CD8+ T Cell–Independent Tumor Regression Induced by Fc-OX40L and Therapeutic Vaccination in a Mouse Model of Glioma

Katherine A. Murphy, Jami R. Erickson, Charles S. Johnson, Charles E. Seiler, Jessica Bedi, Peisheng Hu, G. Elizabeth Pluhar, Alan L. Epstein and John R. Ohlfest

J Immunol 2014; 192:224-233; Prepublished online 29 November 2013;
doi: 10.4049/jimmunol.1301633

http://www.jimmunol.org/content/192/1/224

Why The JI?

- **Rapid Reviews! 30 days** from submission to initial decision
- **No Triage!** Every submission reviewed by practicing scientists
- **Speedy Publication!** 4 weeks from acceptance to publication

*average

References

This article *cites 38 articles*, 17 of which you can access for free at:
http://www.jimmunol.org/content/192/1/224.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
CD8+ T Cell–Independent Tumor Regression Induced by Fc-OX40L and Therapeutic Vaccination in a Mouse Model of Glioma

Katherine A. Murphy,* Jami R. Erickson,* Charles S. Johnson,† Charles E. Seiler,‡ Jessica Bedi,* Peisheng Hu,§ G. Elizabeth Pluhar,‡ Alan L. Epstein,§ and John R. Ohlfest*§

Despite the growing number of preclinical and clinical trials focused on immunotherapy for the treatment of malignant gliomas, the prognosis for this disease remains grim. Although some promising advances have been made, the immune response stimulated as a result of immunotherapeutic protocols has been inefficient at complete tumor elimination, primarily due to our lack of understanding of the necessary effector functions of the immune system. We previously demonstrated that a tumor lysate vaccine/Fc-OX40L therapy is capable of inducing enhanced survival and tumor elimination in the GL261 mouse glioma model. The following experiments were performed to determine the mechanism(s) of action of this therapy that elicits a potent antitumor immune response. The evidence subsequently outlined indicates a CD8+ T cell–independent and CD4+ T cell–, NK cell–, and B cell–dependent means of prolonged survival. CD8+ T cell–independent tumor clearance is surprising considering the current focus of many cancer immunotherapy protocols. These results provide evidence for CD8+ T cell–independent means of antitumor response and should lead to additional examination of the potential manipulation of this mechanism for future treatment strategies. The Journal of Immunology, 2014, 192: 224–233.

Cancer immunotherapy seeks to recruit an effective immune response to eliminate tumor cells. Unlike direct Ab therapies currently approved for clinical use, cancer vaccines have only shown limited effectiveness due to our incomplete understanding of the necessary effector cells and mechanisms that yield efficient tumor clearance. Despite these setbacks, cancer vaccines remain an enticing approach for the treatment of brain tumors, such as glioblastoma multiforme (GBM). Cytotoxic activity of CD8+ T cells has long been presumed to be the effector function necessary for tumor regression, and many studies have shown that CD8+ T cell responses can be elicited by a variety of immunotherapy approaches (1–4).

CD4+ T cells are more often regarded as helper cells to generate cytotoxic CD8+ T cells and as the source of regulatory T cells (Tregs) induced by the tumor. CD4+ T cells are necessary to prime and maintain a CD8+ T cell response and can alter the tumor microenvironment through secretion of cytokines and the recruitment of additional immune cells, such as eosinophils and macrophages (5). Emerging data suggest that CD4+ T cells may be more important for tumor clearance than previously assumed, and in some cases more efficient than CD8+ T cells (6–9). Although indirect means of tumor elimination have been more extensively studied, CD4+ T cells have been shown to act as efficient cytolytic cells in both tumor and viral infection models (10–12). Despite the growing evidence for CD4+ T cell–based mechanisms of cell killing that are independent of CD8+ T cells, the field of tumor immunotherapy has not fully embraced these important findings.

Many components of the immune system can contribute to effective immunotherapy. In addition to T cells, B cells can also induce antitumor responses. B cells can differentiate into Ab-secreting plasma cells or present Ags to T cells, contributing to T cell activation and memory (13). An intact blood brain barrier restricts the passive diffusion of large proteins, including Igs, into the brain, and thus the role of an Ab response in the efficacy of brain tumor immunotherapy has largely been ignored (14). Paradoxically, one study has shown a correlation between the presence of tumor-reactive Abs in GBM patients and survival (15).

Some important components of the innate immune system are often overlooked in tumor clearance. Characterization of an antitumor response induced by CD40 ligation through administration of an agonist CD40 Ab showed that tumor regression was dependent on macrophages and independent of CD4+ or CD8+ T cells (16). Additionally, eosinophils, mast cells, and NK cells have been shown to have antitumor capabilities (17–19).

The immunospecialized nature of the brain presents unique challenges in developing effective immunotherapies for brain tumors. The brain, even in the absence of tumor, has an immunological preference displayed by the secretion of immunosup-
pressive molecules, such as TGF-β. This biases the brain and the draining lymph nodes for induction of a Th2 response (20). In addition, even when a CD8+ T cell response is generated, the immunosuppressive nature of the brain can prevent effector function and limit tumor elimination (21).

The clinical success of cancer treatments such as CTLA-4 and PD-1 blockade has led to an increased interest in immunomodulatory agents (22, 23). Signaling through costimulatory molecules, including members of the TNFR superfamily, such as 4-1BB, OX40, and glucocorticoid-induced TNFR, can lead to T cell expansion and upregulation of effector cytokine production, and can break tolerance (24). These receptors can be targeted by agonist Abs or ligand fusion proteins, in which the corresponding ligands are fused to Ig proteins for systemic delivery in vivo (24).

Recently, we described an efficacious combination therapy involving tumor lysate and adjuvant vaccines with Fc-OX40L costimulation in a murine brain tumor model (25). The work described in this study aims to dissect the mechanisms at work in this potent antitumor therapy in a mouse GBM model. Our results indicate a CD4+ T cell−, B cell−, and NK cell−dependent means of tumor eradication, whereas CD8+ T cells appear to be unnecessary for enhanced tumor-free survival. The following work should aid in the understanding of mechanisms at play in an effective anti-tumor response and guide future therapeutic designs. Our previous research and current work suggest an alternative means of tumor eradication to the canonical CD8+ cytotoxic T cell mechanism, and may shed light on routes of immune modulation that result in effective tumor clearance in GBM.

Materials and Methods

Animal models and cell lines

GL261-Luc culture conditions have been described previously (26). Animals were maintained in a specific pathogen-free facility, according to the guidelines of the University of Minnesota Institutional Animal Care and Use Committee. Seven-week-old wild-type (WT) C57BL/6J, B6.129S2-Cd8a−/−tdTom/J (CD8a knockout [KO]), C57BL/6-Prf1−/−J (perforin KO), and B6.129S2-Igμm−/−J/Il−14 (Igμm KO) mice were purchased from The Jackson Laboratory (Bar Harbor, ME). Five- to 7-week-old B6.129P2-Fcer1g−/−FcγR

Vaccine production and delivery

Vaccines were generated, as previously described (25). Tumor cells were washed three times with PBS, resuspended in PBS, and flash frozen with liquid nitrogen. Cells were subjected to five cycles of freezing and liquid nitrogen and thawing in a 37°C water bath, vortexing after each round, to induce cell lysis. Trypan blue dye exclusion was used to verify complete cell death. A Pierce bichinchoninic acid assay kit (Thermo Scientific) was used to determine protein concentration of the lysates. Purified, endotoxin-free Cpg 1826, an unmethylated oligodeoxynucleotide sequence (5′-tcctgactgctcgagt-3′) with a full phosphorothioate backbone (Integrated DNA Technologies, Coralville, IA), was resuspended in 1× Tris-EDTA buffer. Vaccines, consisting of 65 μg tumor lysate and 50 μg Cpg 1826, brought to a final volume of 100 μl with saline, were delivered by intradermal injection above the shoulders.

Immunological assays

Flow cytometry

Brain-infiltrating lymphocytes were harvested from animals on day 25 postinoculation. Mice were euthanized with a ketamine/xylazine mixture and perfused with PBS to flush the capillaries. The brains were removed, minced with a razor, dissociated with TrypLE (Invitrogen), and passed over a 70-μm filter. Leukocytes were collected from a two-layer Percoll gradient (70 and 30%). Cell counts were obtained using trypan blue dye exclusion and a hemocytometer. Cells were stained with the following Abs for phenotypic analysis: CD3 (clone 17A2; eBioscience), CD4 (clone GK1.5; eBioscience), CD8 (clone 5H10; Invitrogen), NK1.1 (clone PK136; eBioscience), MHC II (clone M5.114.15.2; eBioscience), CD11b (clone M170; eBioscience), CD11c (clone N418; eBioscience), FcγR (clone FJK-16s; eBioscience), and perforin (clone eBioOMAK-D; eBioscience). Intracellular staining of Foxp3 was achieved by utilizing the Foxp3 transcription factor intracellular staining kit, according to the manufacturer’s instructions (eBioscience). The BD CytoFlix/Cytoperm plus kit (BD Biosciences) was used to gain intracellular staining of perforin. Flow cytometric analyses were performed on a BD Biosciences FACSCanto, and data were analyzed using FlowJo software (Tree Star). The proportion of stained cells multiplied by the total number of viable cells, determined previously by trypan blue dye exclusion, to obtain the total number of stained cells, then divided by tumor burden (ps) to obtain the number of cells relative to tumor size.

Histopathology

Tumor-bearing animals were euthanized and perfused with phosphate-buffered water and 4% paraformaldehyde. Formalin-fixed tumor-bearing brains were serially sectioned and processed into paraffin blocks using standard histology techniques, sectioned to 4-μm thickness, and stained with H&E. Slides were evaluated by a board-certified anatomic pathologist by light microscopy.

Suppression assay

T cells were isolated from a naive WT spleen using the mouse CD8a T cell isolation kit from Miltenyi Biotec and stimulated in vitro with plate-bound CD3 (1 μg/ml) (eBioscience; 2C11) in a round-bottom plate. CD11b+ cells isolated from spleen and brains of tumor-bearing animals with the CD11b isolation kit from Miltenyi Biotec were plated with 5 × 10⁶ CD8+ T cells. Triticated thymidine was added to cells after 48 h and allowed to incubate for an additional 24 h. Proliferation was determined by thymidine incorporation. Suppression was calculated by normalizing to CD3-stimulated T cells in the presence of CD11b+ cells isolated from naive animals, percent suppression = ([T cells + CD3 + naive CD11b+ − (T cells + CD3 + tumor CD11b+)]/[T cells + CD3 + naive CD11b]) × 100.

Western blots

Tumor tissue was sonicated in radioimmunoprecipitation assay buffer (25 mM Tris-HCl, 0.1% SDS, 1% Triton X-100, 1 mM sodium deoxycholate, 0.15 M NaCl, 1 mM EDTA) with protease and phosphatase inhibitors (1:100; Calbiochem). Protein concentrations were determined using the Pierce bichinchoninic acid assay kit (Thermo Scientific). For SDS-PAGE, lysates were made 2 mg/ml with Laemmli reducing sample buffer. Protein
increased survival and tumor clearance is CD8+ T cell indepen-
confirming the previous results using CD8-depleted mice (Fig.

The CD8 KO mice were challenged with GL261 and treated with

treatment was assessed by de-

The role of specific lymphocyte subsets contributing to tumor

NK-depleted animals survived significantly longer than nondepleted untreated

NK depletion also had an effect on survival, albeit to a lesser magnitude than CD4 depletion. NK-depleted animals survived significantly longer than nondepleted untreated animals, but never as long as nondepleted animals that were treated with vaccine/Fc-OX40L. Surprisingly, CD8 depletion did not negatively affect overall survival (Fig. 1A). To confirm these unexpected findings suggesting the limited role of CD8+ T cells, CD8 KO mice were challenged with GL261 and treated with vaccine/Fc-OX40L. The CD8 KO mice had prolonged survival, confirming the previous results using CD8-depleted mice (Fig. 1B). These data suggest that the immune response responsible for increased survival and tumor clearance is CD8+ T cell independent or that CD8+ T cells somehow block the response to immu

Thus, contrary to many tumor models in which immunotherapy is employed, these data suggest our vaccine immunotherapy is not involved in inducing Ab secretion. The trend toward increasing levels of IgG over time in the vaccine/Fc-OX40L–treated animals indicates that Fc-OX40L may aid in the maintenance of, or help promote, the Ab response over time.

Ab deposition in tumor

To determine whether Ab was being deposited in the tumors of the vaccine/Fc-OX40L–treated animals and to gain insight into the kinetics of this event, animals were inoculated with GL261 tumor, treated with vaccine/Fc-OX40L, and euthanized on days 25, 35, and 45. Saline- and vaccine-only controls were also collected on day 25. Western blot analysis revealed the presence of IgG in the tumors of animals treated with vaccine/Fc-OX40L (Fig. 2C). Bands consistent with IgG H and L chain (50 and 25 kDa, respectively) were detected in the tumors of animals treated with vaccine/Fc-OX40L. The 50-kDa band consistent with the H chain of IgG was not detected in the tumors of saline-treated animals. The presence of a 25-kDa band in these tumors is most likely due to the cross-reactivity of the Ab with the L chain of the other Iggs. IgG was detected in the majority of the vaccine-only–treated tumors as well. Interestingly, whereas all of the tumors analyzed from vaccine/Fc-OX40L–treated mice at day 25 contain IgG, the number of animals with detectable IgG at the later time points decreases at day 35 (4 of 5) and day 45 (3 of 5). This may be due in part to the decreasing tumor burden at these later time points. IgM was detected in the tumors of animals of all treatment groups, although with varying penetrance (Fig. 2D). The H chain of IgM was detectable and appears to be most penetrant at day 35 in vaccine/Fc-OX40L–treated animals. It is important to note that several gels were run to analyze these samples, so whereas the presence or absence of Ig can be noted, the relative amounts cannot be accurately compared. The presence of IgM and absence of IgG in the tumors of saline-treated mice suggest that infiltration of class-switched Ig may be impaired.

Analysis of brain-infiltrating cells

Flow cytometry analysis was performed on lymphocytes isolated

Flow cytometry analysis was performed on lymphocytes isolated from the brains of tumor-bearing animals. Glioma-bearing WT animals treated with saline, vaccine only, Fc-OX40L only, and vaccine/Fc-OX40L, were euthanized on day 25. One day prior to euthanasia, tumor burden was assessed by bioluminescence imaging and revealed a significant difference in the tumor size among the groups. Animals receiving Fc-OX40L as part of the treatment showed significantly less tumor burden (Fig. 3A). Lymphocytes harvested from the brains were counted and plotted as absolute numbers. The number of brain-infiltrating cells observed in the WT animals receiving vaccine/Fc-OX40L treatment was not significantly greater than saline-treated animals (Fig. 3A). The large variation in tumor size may distort the true value of infiltrating cells present in the brain, as larger tumors may contain more in-
filtrating cells simply due to volume. To compensate for this difference, the number of brain-infiltrating cells was normalized to the tumor burden determined by bioluminescence imaging (p/s). This analysis revealed that, based on tumor burden, there were more lymphocytes infiltrating the tumors of Fc-OX40L–treated WT animals (Fig. 3A).

Phenotypic staining assessed the composition of the lymphocyte population harvested from the brains of glioma-bearing animals. The T cell population was determined by analyzing the CD3+CD4+Foxp3− and CD3+CD8+ populations. An increase in the infiltration of CD4+ T cells was observed for the WT animals treated with Fc-OX40L (Fig. 3B), consistent with the earlier finding that CD4+ T cells are necessary for efficacy of treatment (Fig. 1A). Interestingly, an increase in infiltration of CD8+ T cells was observed in the vaccine/Fc-OX40L–treated animals (Fig. 3C), despite the fact that these cells are not necessary for tumor clearance (Fig. 1). Although these cells are present, this analysis does not indicate whether these cells are necessary for tumor clearance (Fig. 1). Although these cells are present, this analysis does not indicate whether this population is active. Analysis for the presence of perforin, used in the cytolytic function of CD8+ cells, revealed that this population does not express perforin, which may suggest that they are not actively functioning as killer cells (data not shown). Importantly, CD4+ T cells also did not demonstrate expression of perforin.

Ligation of OX40 on the surface of Tregs can decrease the suppressive function of this population (30, 31). It is reasonable to assume that one mechanism of Fc-OX40L in tumor eradication is to suppress the regulatory function of these cells, thus allowing the effector cells to kill. Analysis of the CD3+CD4+Foxp3+ Treg population in the brains demonstrates an increase in the presence of Tregs in the tumors of animals treated with Fc-OX40L (Fig. 3D). This is contrary to what was expected; however, it is possible that the increased immune infiltration observed triggers an influx of Tregs to balance the inflammatory response. This analysis also does not indicate whether this population is actively suppressing effector cells; functional analysis of isolated cells would be required to fully understand the effect on Tregs.

The NK cell population was of particular interest as its depletion resulted in loss of treatment efficacy (Fig. 1A). The total CD3−NK1.1+ population, which excludes NKT cells, was assessed and observed to be increased in Fc-OX40L–treated animals only when normalized to tumor burden (Fig. 3E).
pressively, the \(\text{CD}^{3+}\text{NK1.1}^{+}\text{perforin}^{+} \) population was increased in the Fc-OX40L-treated groups (Fig. 3F), demonstrating that NK cells are present and presumably functional. An intriguing observation was the presence of a distinct \(\text{CD}^{3+}\text{NK1.1}^{+} \) population, NKT cells, in the brains of Fc-OX40L-treated animals (Fig. 3G), and, surprisingly, a significant number of these cells expressed perforin (Fig. 3H).

The most noticeable difference among the treatment groups was a granular cell population in the vaccine/Fc-OX40L treatment groups (Fig. 3I). Phenotypic analysis revealed that the majority of cells in this population are \(\text{CD}11b^{+}\text{MHC II}^{+} \), indicative of neutrophils, which like NK cells are able to kill Ab-coated cells through Ab-dependent cell-mediated cytotoxicity (ADCC) (32, 33).

Involvement of the FcR and Ab

The indication that Ab production may play a significant role in tumor elimination combined with the loss of treatment efficacy with NK cell depletion (Fig. 1A) led to the investigation of the role that ADCC may play in treatment-induced tumor regression. ADCC requires the Fc portion of Igs bound to target Ag to bind to FcR on the surface of effector cells, most commonly NK cells. This binding induces lysis of the target cell by the effector cell, generally through the production and release of perforin and granzymes. To test whether this mechanism was the link between the NK cell and the Ab results, treatment efficacy was tested in mice deficient for the \(\gamma \)-chain of the FcR (FcR\(\gamma \) KO). These mice lack the FcRs capable of binding IgG and IgE, and therefore ADCC action mediated through these Igs would not be possible.
Whereas there was a significant difference in the overall survival of saline-treated WT and FcRγ KO animals ($p = 0.0146$), suggestive of an endogenous response involving the FcR, the overall survival of WT and FcRγ KO animals that received vaccine/Fc-OX40L treatment did not differ significantly (Fig. 4A). However, there is clearly a trend toward an intermediate phenotype that is best illustrated in the tumor burden of these animals. Bioluminescence imaging was performed to track changes in tumor burden. These studies showed that the rate of tumor growth was rapid in saline-treated mice, but was slowed by vaccine/Fc-OX40L treatment especially in the WT mice compared with the FcRγ KO mice (Fig. 4B).

To verify whether indeed Abs were necessary for the efficacy of our treatment, we tested our therapy in an animal model deficient for plasma cells (IgMi mice) (27, 28). We observed an intermediate phenotype in response to treatment in these mice. The IgMi vaccine/Fc-OX40L–treated animals survived significantly longer than the saline-treated animals, but did not reach the full survival benefit of the WT animals (Fig. 4C). Once again, the intermediate phenotype in response to treatment is reflected in the tumor burden of these animals, as measured by bioluminescence imaging (Fig. 4D).

Overall, survival after vaccine/Fc-OX40L treatment of the plasma cell-deficient mice paralleled that of FcRγ KO, suggesting that the Ab dependence is likely through a FcR-based mechanism. Whereas Ab-mediated mechanisms are not required for complete tumor clearance, Ab does play a role in controlling tumor growth early in the course of treatment based on the greater tumor burden seen in the IgMi and FcRγ KO mice.

A mechanism of NK killing through ADCC is through the release of perforin and granzymes, and we observed an increase in the perforin-expressing NK cells after treatment; however, when the efficacy of the vaccine/Fc-OX40L treatment was tested in perforin-deficient (perforin KO) animals, we found that treatment was not perforin dependent (Fig. 5).

Tumor infiltration of granular population with Fc-OX40L treatment

The granular population observed by flow cytometry (Figs. 3I, 6A) was further analyzed to determine its role in the therapeutic response. Histologic analysis revealed that tumors from multiple vaccine/Fc-OX40L–treated animals were infiltrated by a moderate to large number of neutrophils, which in some areas of the tumor formed dense aggregates and replaced neoplastic cells. Neutrophils were characterized by a multilobed nucleus and a homogenous eosinophilic cytoplasm. Tumors in saline-treated mice were infiltrated by a moderate number of mononuclear cells, but neutrophils were not a prominent component of the inflammatory cell infiltrate as determined by a pathologist (Fig. 6B). It is important to note that this population is also consistent with the myeloid-derived suppressor cell population, which is often in-

FIGURE 3. Analysis of brain-infiltrating cells. (A) Tumor burden in glioma-bearing animals was determined by bioluminescence imaging 1 d prior to euthanasia. The absolute number of brain-infiltrating lymphocytes for each treatment group was graphed, and the number of brain-infiltrating lymphocytes was normalized relative to tumor burden (p/s). The presence of T lymphocytes was assessed through flow cytometry analysis. (B) The CD4+ T cell population was determined by CD3+CD4+Foxp3-negative staining. (C) The CD8+ T cell population was determined by CD3+CD8+ staining. (D) A Treg population was determined by CD3+CD4+ Foxp3+ staining. The presence of a NK cell population was assessed through flow cytometry analysis. (E) NK cells were determined based on CD3-negative NK1.1+ staining. (F) The NK cell population was analyzed for expression of perforin. (G) The NKT cell population was determined by CD3+ NK1.1+ staining. (H) The NKT cell population was analyzed for expression of perforin. (I) The presence of a CD11b+ MHC II-negative granular population was determined. Each population is represented as percentage of total live cells, absolute number, and number of cells relative to tumor burden. Mean values are shown as ±SEM; n = 6–10/group. Statistical significance is indicated as *$p < 0.05$ compared with saline group. Data represent the combined results from two experiments, and statistical significance was determined by Mann–Whitney U test.
duced by the tumor itself and generally only distinguishable from neutrophils by functional assays. Thus, a suppression assay was performed, revealing that the CD11b⁺ cells isolated from the brains of vaccine/Fc-OX40L-treated animals were not functionally suppressive (Fig. 6C). Furthermore, when nontumor-bearing animals were treated with Fc-OX40L, there was a dramatic increase in the presence of CD11b⁺ cells in the blood, suggesting that the treatment, rather than the tumor, is responsible for neutrophil recruitment (Fig. 6D).

Discussion
Despite the increasing interest in utilizing immunotherapeutic approaches in cancer treatment, the prognosis for patients diagnosed with glioma remains poor. Advances in the field of cancer

FIGURE 4. Involvement of the FcR and Ab. To determine the necessity of Ab-dependent mechanisms in tumor clearance, the tumor growth of FcRγ KO and IgMi mice was compared with WT mice. (A) Overall survival of glioma-bearing WT and FcRγ KO animals; data represent the combined results from two experiments, and statistical significance was determined by log-rank test. (B) Bioluminescence imaging plots tumor burden (p/s) over time; each line represents the average signal for each group. Mean values are shown as ±SEM, n = 5–8/group. Statistical significance is indicated as *p < 0.05 compared with FcRγ KO vaccine/Fc-OX40L group by unpaired Student t test. (C) Survival of IgMi mice compared with WT animals. Data represent the combined results from two experiments, and statistical significance was determined by log-rank test. (D) Average tumor burden (p/s) for each group over time. Mean values are shown as ±SEM, n = 5–7/group. Statistical significance is indicated as *p < 0.05 compared with IgMi vaccine/Fc-OX40L group by unpaired Student t test.
immunotherapy have been incremental, and an inherent hurdle to progress is the lack of a basic understanding of the mechanisms needed for an effective immune-based antitumor response. One route of gaining insight into these mechanisms is to examine the immune players at work during an effective antitumor response. Because prior studies by our laboratory have identified a potent antitumor treatment in a murine model of glioma (25), we were in the position to define the mechanisms responsible for tumor clearance.

In the present report, our data demonstrate that this response is dependent on CD4+ T cell and NK cell responses, as efficacy is lost upon depletion of these cells. In contrast to many other studies, our data indicate that the CD8+ T cell response in this model was critical for tumor regression. In this immunotherapeutic model, however, further work remains to be done to identify the exact mechanism of CD4+ T cell action. CD4+ T cells could potentially be orchestrating the activation and infiltration of other immune cells that carry out the cytotoxic functions. In contrast, CD4+ T cells are capable of cytolytic function through their direct and indirect killing in viral and tumor models (6, 12, 34). It is possible that our model may be reproducing the results observed in these previous publications. Whereas the exact mechanisms remain to be elucidated, the perforin-independent tumor regression would suggest that if CD4+ T cells are mediating a cytotoxic response, pathways such as TRAIL and FasL should be examined.

Many cancer vaccines have been designed to induce a robust CD8+ T cell response. Surprisingly, we did not observe a dependency of CD8+ T cells, as CD8 depletion did not alter survival outcome. An increase in the median survival of animals depleted of CD8+ T cells was observed (Fig. 1A), initially suggesting that CD8+ T cells may have a deleterious effect on survival. However, the overall survival did not achieve statistical significance and further analysis of survival in CD8 KO animals did not reveal any difference in median survival. Although tumor-infiltrating CD8+ T cells were observed in vaccine/Fc-OX40L–treated animals (Fig. 3C), the results of the depletion study suggest these cells may be functionally inactive. It is also possible that, in an attempt to prevent tissue damage from an inflammatory response, the CD8+ T cells may be suppressive. Previous laboratories have shown that CD8+ T cells express the suppressive cytokine IL-10 in response to viral infections in the lung and brain, where prolonged activation may cause deleterious bystander effects (35, 36). These remain attractive theories that need to be tested, and the optimized strategy of vaccine/Fc-OX40L in the GL261 glioma model presents as a robust model to pursue these questions in the future.

Additionally, B cells are required for the efficacy of treatment. B cells may be necessary to act as APCs for CD4+ T cell activity or they may be differentiating into plasma cells and secreting tumor-reactive Abs or Abs required for ADCC. The observation that tumor-bearing animals generate tumor-reactive Abs and the deposition of Ab in the tumors of vaccine/Fc-OX40L–treated animals points in this direction. The loss of control of tumor growth in FcRy KO and IgMi mice suggests that ADCC mechanisms may be a contributing factor in the therapeutic response; however, due to the incomplete loss of efficacy, there are obviously other mechanisms contributing to tumor clearance.

The infiltration of tumor by immune cells is key in understanding the mechanism of tumor clearance. The most notable observation was the infiltration of NK cells, NKT cells, and the large granular population. Recruitment and activation of NK cells, NKT cells, and neutrophils may be mediated by cytokine secretion by CD4+ T cells activated through OX40 ligation. Another explanation could involve direct activation by OX40L. Although the majority of research conducted on OX40:OX40L interactions has focused on activated T cells, there have been some reports indicating that NK cells (37), NKT cells (38), and neutrophils (39) may express the OX40 receptor. It is possible that Fc-OX40L administration is acting directly on the innate immune cells to induce a productive antitumor response, although this remains controversial.

The observed infiltration of innate immune cells is particularly interesting in light of our Ab data (Figs. 2, 4), due to the known link between the NK cells, neutrophils, and ADCC. It is possible that these cells are actively killing Ab-coated tumor cells and inhibiting growth in a FcR-dependent mechanism. The presence of a large granulocyte population remains an interesting potential mechanism of tumor clearance. These cells were found to infiltrate into the tumors of animals treated with Fc-OX40L, and these mice also demonstrated the greatest response to treatment.

As shown by our data, multiple mechanisms of tumor clearance may be occurring in this tumor model. Too often in the design of immunotherapeutic studies, particular immune subsets are targeted while ignoring the remainder of the immune system. This is particularly noted for CD8+ T cell–biased therapies. Many vaccines have focused on CD8+ T cell–restricted Ags or adoptive transfer exclusively (2). Even in the case of CD8+ T cell–mediated tumor clearance, recruitment of additional immune cells is necessary, particularly CD4+ Th1 cells that are needed for mainte-
nance of the CD8+ T cell response. The observation of an increase
in the influx of innate cells to the tumor site upon treatment and
the presence of a tumor-reactive Ab response may be linked
through a FcR-dependent mechanism. A deeper understanding of
immune-mediated mechanism of tumor clearance will certainly
drive the design of immunotherapy regimens in the clinic with the
hope of fully harnessing the power of the immune system to
mediate lasting tumor clearance with memory. Considering that
the CNS may provide unique challenges for tumor immunology, it
is entirely possible that different cell populations may be involved
in effective tumor clearance than that found in solid tumors of
peripheral tissues.

Acknowledgments
We acknowledge the University of Minnesota Masonic Cancer Center
Comparative Pathology Shared Resource for histology preparations. We
are grateful to Deb Todhunter for assistance with the thymidine incorpora-
tion assay. The IgMi mice were a gift of Dr. Ari Waisman.

FIGURE 6. Observation of a distinct granular population. (A) Flow cytometry scatter plots of brain-infiltrating cells revealed a distinct granular
population. Representative plot, data from three independent experiments reproduce this result. (B) Histologic analysis demonstrates a dense aggregate
of neutrophils (arrows) within the tumor of a vaccine/Fc-OX40L–treated animal that is absent in a saline-treated animal. H&E stain. (C) The suppressive capacity of CD11b+ cells was determined by incubating these cells with CD8+ T cells and plate-bound CD3 at a ratio of 1:1. T cell activation
was measured by [3H]-thymidine uptake and graphed as percent suppression, n = 3 for vaccine/Fc-OX40L and saline brain-infiltrating lymphocytes,
n = 1 for saline spleen; all samples were performed in triplicate. This experiment was performed once. (D) Analysis of blood from tumor-
and nontumor-bearing animals at day 14. Mean values are shown as ±SEM; n = 3–5/group. Statistical significance, determined by unpaired Student t test,
is indicated as *p < 0.05.
Disclosures
The authors have no financial conflicts of interest.

References

