Enhanced Atherosclerosis in TIPE2-Deficient Mice Is Associated with Increased Macrophage Responses to Oxidized Low-Density Lipoprotein

Yunwei Lou, Suxia Liu, Cheng Zhang, Guizhong Zhang, Jingjing Li, Mei Ni, Guipeng An, Mei Dong, Xiaoling Liu, Faliang Zhu, Wenqian Zhang, Fei Gao, Youhai H. Chen and Yun Zhang

J Immunol 2013; 191:4849-4857; Prepublished online 30 September 2013;
doi: 10.4049/jimmunol.1300053
http://www.jimmunol.org/content/191/9/4849

Supplementary Material

http://www.jimmunol.org/content/suppl/2013/10/02/jimmunol.1300053.DC1

Why The JI?

• Rapid Reviews! 30 days* from submission to initial decision
• No Triage! Every submission reviewed by practicing scientists
• Speedy Publication! 4 weeks from acceptance to publication

*average

References

This article cites 34 articles, 15 of which you can access for free at:
http://www.jimmunol.org/content/191/9/4849.full#ref-list-1

Subscription

Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Enhanced Atherosclerosis in TIPE2-Deficient Mice Is Associated with Increased Macrophage Responses to Oxidized Low-Density Lipoprotein

Yunwei Lou,*†,1 Suxia Liu,*†,1 Cheng Zhang,* Guizhong Zhang,† Jingjing Li,* Mei Ni,* Guipeng An,* Mei Dong,* Xiaoling Liu,* Faliang Zhu,† Wenqian Zhang,† Fei Gao,* Youhai H. Chen,‡ and Yun Zhang*†

Atherosclerosis has been widely recognized as an inflammatory disease of the arterial wall in which macrophages play a major role. Yet, how macrophage-mediated pathology is regulated during atherosclerosis is poorly understood. TNF-α-induced protein 8-like 2 (TIPE2, also known as TNFAIP8L2) is highly expressed in resting macrophages and can negatively regulate inflammation through inhibiting immune receptor signaling. We report in this article that TIPE2 plays a crucial atheroprotective role likely by regulating macrophage responses to oxidized low-density lipoprotein (ox-LDL). TIPE2-deficient macrophages treated with ox-LDL produced more oxidative stress and proinflammatory cytokines, and exhibited heightened activation of the JNK, NF-κB, and p38 signaling pathways. As a consequence, TIPE2 deficiency in bone marrow–derived cells exacerbated atherosclerosis development in Ldlr−/− mice fed a high-fat diet. Importantly, ox-LDL markedly downregulated TIPE2 mRNA and protein levels in macrophages, suggesting that ox-LDL mediates atherosclerosis by TIPE2 inhibition. These results indicate that TIPE2 is a new inhibitor of atherosclerosis and a potential drug target for treating the disease.

The Journal of Immunology, 2013, 191: 4849–4857.

Received for publication January 9, 2013. Accepted for publication August 29, 2013.

This work was supported by the National 973 Basic Research Program of China (2011CB509306, 2012CB118603), the National High-Tech Research and Development Program of China (2012AA02A510), the Program of Introducing Talents of Discipline to Universities (B07035), the State Program of National Natural Science Foundation of China for Innovative Research Group (81021001), the State Key Program of National Natural Science of China (60831003), the National Natural Science Foundation of China (Grants 81100205, 81171578, 81000126), award funds for Excellent Young and Middle-aged Scientists of Shandong Province (BS2009YY007), and the Independent Innovation Foundation of Shandong University (2010TS048).

Address correspondence and reprint requests to Dr. Yun Zhang, Dr. Youhai H. Chen, or Dr. Suxia Liu, Department of Cardiology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012 China (Y.Z.), Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104 (Y.H.C.), or Shandong University School of Medicine, under pathogen-free conditions (S.L.). E-mail addresses: zhangyun@sdu.edu.cn (Y.Z.), yhc@mail.med.upenn.edu (Y.H.C.), or liusuxia1972@sdu.edu.cn (S.L.).

The online version of this article contains supplemental material.

Abbreviations used in this article: DCF-DA, 2′,7′-dichlorodihydrofluorescein diacetate; EC-SOD, extracellular superoxide dismutase; HO-1, heme oxygenase-1; iNOS, inducible NO synthase; KC, keratinocyte chemotactrant; LDL, low-density lipoprotein; MOMA-2, anti-monocyte/macrophage Ab; NQO1, NAD(P)H:quinone oxidoreductase 1; ox-LDL, oxidized low-density lipoprotein; qPCR, quantitative PCR; ROS, reactive oxygen species; TIPE2, TNF-α–induced protein 8-like 2 (TNFAIP8L2); WT, wild type.

Copyright © 2013 by The American Association of Immunologists, Inc. 0022-1767/13/1300053

www.jimmunol.org/cgi/doi/10.4049/jimmunol.1300053
polyoxyn B sulfate (60,000 U/I) in filter-top cages. One day before transplantation, Ldlr−/− (age 11 wk, n = 16; purchased from Model Animal Research Center of Nanjing University, Nanjing, China) mice were subjected to lethal irradiation with 1000 rad (10 Gy) to eliminate bone marrow stem cells. Donor bone marrow from 11-wk-old TIPE2−/− mice (n = 6, as previously described [8, 11, 13]) in C57BL/6J background or age- and sex-matched wild type (WT; C57BL/6J background; n = 6) was prepared by flushing the femur and tibia as previously described (17). For transplantation, recipient mice were injected with 5 × 10^6 bone marrow cells through the tail vein. Eight of these animals were transplanted with WT bone marrow and the other eight with TIPE2−/− bone marrow. After 4 wk recovery on a sterilized regular chow, the mice were switched to a high-fat diet for 8 wk to induce atherosclerotic lesion development. A high-fat diet contained 15% fat and 0.25% cholesterol, whereas a control diet had 5% fat and no added cholesterol. Twelve weeks after transplantation, chimerism was analyzed as described previously (18). Primers specific for the LDLR and TIPE2 of the donor mice are listed in Supplemental Table I. The process is shown in Supplemental Fig. 1.

Twelve weeks after bone marrow transplantation, blood was collected after overnight fasting to determine plasma cholesterol and triglyceride concentrations using commercial kits (Roche Diagnostics, Indianapolis, IN). Peripheral blood cell counts were analyzed by Drew Hemavet 950FS (Drew Scientific, Oxford, U.K.) after 6 wk of high-fat feeding.

Atherosclerotic lesion analysis

Animals were anesthetized by i.p. pentobarbital injection and exsanguinated by femoral artery transection. In situ perfusion fixation through the left ventricle was performed by normal saline instillation for 15 min, followed by infusion of 4% paraformaldehyde (Sigma-Aldrich, St. Louis, MO) for 30 min. The heart and aorta were dissected and fixed in 4% paraformaldehyde, and subsequently, sequential sections were cut at 6-μm thickness every 50 μm apart using Image Pro plus 6.0 software (Media Cybernetics).

Immunohistochemistry and immunofluorescence

Immunohistochemistry and immunofluorescence was performed as previously described (12). The primary Abs were anti-monoocyte/macrophage Ab (MoMA-2) (1:100 dilution; Serotec), anti-CD3 (1:100 dilution; Abcam), and anti–MCP-1 (1:100; Abcam); the secondary Abs were anti-rabbit IgG (H+L) (F(ab)2) fragment (Alexa Fluor 555 Conjugate, green, CST, 1:1000 dilution) and anti-rat IgG (H+L; Alexa Fluor 488 Conjugate, red, CST, 1:1000 dilution). Negative control was stained with normal IgG (1:100 dilution; Invitrogen, Carlsbad, CA). Sections were counterstained with hematoxylin. The sections were examined under an optical microscope (Olympus IX71).

Cell culture

For isolation of elicited peritoneal macrophages, age- and sex-matched WT and TIPE2−/− mice were injected i.p. with 1.0 ml of 3% sterile thiglycollate broth (Sigma-Aldrich). Four days after the injection, cells were harvested by i.p. lavage with ice-cold PBS. Then cells were seeded in DMEM medium (Life Technologies-BRL, Carlsbad, CA) with 10% FBS on 12-cell plates (Corning, Corning, NY) at 5 × 10^4 cells/well for RNA extraction or in 6-well plates (Corning) at 1 × 10^5 cells/well for flow cytometry or Western blot experiments.

Quantitative real-time PCR

Total RNA of cells or tissues was prepared using the TRIzol reagent (Invitrogen). Quantitative PCR (qPCR) for genes of interest was performed using iQ5SYBR Green iCycler iQ5 (BioRad, Hercules, CA). cDNA levels were determined using a standard curve and normalized to β-actin. Amplification conditions were: 95˚C for 3 min, 95˚C for 15 s, 55˚C for 30 s for 30 min. Flow cytometry was performed using the Beckman Coulter Cytomics FC 500 (Beckman Coulter, Fullerton, CA). A total of 10,000 stained cells was analyzed.

Analysis of NO production

Primary peritoneal macrophages incubated with DMEM medium containing 10% FBS overnight before stimulation were plated at 3 × 10^4 cells/well in a 24-well culture plate (Corning). After the cells were treated with 50 μg/ml ox-LDL (Peking Union Medical University, Beijing, China) for 1 h and then incubated with 10 μmol/l 2′,7′-dichlorodihydrofluorescein diacetate (DCF-DA; Sigma-Aldrich) or 10 μmol/l 4-amino-5-methylamino-2′,7′-dihydrofluorescein diacetate (Molecular Probes, Eugene, OR) for 30 min. Flow cytometry was performed using the Beckman Coulter Cytomics FC 500 (Beckman Coulter, Fullerton, CA). A total of 10,000 stained cells was analyzed.

FIGURE 1. TIPE2 deficiency in hematopoietic cells accelerates atherosclerosis in Ldlr−/− mice. (A) Representative images of Oil Red O–stained descending aortas of mice (en face assay). (B) Quantitative analysis of en face lesion area. (C) Representative images of Oil Red O–stained sections of the aortic sinus. (D) Quantitative analysis of the cross-sectional area of the aortic root in Ldlr−/− recipients. Original magnification ×100. Each circle indicates an individual mouse. Data are shown as mean ± SD (n = 8). *p < 0.05 versus WT controls.
Western blot

Cells were lysed and the supernatant was collected to determine the protein concentration. Fifty micrograms of proteins was separated by 12% SDS-PAGE and transferred to polyvinylidene difluoride membrane (Millipore, Billerica, MA). After being blocked with 5% BSA in TBST, the membranes were incubated with primary Abs: anti-TIPE2 (12), anti-iNOS, anti-ERK and p-ERK, anti-p38 and p-p38 (1:1000; Cell Signaling Technology, Beverly, MA), anti-JNK and p-JNK, anti-IκB and p-IκB (1:500; Cell Signaling Technology), and anti-β-actin (1:1000; Santa Cruz, CA). Then immunoblotting was conducted with secondary Abs (goat anti-rabbit IgG or goat anti-mouse IgG) conjugated with peroxidase. After washing, bound

![A](image1)

![B](image2)

![C](image3)

![D](image4)

![E](image5)

![F](image6)

![G](image7)

![H](image8)

FIGURE 2. Macrophages, collagen, and necrosis in atherosclerotic lesions from WT- or TIPE2−/−-transplanted Ldlr−/− mice. (A and B) Collagen and necrosis in the aortic lesions were detected by Masson’s trichrome staining and H&E staining, respectively, and quantified, as described in (B). (C and D) Macrophages and T cells in the aortic lesions were stained by immunohistochemistry using Abs against MOMA-2 and CD3 (left panel). Quantitative analysis of macrophages from WT- or TIPE2−/−-transplanted mice. Percentages of the MOMA-2+ and CD3+ areas to the total lesion area were determined by microscopy with 100× magnification (right panel), using three sections per animal and averaged for each group. Scale bars, 100 μm. (E) The genotypes of TIPE2 were confirmed with PCR. Mice transplanted with WT bone marrow cells had a 300-bp PCR product, whereas mice transplanted with TIPE2−/− bone marrow cells had no such a product. (F) Serum concentrations of IL-6 and MCP-1 in Ldlr−/− recipients determined by ELISA. (G) Quantitative real-time PCR analysis of total RNA extracted from aortic tissue of recipient Ldlr−/− mice was performed for IL-1β, IL-6, IL-12p40, iNOS, KC, and MCP-1. Shown is the gene expression normalized to β-actin expression. Data are shown as mean ± SEM (n = 3). (H) Plasma total cholesterol, triglycerides, LDL, and high-density lipoprotein showed no significant differences between Ldlr−/− mice that received TIPE2−/− and WT bone marrow. Data are shown as mean ± SE (n = 8). *p < 0.05, **p < 0.01 versus WT controls.
peroxidase activity was detected by the ECL detection system (ECL, F-CheBiLu 6pro, DNR, Tel Aviv, Israel) using the SuperSignal West Pico kit (Pierce).

ELISA assay
The concentrations of IL-6 and MCP-1 in sera or in culture supernatants were determined using commercial ELISA kits for IL-6 and MCP-1 (eBioscience, San Diego, CA), according to the manufacturer’s instructions.

Statistical analysis
All analyses were performed using SPSS 16.0 (SPSS, Chicago, IL). Data were expressed as mean ± SE. An independent-samples two-tailed Student t test was used to compare continuous data for between-group differences, and comparisons among multiple groups involved the use of ANOVA with the least significant difference post hoc test. For analysis of plaque morphometry and areas of immunohistochemical or immunofluorescent positive staining, nonparametric Mann–Whitney U test was used for group comparison. Each experiment was conducted at least three times. The p values < 0.05 were considered statistically significant.

Results

TIPE2 deficiency in hematopoietic cells accelerates atherosclerosis
To study the role of TIPE2 in atherogenesis, bone marrow transplantation was performed in atherosclerosis-prone female Ldlr−/− mice using TIPE2−/− donor cells. The en face area of the aortic atherosclerotic lesions was significantly increased in Ldlr−/− (5.69 ± 1.02 versus 3.03 ± 0.41%) mice transplanted with TIPE2−/− bone marrow cells compared with the mice transplanted with control cells (Fig. 1A, 1B). Similarly, the cross-sectional area of the atherosclerotic lesions in the aortic root was also increased by an average of 44% in Ldlr−/− mice transplanted with TIPE2−/− bone marrow cells relative to the mice transplanted with control cells (Fig. 1C, 1D). These differences were significant (p < 0.05; Fig. 1B, 1D). Thus, TIPE2 deficiency in bone marrow–derived cells resulted in an accelerated atherosclerotic lesion formation.

TIPE2 deficiency in hematopoietic cells affects the amount of macrophages of atherosclerotic lesions
To further explore the characteristics of atherosclerosis, we next analyzed the plaque morphology and composition. The necrosis-positive areas that were nuclear, fibrotic, and eosin-negative were equal between TIPE2−/− cell– and WT cell–transplanted mice (Fig. 2A). To quantify the extent of fibrosis, collagen in lesions was stained with Masson’s trichrome, but no difference in the extent of fibrosis was found between the two groups (Fig. 2B). Interestingly, quantitative morphometry of the cross-sectional area of the aortic lesions by immunohistochemistry showed a significant increase in the amount of macrophages per lesion in TIPE2−/− cell–transplanted mice in comparison with the WT cell–transplanted mice (p < 0.05; Fig. 2C). However, the number of CD3+ T cells in lesions of TIPE2−/− chimeras was not significantly increased compared with lesions from WT controls; although there appeared to be a trend for an increment, the difference was not statistically significant (Fig. 2D). These data suggest that TIPE2 expression in bone marrow–derived cells affects the inflammatory component of atherosclerotic lesions in a significant manner.

TIPE2 deficiency in hematopoietic cells does not affect chimerism, blood cell counts, and plasma lipid levels but increases proinflammatory cytokine expression
After 8 wk of high-fat diet feeding, repopulation of the bone marrow cells in the recipients was confirmed by detection of TIPE2 gene by PCR using genomic DNA from peripheral blood cells (18). TIPE2 mRNA was detected in the cells from the control group, but not in those from the TIPE2−/− group (Fig. 2E). The levels of repopulation were also confirmed for the Ldlr genes of donor origin by PCR, because both sets of donor bone marrow cells were Ldlr+. Consistently, the WT Ldlr gene was detected in the genomic DNA extracted from the peripheral whole blood cells of all mice from both groups. On the contrary, the mutant Ldlr gene in both groups was below the detectable level after 30 PCR cycles (data not shown). These results indicated a complete reconstitution of the recipient hematopoietic cells by the donor bone marrow cells.

To examine the effects of bone marrow transplantation on blood cells and biochemistry, we determined relative blood cell counts and plasma lipid levels. All blood cell counts were normal and showed no significant difference between groups (Supplemental Table II). As shown in Fig. 2H, there were no significant differences in total plasma cholesterol, triglycerides, LDL, and high-density lipoprotein between Ldlr−/− mice receiving TIPE2−/− bone marrow cells and those receiving WT cells. In addition, no significant differences in body weights were observed between groups (data not shown). These results suggest that TIPE2 deficiency in hematopoietic cells does not affect lipoprotein metabolism and blood cell counts of Ldlr−/− recipient mice.

To determine the potential contribution of nonlipoprotein circulating factors, we examined inflammatory cytokines in the serum of transplanted Ldlr−/− mice. Serological testing showed signifi-
cantly higher levels of inflammatory cytokines such as IL-6 and MCP-1 in the blood of mice transplanted with TIPE2−/− bone marrow cells compared with mice transplanted with WT cells (p < 0.05 and p < 0.01, respectively; Fig. 2F). We also performed quantitative RT-PCR for inflammatory mediators using aortic roots isolated from TIPE2−/− Ldlr−/− and WT→Ldlr−/− mice fed a high-fat diet for 8 wk. Consistent with the increased vascular lesion formation in TIPE2−/−→Ldlr−/− mice, the production of proinflammatory cytokines and chemokines, such as IL-1β, IL-6, IL-12p40, iNOS, keratinocyte chemoattractant (KC), and MCP-1, was indeed significantly enhanced in TIPE2−/−→Ldlr−/− mice compared with WT→Ldlr−/− mice (p < 0.05 or p < 0.01; Fig. 2G). These results are consistent with the histological data that showed increased accumulation of macrophages in the lesions of TIPE2−/− chimeric mice, indicating an escalation of local inflammation. These results suggest that TIPE2 deficiency in hematopoietic cells increases the inflammatory cytokines in animals and may contribute to the progression of atherosclerosis.

Ox-LDL downregulates TIPE2 expression in J774A.1 and peritoneal macrophages

To assess the effects of ox-LDL on macrophage expression of TIPE2, J774 cells, a murine macrophage-like cell line, and peritoneal macrophages were treated with ox-LDL, a major atherogenic factor (22). As shown in Fig. 3, ox-LDL significantly downregulated the expression levels of TIPE2 mRNA and protein in murine macrophages. The downregulation of TIPE2 was detectable as early as 1 h and was sustained 48 h after ox-LDL treatment in J774 cells (p < 0.01; Fig. 3A). We also examined the effect of ox-LDL on TIPE2 expression in murine peritoneal macrophages. As expected, the levels of TIPE2 mRNA decreased significantly in both dose-dependent and time-dependent manners (all p < 0.01; Fig. 3B, 3C). Furthermore, we found that the expression levels of TIPE2 protein by Western blot decreased in WT peritoneal macrophages treated with 50 μg/ml ox-LDL (p < 0.01; Fig. 3D, 3E). These results indicate that ox-LDL can downregulate TIPE2 expression both in J774 cells and peritoneal macrophages, suggesting that TIPE2 may be involved in the regulation of ox-LDL–mediated signaling in macrophages.

TIPE2 expression in macrophages regulates ox-LDL–induced reactive oxygen species generation

To study possible functions of TIPE2 expression in macrophages, we isolated and cultured peritoneal macrophages from WT and TIPE2−/− mice, and first focused on cellular reactive oxygen species (ROS) generation. As shown in Fig. 4, ox-LDL significantly downregulated the expression of both TIPE2 mRNA and protein in murine macrophages. The downregulation of TIPE2 was detectable as early as 1 h and was sustained 48 h after ox-LDL treatment in J774 cells (p < 0.01; Fig. 4A). We also examined the effect of ox-LDL on TIPE2 expression in murine peritoneal macrophages. As expected, the levels of TIPE2 mRNA decreased significantly in both dose-dependent and time-dependent manners (all p < 0.01; Fig. 3B, 3C). Furthermore, we found that the expression levels of TIPE2 protein by Western blot decreased in WT peritoneal macrophages treated with 50 μg/ml ox-LDL (p < 0.01; Fig. 3D, 3E). These results indicate that ox-LDL can downregulate TIPE2 expression both in J774 cells and peritoneal macrophages, suggesting that TIPE2 may be involved in the regulation of ox-LDL–mediated signaling in macrophages.

Expression levels of NOX2 and p47phox, two key subunits of NADPH oxidase (23, 24), were higher in TIPE2−/− macrophages than WT cells. Expression levels of catalase mRNA was not different between the two groups of macrophages. Interestingly, the mRNA levels of NOX2 and p47phox, two key subunits of NADPH oxidase (23, 24), were higher in TIPE2-deficient macrophages in response to ox-LDL treatment (p < 0.05 and p < 0.01, respectively; Fig. 4D). These results suggest that the accumulation of ROS in TIPE2-deficient macrophages is due to increased oxidant gene expression and decreased antioxidant gene expression.

TIPE2 expression in macrophages promotes the expression of antioxidant pathway genes

Why does TIPE2 deficiency lead to the significant loss of antioxidant enzyme gene expression? To address this question, we investigated upstream regulators of the antioxidant response. Quantitative real-time PCR was used to determine the expression...
of several key transcription factors, such as DJ-1, which regulates nuclear transport of Nrf-2 whose downstream target genes are important in the cellular antioxidant defense system (25), and the FOXO family, which regulates the expression of antioxidant enzyme genes (26). We found no difference in DJ-1 expression between the two groups of macrophages treated with ox-LDL (Fig. 5A). However, Nrf-2 expression was decreased in TIPE2-deficient cells, after exposure to 50 μg/ml ox-LDL for 4 h (p < 0.001; Fig. 5B). FOXO1 and FOXO4 expression were also significantly decreased in TIPE2-deficient cells, whereas no detectable differences in FOXO3a expression were noted between the two groups (p < 0.001 and p < 0.01, respectively; Fig. 5C–E). It is likely that attenuated activity of these two important antioxidant pathways contribute, at least in part, to the loss of the ability to mount an antioxidant response in TIPE2-deficient macrophages.

TIPE2 deficiency affects inflammatory response genes

To evaluate whether TIPE2 expression in macrophages has an impact on the inflammatory response against ox-LDL, we isolated peritoneal macrophages from WT and TIPE2−/− mice. We first compared the uptake of modified LDL. At two different time points (15 min and 2 h), we could not detect a difference between WT and TIPE2−/− macrophages in the uptake of either Dil-labeled acetylated LDL or ox-LDL (data not shown), suggesting that endocytosis of modified LDL was not affected by TIPE2 deficiency. In addition, the TIPE2−/− group showed no change in the number of ox-LDL–induced foam cells compared with WT macrophages as detected by Red Oil O staining (data not shown). These data indicate that TIPE2 is dispensable for endocytosis of modified LDL and foam cell formation. The mRNA and protein levels of iNOS in ox-LDL–stimulated macrophages were determined by qPCR and Western blot, respectively. Both mRNA and protein expression levels of iNOS were significantly higher in untreated TIPE2-deficient macrophages as compared with WT cells. Taken together, these results suggest that TIPE2 diminishes atherosclerosis possibly by negatively regulating NF-κB pathways.

TIPE2 inhibits MAPK and NF-κB pathways in ox-LDL–stimulated macrophages

Previous studies showed that TIPE2 can regulate cytokine production through the MAPKs and the NF-κB signaling pathways (8). To determine whether TIPE2 regulates these two pathways in atherogenic macrophages, TIPE2-deficient macrophages were stimulated with ox-LDL, and the activation of NF-κB, JNK1/2, p38, and ERK1/2 was analyzed. As shown in Fig. 7, once stimulated by ox-LDL, TIPE2-deficient macrophages showed more rapid phosphorylation and degradation of κB inhibitor (IkB) as compared with WT cells. Phosphorylation of IkB was also increased in untreated TIPE2-deficient macrophages, suggesting that TIPE2 may regulate the basal levels of the NF-κB activity. Phosphorylation of JNK1/2 and p38 was faster and stronger in TIPE2-deficient macrophages than that in WT cells, indicating enhanced signaling in ox-LDL–treated, TIPE2-deficient macrophages and suggesting that TIPE2 may negatively regulate these signaling pathways, even at the basal levels. By contrast, slightly increased ERK activation was observed in ox-LDL–stimulated, TIPE2-deficient macrophages as compared with WT cells. Taken together, these results suggest that TIPE2 diminishes atherosclerosis possibly by negatively regulating NF-κB, JNK, and p38 pathways.

Discussion

Atherosclerosis is widely appreciated as a chronic inflammatory disease of the vessel wall, characterized by the accumulation of lipid-laden macrophages and fibrous tissues in the large arteries (1, 27). In this study, we first found that TIPE2, a newly identified regulator of immune receptor signaling (8), is expressed in atherogenic macrophages and plays an important atheroprotective role.
role. The effects of TIPE2 in the pathogenesis of atherosclerosis were examined in \(Ldlr^{-/-} \) mice reconstituted with TIPE2 \(^{-/-}\) macrophages or controls, and the effect appears to be mediated by several key atherogenic processes including intracellular oxidative stress, proinflammatory cytokine secretion, and foam cell signaling in response to ox-LDL stimulation.

In this study, we first report that TIPE2 is a new atheroprotective protein. To study the roles of TIPE2 in atherogenesis, we performed bone marrow transplantation in atherosclerosis-prone mice (\(Ldlr^{-/-} \)), using TIPE2 \(^{-/-}\) and control donor cells. We found that atherosclerotic lesions significantly increased in recipients with TIPE2 \(^{-/-}\) bone marrow cells compared with controls. Interestingly, TIPE2 expression in bone marrow–derived cells significantly affects the amount of macrophages in atherosclerotic lesions. These data indicate that TIPE2 deficiency in bone marrow–derived cells resulted in an increased atherosclerotic lesion formation, indicating that macrophages may play an important role during atherogenesis.

Early studies showed that TIPE2 was highly expressed in macrophages (8, 12), but whether TIPE2 expression is regulated by ox-LDL in atherogenesis remains unclear. To address this
FIGURE 7. TIPE2 deficiency increased IκB, JNK, and p38 phosphorylation in macrophages. Peritoneal macrophages from WT and TIPE2−/− mice (n = 4) were incubated with or without ox-LDL (50 μg/mL) for the indicated time. Total cell lysates were examined with Abs against total or phosphorylated IκBα, JNK1/2, p38, and ERK1/2 by Western blot. Significant increases in c-JNK and p38 phosphorylation in TIPE2-deficient macrophages were observed 5–60 min after ox-LDL stimulation, whereas increases in p-ERK phosphorylation were noted at 30 min. β-Actin served as a protein loading control.

issue, we examined TIPE2 expression levels in murine macrophage cell line J774.A.1 and peritoneal macrophages treated with ox-LDL in vitro. We found that ox-LDL significantly downregulated the expression levels of TIPE2 in J774.A.1 cells and peritoneal macrophages. These results indicate for the first time, to our knowledge, that TIPE2 may provide a novel target for the intervention of ox-LDL–induced effects during atherosclerosis.

Oxidation of LDL is a major pathogenic process in the development of atherosclerosis. A number of studies showed that ox-LDL has chemoattractant activity on monocytes, promotes their differentiation into macrophages, but inhibits their mobility and triggers the release of proinflammatory cytokines by binding to CD36 (28). Our data indicate that lack of TIPE2 expression in bone marrow–derived cells exacerbates the progression of atherosclerosis not by affecting lipoprotein metabolism, but by increasing the proinflammatory responses to ox-LDL stimulation.

The mechanisms underlying the atheroprotective effects of TIPE2 may involve several aspects. First, TIPE2 expression in macrophages affects the degree of ROS generation, particularly in conditions of increased oxidative stress. Increased generation of ROS may induce inflammatory responses and contribute to atherogenesis (29, 30). In the untreated condition, we found that TIPE2-deficient macrophages displayed increased DCF fluorescence levels compared with WT controls. This may be the result of increased baseline levels of oxidant gene expression and decreased levels of antioxidant enzymes in TIPE2-deficient macrophages. Upon treatment with ox-LDL, the DCF fluorescence levels were upregulated markedly in macrophages with TIPE2−/− genotype compared with WT controls, suggesting that TIPE2 expression in macrophages inhibits ROS generation. This result coincides with the notion that TIPE2 serves as a negative regulator of oxidative burst during infection (13). Recent studies suggest that HO-1, a rate-limiting enzyme in the catabolism of heme, plays an antiatherosclerotic role by reducing ferritin and seques-tering Fe, which is an important catalyst for ROS formation (21, 31, 32). We found that TIPE2-deficient macrophages expressed lower levels of HO-1, NQO1, and EC-SOD, especially after exposure to ox-LDL. In contrast, the levels of NOX2 and p47phox, the important sources of ROS in macrophages (23, 24), were increased in response to ox-LDL stimulation in TIPE2-deficient macrophages. These data suggest that the accumulation of ROS in TIPE2-deficient macrophages is due to increased oxidant gene expression and decreased antioxidant enzyme expression. In addition, TIPE2 also affects upstream regulator, such as Nrf2, FOXO1, and FOXO4, of the antioxidant response. It appears that the mechanism behind the global drop in antioxidant gene expression is related to the decline in Nrf2, FOXO1, and FOXO4 expression, although the exact regulatory mechanisms remain to be elucidated.

The second mechanism involves modification of inflammatory responses by TIPE2. It was reported that TIPE2 knockout and knockdown cells produced more IL-6 and IL-12 upon stimulation with LPS (8). In this study, we used primary peritoneal macrophages from WT and TIPE2−/− mice to determine the ability of ox-LDL to induce cytokine expression. Deficiency of the TIPE2 gene in macrophages significantly accelerated ox-LDL–mediated activation of the inflammatory response genes, such as iNOS, IL-1β, KC, and IL12p40. iNOS, an enzyme induced in inflammation and able to generate O2− and peroxynitrite (ONOO−), is a proinflammatory molecule whose expression is regulated by NF-κB. Studies demonstrated that genetic deficiency of iNOS in ApoE null mice fed a Western diet caused a decrease in atherosclerosis (33). In this article, we report that both the mRNA and protein expression levels of iNOS were increased in TIPE2-deficient macrophages after ox-LDL stimulation, suggesting that TIPE2 plays an atheroprotective role possibly through holding back the generation of iNOS. Similarly, the mRNA expression levels of other cytokines, such as IL-1β, KC, and IL12p40, were increased in TIPE2−/− macrophages treated with ox-LDL. These results suggest that TIPE2 could alleviate atherosclerosis by negatively regulating cytokine production in macrophages.

The third mechanism may involve modification of intracellular signaling pathways by TIPE2. Previous studies showed that ox-LDL can activate MAPKs JNK1 and JNK2 through CD36 (34). Thus, in this study, we compared the ox-LDL–induced signals in TIPE2-deficient macrophages and WT controls. The results showed an increased phosphorylation of JNK1/2, p38, and IκB in TIPE2-deficient macrophages with ox-LDL treatment, suggesting that TIPE2 diminishes atherosclerosis by negatively regulating JNK1/2, NF-κB, and p38 pathways. The activation of the NF-κB pathway in macrophages leads to more severe atherosclerosis in mice, possibly by affecting the proinflammatory and anti-inflammatory balance that controls the development of atherosclerosis.

In conclusion, our data indicate that TIPE2 expression in macrophages may play an atheroprotective role by negatively regulating ox-LDL–mediated inflammatory responses. This finding may not only advance our understanding of the mechanisms of atherosclerosis, but also lead to the development of TIPE2-based strategies for treating the disease.

Acknowledgments
We thank Prof. Wensheng Sun for advice and Dr. Chunyan Hao for helpful comments on histological analysis.

Disclosures
The authors have no financial conflicts of interest.
References

33. Kuhlencordt, P. J., J. Chen, F. Han, I. Tabas. 2011. Macrophages in the pathogenesis of athero-