid progenitors. γ_c-deficient B lymphoid progenitors, however, possess normal expression of both surface IL-7Rα and its alternative signaling partner TSLPR and are thus capable of responding to TSLP.

B cell differentiation is maintained in the absence of IL-2RG and JAK3 signaling

Despite the lack of functional γ_c signaling, IL-2RG– and JAK3-deficient lymphoid progenitors were able to produce immunophenotypically late stages of B cell differentiation, as shown by
expression of CD24, CD20, and surface IgM (Fig. 4A–C). On the basis of a recently described phenotype for human B-1 cells (CD20+CD3-CD43+CD27+) (34), few of the B cells in BM of SCID patients were of the B1 cell lineage (Fig. 4D, 4E).

To determine whether γc signaling is required for induction of expression of genes involved in DNA rearrangement, specific subsets of cells representing each stage of differentiation were isolated by flow cytometry and analyzed for gene expression by quantitative PCR. Consistent with their normal counterparts, DNTT (also known as TDT) (a DNA polymerase that catalyzes the addition of deoxynucleotides in pre-B and pre-T lymphocytes during early differentiation generating Ag receptor diversity by synthesizing non–germ-line elements during VDJ rearrangement) and RAG1 (activator of Ig V-D-J recombination) were expressed normally in SCID BM, with absent expression in HSC, onset of expression at low levels at the LMPP stage and then further up-regulation in CLP and B cell progenitors (Fig. 5A, 5B).

EBF1, a transcription factor critical for B cell differentiation that is a direct target of Stat-5–mediated IL-7R signaling (43) and whose overexpression can partially rescue B lineage potential in IL-7 knockout (KO) mice (29, 44, 45), was upregulated in CLP and subsequent stages of B cell differentiation in both SCID BM and in normal BM (Fig. 5C). Of note, although EBF1 was not expressed in normal adult LMPPs in our previous studies (32) or in this study (in either the adult or the 6-y-old subject), we were able to detect EBF1 expression in LMPPs from all IL-2RG– and JAK3-deficient SCID BM samples, demonstrating that expression of this B cell specific transcription factor occurred at an earlier stage of lymphoid differentiation in these IL-2RG– and

FIGURE 2. Lack of IL-2RG/JAK3 signaling does not block early lymphoid commitment. (A) CD34 and CD38 expression on CD34+-enriched, DAPI-negative, lineage-negative (linneg) hematopoietic cells (lineage includes CD3, CD14, CD19, CD56, and glycophorin a). HSC (defined as CD34+ DAPIneglinnegCD38neg) gating shown. (B) CLPs (defined as CD34+DAPIneglinnegCD45RA+CD10+) are detected within CD34+Linneg cells from all sources. (C) LMPPs (defined as CD34+DAPIneglinnegCD10negCD45RA+CD62Lhi) are detected within CD34+CD10negLinneg hematopoietic cells from all BM samples but not normal CB. Numbers in parentheses for each SCID sample refer to information in Table I.

FIGURE 3. IL-7Rα and TLSPR are expressed in the absence of IL-2RG/JAK3 signaling. (A) CD10 and CD19 expression on CD34+ hematopoietic progenitor cells. Cell surface expression (shown as black histogram) of IL-7Rα (B) and TLSPR (C) on cells gated as CLPs (CD34+CD10+CD19neg). Unstained controls shown as gray. Numbers in parentheses for each SCID sample refer to information in Table I.
JAK3-deficient SCID patients. However, it should be noted that in BM from infants with ADA-deficient SCID on treatment with polyethylene glycol–ADA, LMPP also expressed EBF1, suggesting that the discrepancy of results with normal BM may be due to the very young age of the SCID patients rather than their genetic mutations.

We have previously shown that CD2, which encodes a T and NK cell specific cell surface adhesion molecule, is normally upregulated in LMPP but is not detectable in either HSC or CLP (32). Similar to normal BM, CD2 was also exclusively detected in the LMPP of BM from patients with SCID (two of three tested with IL-2RG deficiency and the sole patient tested with JAK3 deficiency) (Fig. 5D), providing further support that the potential for T and NK differentiation is not restricted at the LMPP stage but disrupts later stages of lineage-specific differentiation in the marrow and thymus (Fig. 6).

Discussion

Although the phenotype of lymphocytes in the peripheral blood of patients with SCID has been well described, studies of how the various genetic defects that lead to this life-threatening syndrome affect the earliest stages of lymphoid commitment have been lacking. Access to BM samples from untreated patients with SCID is challenging; these conditions are extremely rare, and unless detected early through newborn screening, infants typically present with life-threatening infections, requiring urgent HSC transplantation or gene therapy to survive, after which the fundamental hematopoietic abnormalities are permanently corrected. In addition, although numerous studies on murine BM have been reported over the past two decades, there has relatively little information on the identification of normal human lymphoid progenitors. Of the studies on human lymphopoiesis that do exist, almost all have used umbilical CB rather than postnatal BM. It is now clear from the current paper and from previous published data that important differences in immunophenotype and function exist between BM and CB stem cells and progenitors (32, 46–48). It should not be surprising that the types of progenitors that circulate transiently in neonatal CB, and the signaling requirements of those progenitors, are different from progenitors that reside in BM to provide steady-state postnatal hematopoiesis. Thus, measurement of progenitors in abnormal BM requires direct comparison with normal BM.

Age-matched controls are particularly challenging for studies on patients with SCID, almost all of whom are infants. Although HSCs maintain the potential to differentiate into lymphocytes throughout life, lymphoid output decreases relative to myeloid differentiation in later life (49). The frequency of B lymphoid...
progenitors is highest in infants, falling between early childhood (<10 y) and later childhood and adulthood (10–60 y), with the lowest levels in elderly adults (>70 y) (50–53). In this paper, we were able to include BM from a healthy 6-y-old child as well as BM samples from healthy adults as normal controls for comparison with BM from infants with IL-2RG– and JAK3-deficient SCID. As additional controls, we included BM from two younger patients (3 and 22 mo) on enzyme treatment for ADA deficiency, who showed partial recovery of T and B cell numbers by the time of marrow analysis.

Of note, although the LMPP and CLP immunophenotypes were very similar in normal and all types of SCID marrow, significant differences were seen between all the BM samples and those from CB, emphasizing the important influence of ontogeny and tissue source on immunophenotypic identification of lymphoid progenitors (47). Specifically, the CD34+linnegCD38neg, LMPP (CD34+linnegCD45RA+CD10negCD62Lhi), CLP (CD34+linnegCD10+), and BP (CD34+CD10+CD19+) were tested. Gene expression for B cell commitment and DNA rearrangement is maintained in the absence of IL-2RG/JAK3 signaling. Quantitative PCR analysis of gene expression in HSC, LMPP, and CLP from BM of IL-2RG–SCID (n = 3), JAK3-SCID (n = 1), ADA-SCID (n = 2), and NBM (n = 2, one adult and one 6-y-old child), presented relative to expression of B cell progenitors (BP). Recombination activating gene 1 (RAG1) (A), DNA nucleotidyltransferase (DNTT, also known as TDT) (B), early B cell factor 1 (EBF1) (C), and cluster of differentiation 2 (CD2) (D). Equivalent numbers of HSC (CD34+linnegCD38neg), LMPP (CD34+linnegCD45RA+CD10negCD62Lhi), CLP (CD34+linnegCD10+), and BP (CD34+CD10+CD19+) were tested. Gene expression is shown in the sequence HSC, LMPP, CLP, and BP; *, no expression was detectable in these populations. Each biologic sample was assayed in technical triplicate; error bars represent SEM of the means of biologic samples.

FIGURE 5. Gene expression for B cell commitment and DNA rearrangement is maintained in the absence of IL-2RG/JAK3 signaling. Quantitative PCR analysis of gene expression in HSC, LMPP, and CLP from BM of IL-2RG–SCID (n = 3), JAK3-SCID (n = 1), ADA-SCID (n = 2), and NBM (n = 2, one adult and one 6-y-old child), presented relative to expression of B cell progenitors (BP). Recombination activating gene 1 (RAG1) (A), DNA nucleotidyltransferase (DNTT, also known as TDT) (B), early B cell factor 1 (EBF1) (C), and cluster of differentiation 2 (CD2) (D). Equivalent numbers of HSC (CD34+linnegCD38neg), LMPP (CD34+linnegCD45RA+CD10negCD62Lhi), CLP (CD34+linnegCD10+), and BP (CD34+CD10+CD19+) were tested. Gene expression is shown in the sequence HSC, LMPP, CLP, and BP; *, no expression was detectable in these populations. Each biologic sample was assayed in technical triplicate; error bars represent SEM of the means of biologic samples.
production is first felt within the thymus rather than within the thymus seeding progenitors.

The species differences in B cell production with γc and IL-7Ra signaling defects has been assumed to be at least partly because of differences in the dependence of IL-7 signaling for B lymphopoiesis (21–23, 28, 30). Nonetheless, the biology underlying this species difference has not been defined. Although adult murine B cell development is IL-7 dependent, the B-1 subset of cells that develop during murine fetal and neonatal life are produced (albeit at subnormal levels) in mice with IL-7Rα deficiency (63). Murine B-1 cells are a population of spontaneously IgM-secreting B cells of fetal origin that arise from a distinct hematopoietic progenitor to the adult B-2 cells and that do not require T cell help to function (64, 65). A potential explanation for the apparent species differences in IL-2RG−, JAK3−, and IL-7Ra−deficient SCID is that the B cells circulating in human infants with these forms of SCID represent the human equivalent to murine IL-7−independent B-1 cells. Until recently, this hypothesis could not be tested as no immunophenotype has been available to identify human B-1 cells. In our studies, we took advantage of the recently described CD20+CD27+CD43+ immunophenotype, which has been identified as a B-1 cell population in human umbilical CB and peripheral blood (34, 35). We found that very few of the B cells in SCID BM expressed this B-1 phenotype, suggesting that either circulating B cells in these patients are not derived from a distinctive, IL-7−independent, fetal origin or that the published immunophenotype does not identify marrow B-1 cells in these patients.

FLT3 ligand (FL) (66) and TSLP (67, 68) have been suggested as activating pathways that induce B lymphopoiesis in the absence of IL-7. FLT3 expression has been used to discriminate murine LMPP from HSC by flow cytometry. However, in humans, although FLT3 mRNA is increased in LMPP, FLT3 protein is detectable at similar levels in HSC and LMPP (32). Because both RNA and protein expression of FLT3 are significantly downregulated in CLP and B cell progenitors (32), it is likely that if FL-induced signaling is responsible for B lymphoid differentiation in the setting of γc deficiency, this effect is predominantly at the LMPP stage, rather than on more B cell–committed progenitors such as CD34+CD10+ CLP and CD34+CD19+ B cell progenitors.

TSLP binds to IL-7Rα and activates Stat5 signaling through the TSLPR chain, independently from γc (69, 70). As with γc deficiency, B cell deficiency is seen in mice but not humans with IL-7Ra deficiency. However, TSLP KO mice have normal lymphopoiesis demonstrating that TSLP is redundant in mice when γc signaling is normal. Nonetheless, murine studies show that TSLP has a nonredundant role in the setting of γc deficiency; TSLPR/γc double-KO mice exhibit more severe lymphopenia than γc−/− mice, and TSLP administration can partially rescue lymphopenia in γc−/− mice (71). It has been postulated that the normal B cell numbers seen in human γc deficiency could be because of alternative signaling from TSLP through the IL-7Rα/TSLPR complex. Although our data do not answer this possibility directly, the finding that surface TSLPR and IL-7Ra were readily detectable on CLP and B cell progenitors demonstrates that TSLP induced signaling in these lymphoid progenitors is at least possible.

Although B cells in patients with IL-2Rα−/SCID have undergone normal V(D)J Ig rearrangement (72, 73), most Jα remain in germ-line configuration. The T cell defects present in all types of SCID would be expected to contribute to the functional defects of B cells. However, clinical data of immune reconstitution following transplantation show that an indirect effect on B cells is insufficient to fully explain the functional defects in γc−deficient B cells. In a large follow-up study of patients with SCID who had undergone nonmyeloablative transplantation (74), in the subset of patients with γc mutations, Ig deficiency was not corrected in the absence of donor B cell chimerism, even if T cell reconstitution was present. Thus, intrinsic functional defects exist in γc−deficient B cells. Of the cytokines that enlist the γc−associated receptors, IL-4 deficiency is known to be required for mature B cell function, and thus, impaired signaling through IL-4Ra/γc dimers could account for the B cell functional defects in human X-SCID (75, 76).

In summary, in view of the normal generation of both LMPP and CLP in the presence of IL-2RG and JAK3 deficiency, and the subsequent robust production of B cells, we conclude that γc signaling is not required for lymphoid commitment in humans. However, clinical data of immune reconstitution following transplantation show that an indirect effect on B cells is insufficient to fully explain the functional defects in γc−deficient B cells. In a large follow-up study of patients with SCID who had undergone nonmyeloablative transplantation (73), the subset of patients with γc mutations, Ig deficiency was not corrected in the absence of donor B cell chimerism, even if T cell reconstitution was present. Thus, intrinsic functional defects exist in γc−deficient B cells. Of the cytokines that enlist the γc−associated receptors, IL-4 deficiency is known to be required for mature B cell function, and thus, impaired signaling through IL-4Ra/γc dimers could account for the B cell functional defects in human X-SCID (75, 76).

In summary, in view of the normal generation of both LMPP and CLP in the presence of IL-2RG and JAK3 deficiency, and the subsequent robust production of B cells, we conclude that γc signaling is not required for lymphoid commitment in humans. The normal expression of DNTT and RAG1 demonstrate that γc signaling is also not required for DNA recombination. The profound lymphoid defects seen in these patients therefore result from blocks to differentiation downstream from the multipotent lymphoid progenitor stage, as NK cells differentiate from more committed progenitors in the marrow and as T cell commitment is initiated and sustained in the thymus.

Acknowledgments

We thank the expert technical assistance of the Broad Stem Cell Research Center Flow Cytometry Core, the Center for AIDS Research Virology Core Laboratory, and the Tissue Culture/PCR Facility at the University of California, Los Angeles.

Disclosures

The authors have no financial conflicts of interest.
References

Supplemental Table 1: Progenitor Percentages in Hematopoietic Samples

<table>
<thead>
<tr>
<th>Clinical Genotype</th>
<th>% HSC</th>
<th>% LMPP</th>
<th>% CLP</th>
<th>% BP</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL2RG SCID (1)</td>
<td>0.2</td>
<td>7.4</td>
<td>13.6</td>
<td>13.7</td>
</tr>
<tr>
<td>IL2RG SCID (2)</td>
<td>1.8</td>
<td>1.5</td>
<td>14.8</td>
<td>22.1</td>
</tr>
<tr>
<td>IL2RG SCID (3)</td>
<td>0.6</td>
<td>3.5</td>
<td>9.3</td>
<td>42.7</td>
</tr>
<tr>
<td>JAK3 SCID (1)</td>
<td>0.6</td>
<td>2.0</td>
<td>9.3</td>
<td>51.3</td>
</tr>
<tr>
<td>JAK3 SCID (2)</td>
<td>3.9</td>
<td>7.2</td>
<td>5.4</td>
<td>ND</td>
</tr>
<tr>
<td>ADA SCID (1)</td>
<td>2</td>
<td>7.4</td>
<td>4.6</td>
<td>70.5</td>
</tr>
<tr>
<td>ADA SCID (2)</td>
<td>0.9</td>
<td>8.0</td>
<td>5.3</td>
<td>78.3</td>
</tr>
<tr>
<td>Normal adult BM</td>
<td>3.5</td>
<td>3.4</td>
<td>3.9</td>
<td>20.5</td>
</tr>
<tr>
<td>Normal 6 yo BM</td>
<td>0.9</td>
<td>7.6</td>
<td>17.5</td>
<td>28.5</td>
</tr>
<tr>
<td>Normal CB*</td>
<td>2.9</td>
<td>0.03</td>
<td>5.5</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Supplemental Table 1: Shown above are percentages of each population within the total CD34+ fraction of each sample

All numbers shown are % of CD34+ cells
* Mean of n=3 independent samples

HSC = Hematopoietic Stem Cell, defined as CD34+lin−CD38−
LMPP = Lymphoid-primed Multi-Potent Progenitor, defined as CD34+lin−CD10−CD45RA−CD62Lhi
CLP = Common Lymphoid Progenitor, defined as CD34+lin−CD10+CD45RA+
BP = B cell Progenitor, defined as CD34+CD10−CD19+
ND = No data
Supplemental Figure 1: Shown are raw qPCR data (cycle threshold) for RNA levels of housekeeping gene B2M (beta-2 microglobulin), assayed in each of the populations shown at the same time as assay of specific genes in parentheses (DNTT, RAG1, EBF1, CD2)