Identifying the Initiating Events of Anti-
Listeria Responses Using Mice with
Conditional Loss of IFN-γ Receptor Subunit
1 (IFNGR1)

Sang Hun Lee, Javier A. Carrero, Ravindra Uppaluri, J.
Michael White, Jessica M. Archambault, Koon Siew Lai,
Szeman Ruby Chan, Kathleen C. F. Sheehan, Emil R.
Unanue and Robert D. Schreiber

J Immunol 2013; 191:4223-4234; Prepublished online 18
September 2013;
doi: 10.4049/jimmunol.1300910
http://www.jimmunol.org/content/191/8/4223

Supplementary Material
http://www.jimmunol.org/content/suppl/2013/09/18/jimmunol.1300910.DC1

References
This article cites 63 articles, 37 of which you can access for free at:
http://www.jimmunol.org/content/191/8/4223.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Identifying the Initiating Events of Anti-Listeria Responses Using Mice with Conditional Loss of IFN-γ Receptor Subunit 1 (IFNGR1)

Although IFN-γ is required for resolution of Listeria monocytogenes infection, the identities of the IFN-γ–responsive cells that initiate the process remain unclear. We addressed this question using novel mice with conditional loss of IFN-γR (IFNGR1). Itgax-cre+Ifngr1f/f mice with selective IFN-γ unresponsiveness in CD8α+ dendritic cells displayed increased susceptibility to infection. This phenotype was due to the inability of IFN-γ–unresponsive CD8α+ dendritic cells to produce the initial burst of IL-12 induced by IFN-γ from TNF-α–activated NK/NKT cells. The defect in early IL-12 production resulted in increased IL-4 production that established a myeloid cell environment favoring Listeria growth. Neutralization of IL-4 restored Listeria resistance in Itgax-cre+Ifngr1f/f mice. We also found that Itgax-cre+Ifngr1f/f mice survived infection with low-dose Listeria as the result of a second wave of IL-12 produced by Ly6Chi monocytes. Thus, an IFN-γ–driven cascade involving CD8α+ dendritic cells and NK/NKT cells induces the rapid production of IL-12 that initiates the anti-Listeria response. The Journal of Immunology, 2013, 191: 4223–4234.

Listeria monocytogenes is an opportunistic pathogen that causes significant disease in neonates, the elderly, and immunocompromised individuals (1). Production of IFN-γ and cellular responsiveness to this cytokine in the host are crucial for the effective resolution of infection, as originally demonstrated using a neutralizing mAb to IFN-γ (2) and subsequently using mice lacking genes encoding IFN-γ (3); IFNGR1, the major ligand binding chain of the IFN-γR (4); or STAT1, the major transcription factor that mediates IFN-γR signaling (5). Other studies using SCID mice lacking T and B lymphocytes revealed that NK cells were a major source of IFN-γ early in the infection and that the IFN-γ produced by NK cells activated microbicidal activity in macrophages, thus providing the host with an ability to control the infection until such time that sterilizing adaptive immunity to the organism could develop (6–8). A deeper understanding of this innate protective response to Listeria infection came when the cytokines TNF-α and IL-12 were found to play important roles in the induction of IFN-γ from NK cells (6–11). This work culminated in defining the feed-forward amplification process that leads to development of innate immunity not only to L. monocytogenes but also to many other intracellular pathogens (12).

However, despite all that is known about the importance of IFN-γ in the anti-Listeria response, the identities of the specific cellular targets of IFN-γ required for initiation of the response and effective control of the infection remain to be established. An early study used transgenic mice expressing a dominant-negative, truncated form of IFNGR1 in certain myeloid cell populations to show that myeloid cell responsiveness to IFN-γ was critical for promoting protective host responses to L. monocytogenes (13). Another study used radiation bone marrow chimera approaches to demonstrate that IFN-γR expression in the hematopoietic compartment was required for controlling Listeria infection (14). However, because functional IFN-γRs are expressed in almost every host cell type (15), until now, it has not been possible to more precisely identify the key IFN-γ–responsive cells required to initiate the anti-Listeria response.

Recently, much attention has focused on the role of dendritic cells (DCs) in Listeria infection. DCs are the primary cell type that sense, ingest, and present exogenous Ags from pathogens to initiate the pathogen-specific adaptive-immune response (16). Within this population, the CD8α+/CD103+ DC subsets were shown to play a major role in cross-presenting exogenous Ags to CD8+ T cells, thereby inducing host-protective cytotoxic T cell responses (17, 18). Recent studies using CD11c-DTR mice, in which the diphtheria toxin receptor was expressed only in CD11c+ cells, revealed that mice depleted of all DCs did not develop Listeria infection in the spleen (19, 20). Furthermore, using Batf3−/− mice, which selectively lack CD8α+CD103+ DCs, a role was demonstrated for these specific DC subsets in establishing Listeria infection in the spleen and liver (21). Together, these findings support a scenario in which migratory CD8α+ DCs carry L. monocytogenes...
from their entry point in the splenic marginal zone to the periarteriolar lymphoid sheaths (PALS), where L. monocytogenes then multiply in the ensuing 12–24 h and establish an active infection (22, 23).

Although the aforementioned studies reveal a critical role for CD8α/CD103+ DCs in L. monocytogenes transport and initiation of infection, they do not provide insight into the interactions of these cells with other immune cells and cytokines. Although the cross-presenting functions of CD8α/CD103+ DCs are known to be influenced by type I IFNs (24), little is known about the functional effects of IFN-γ on these cells. Thus, we asked whether IFN-γ responsiveness in CD8α/CD103+ DCs directly influenced their ability to initiate anti-Listeria responses. Therefore, we generated mice with a floxed Ifngr1 gene (Ifngr1f/f) on a C57BL/6 background and then bred them to either C57BL/6 Vav-cre or Ifgx-cre mice to impart IFN-γ unresponsiveness either broadly in hematopoietic cells or specifically in the CD8α/CD103+ DC subsets, respectively (25, 26). Using these novel mice, we report in this article the elucidation of the events that underlie development of the innate immune response to L. monocytogenes and show that IFN-γ responsiveness in CD8α/CD103+ DCs plays a critical role in initiating this process.

Materials and Methods

Generation of Ifngr1f/f mice

The TNL0X1-3–targeting vector (27) was used to generate the conditional Ifngr1-targeting construct and electroporated into B6/Blu embryonic stem (ES) cells (28). After selection, ES cells were analyzed for homologous recombination by PCR using a 5′ external primer (f3: 5′-CGGCTGTCGCTTTTGGTGTAAT-3′, Integrated DNA Technologies [IDT]) and a Neo primer (r3: 5′-TTGCCCTTTGGATCTG-3′; IDT). The correctly targeted ES clone was expanded and transiently transfected with pTurbo-Cre (ES cell core; Washington University) for recombination using 5′ positive clones were verified by Southern blotting following BamHI digestion using 5′ and 3′ external primer (f3: 5′-AAACAGTAAACCCAGGGCTTTGTAC-3′, IDT). PCR-positive clones were selected by Southern blotting following BamHI digestion using 5′ and 3′ external probes (Fig. 1A). One ES cell clone displaying complete integration of the targeting construct was verified by PCR using loxp-specific primer sets (f1: 5′-AACACGTTAACACCAGGGCTTTGTTAC-3′, Integrated DNA Technologies [IDT]) and a Neo primer (r3: 5′-GGTGTGGCTGCTTTTGGTGTAAT-3′, IDT). PCR-positive clones were transfected with pTURBO-Cre (ES cell core; Washington University) for recombination using 5′ and 3′ external probes (Fig. 1A). One ES cell clone displaying complete integration of the targeting construct was verified by PCR using loxp-specific primer sets (f1: 5′-AACACGTTAACACCAGGGCTTTGTTAC-3′, Integrated DNA Technologies [IDT]) and a Neo primer (r3: 5′-GGTGTGGCTGCTTTTGGTGTAAT-3′, IDT). The correctly targeted ES clone was expanded and transiently transfected with pTURBO-Cre (ES cell core; Washington University) for recombination using 5′ and 3′ external probes (Fig. 1A). One ES cell clone displaying complete integration of the targeting construct was verified by PCR using loxp-specific primer sets (f1: 5′-AACACGTTAACACCAGGGCTTTGTTAC-3′, Integrated DNA Technologies [IDT]) and a Neo primer (r3: 5′-GGTGTGGCTGCTTTTGGTGTAAT-3′, IDT). The correctly targeted ES clone was expanded and transiently transfected with pTURBO-Cre (ES cell core; Washington University) for recombination using 5′ and 3′ external probes (Fig. 1A). One ES cell clone displaying complete integration of the targeting construct was verified by PCR using loxp-specific primer sets (f1: 5′-AACACGTTAACACCAGGGCTTTGTTAC-3′, Integrated DNA Technologies [IDT]) and a Neo primer (r3: 5′-GGTGTGGCTGCTTTTGGTGTAAT-3′, IDT). The correctly targeted ES clone was expanded and transiently transfected with pTURBO-Cre (ES cell core; Washington University) for recombination using 5′ and 3′ external probes (Fig. 1A). One ES cell clone displaying complete integration of the targeting construct was verified by PCR using loxp-specific primer sets (f1: 5′-AACACGTTAACACCAGGGCTTTGTTAC-3′, Integrated DNA Technologies [IDT]) and a Neo primer (r3: 5′-GGTGTGGCTGCTTTTGGTGTAAT-3′, IDT). The correctly targeted ES clone was expanded and transiently transfected with pTURBO-Cre (ES cell core; Washington University) for recombination using 5′ and 3′ external probes (Fig. 1A).

Results

Generation and characterization of C57BL/6 Ifngr1f/f mice

We generated a conditional knockout allele of Ifngr1 in C57BL/6 ES cells by placing two loxP sites surrounding the third and fourth exons that encode the extracellular domain of IFNGR1 (Fig. 1A).
Deletion of this region results in a frame-shift mutation that induces expression of only a minimal portion of IFNGR1 that is unable to bind IFN-\(g\) (39). Southern blotting and PCR analyses confirmed proper gene targeting (Fig. 1B, 1C). Flow cytometric analyses revealed that \(\text{Ifngr1}^{f/f}\) mice were indistinguishable from C57BL/6 mice on the basis of cell surface expression of IFNGR1 (Fig. 1D). This same targeting also produced subclones of ES cells in which the entire floxed region was deleted when they were transfected with pTurbo-cre (Fig. 1A). The fully deleted subclones gave rise to C57BL/6 \(\text{Ifngr1}^{-/-}\) mice (Fig. 1E) that were named \(\text{Ifngr1}_{\text{WU}}^{2/-}\) to distinguish them from \(\text{Ifngr1}^{2/-}\) mice previously generated on a 129/SvEv background (4). Cells from \(\text{Ifngr1}_{\text{WU}}^{2/-}\) mice neither expressed IFNGR1 (Fig. 1D) nor responded to IFN-\(g\) in vitro (as detected by STAT1 phosphorylation), but they responded normally to type I IFNs (Fig. 1F).

Generation of C57BL/6 mice with IFNGR1 deficiency either in all hematopoietic cells or selectively in CD8\(^a\)+/CD103+ DCs

To delete \(\text{Ifngr1}\) in hematopoietic cells, we bred \(\text{Ifngr1}^{f/f}\) mice to \(\text{Vav-icre}\) mice because the latter are known to delete floxed genes in all hematopoietic cells (26). Hematopoietic cells from the resulting \(\text{Vav-icre}^{+}\text{Ifngr1}^{f/f}\) mice neither expressed IFNGR1 (Fig. 2A) nor responded to IFN-\(g\) treatment by phosphorylating STAT1 (Fig. 2B). In contrast, CD31\(^+\)CD45\(^-\) endothelial cells from these mice displayed undiminished levels of IFNGR1 (Fig. 2A) and pSTAT1 after IFN-\(\gamma\) stimulation (Fig. 2B), thus demonstrating that IFNGR1 expression in the non-hematopoietic compartment was not affected in \(\text{Vav-icre}^{+}\text{Ifngr1}^{f/f}\) mice.

\(\text{Ifngr1}^{f/f}\) mice were also bred to a particular strain of \(\text{Itgax-cre}\) mice (25) selected because we showed previously that they induce a selective deletion of floxed genes in CD8\(^a\)/CD103\(^+\) DCs (24). \(\text{Itgax-cre}^{+}\text{Ifngr1}^{f/f}\) mice showed significant reductions in IFNGR1 expression primarily in splenic CD8\(^a\) DCs, with a partial reduction in splenic CD4\(^+\) DCs and a slight reduction in macrophages (Fig. 3A). Splenic CD8\(^a\) DCs and peripheral CD103\(^+\) DCs are functionally and developmentally related (40). Thus, it was not surprising to find that CD103\(^+\) DCs in the peritoneal cavity and liver exhibited an almost complete deletion of \(\text{Ifngr1}\) in \(\text{Itgax-cre}^{+}\text{Ifngr1}^{f/f}\) mice, whereas myeloid CD11b\(^+\) DCs from

FIGURE 1. Generation of conditional IFN-\(\gamma\)R gene-targeted mice (\(\text{Ifngr1}^{f/f}\)). (A) Targeting strategy. Open gray boxes indicate external Southern probe to verify 5’ and 3’ homologous recombination. Small arrowheads indicate pairs of primers used in PCR to confirm either 5’ homologous recombination (f3/r3) or insertion of loxP sites (f1/r1 and f2/r2). (B) Confirmation of germline transmission by examining 3’ end of targeted allele by Southern blotting. (C) Verification of correct insertion of both 34-bp-long loxP sites by PCR. (D) Expression of IFNGR1 was assessed by flow cytometry analysis of spleen, peripheral blood leukocytes (PBLs), and thymus from wild-type, \(\text{Ifngr1}^{f/f}\), and \(\text{Ifngr1}_{\text{WU}}^{2/-}\) mice. Data are representative of three separate experiments. (E) Confirmation of germline transmission of the \(\text{Ifngr1}_{\text{WU}}^{2/-}\) allele by 5’ Southern blotting. (F) Measurement of phosphorylated STAT1 in \(\text{Ifngr1}_{\text{WU}}^{2/-}\) mice after in vitro IFN stimulation (10,000 U/ml IFN-\(\alpha\), 5,000 U/ml IFN-\(\beta\), and 1,000 U/ml IFN-\(\gamma\)) for 10 min at 37˚C. f, conditional allele; H1, BamH1; Neo, neomycin resistance gene; TK, HSV thymidine kinase gene; open triangle, loxP site; +, wild allele.
When challenged i.p. with two doses of \(10^5\) or \(2.5 \times 10^5\), all of the mice were more susceptible to infection than were \(\text{Ifngr}^0\) mice, succumbing to infection by day 6 (Fig. 4A). Spleens and livers from \(\text{Ifngr}^0\) mice and \(\text{Ifngr}^{1/2}\) mice contained 10-fold more \(L.\ monocytogenes\) on day 1 and 100–1000-fold more bacteria on day 3 compared with the same organs from \(\text{Ifngr}^0\) mice (Fig. 4B). These results functionally recapitulate the defect previously noted in \(\text{Ifngr}^0\)–bone marrow chimera (14), revealing an obligate requirement for \(\text{IFN-}\gamma\) responsiveness in the hematopoietic compartment for resolution of \(L.\ monocytogenes\) infection.

IFN-\(\gamma\) responsiveness in hematopoietic cells is required to control \(L.\ monocytogenes\) infection

When challenged i.p. with two doses of \(L.\ monocytogenes\) \(\left(1 \times 10^5\right)\) or \(2.5 \times 10^5\), both \(\text{Vav-icre}\text{-Ifngr}^0\) and \(\text{Ifngr}^{1/2}\) mice were more susceptible to infection than were \(\text{Ifngr}^0\) mice, succumbing to infection by day 6 (Fig. 4A). Spleens and livers from \(\text{Vav-icre}\text{-Ifngr}^0\) mice and \(\text{Ifngr}^{1/2}\) mice contained 10-fold more \(L.\ monocytogenes\) on day 1 and 100–1000-fold more bacteria on day 3 compared with the same organs from \(\text{Ifngr}^0\) mice (Fig. 4B). These results functionally recapitulate the defect previously noted in \(\text{Ifngr}^0\)–bone marrow chimera (14), revealing an obligate requirement for \(\text{IFN-}\gamma\) responsiveness in the hematopoietic compartment for resolution of \(L.\ monocytogenes\) infection.

IFN-\(\gamma\) responsiveness in CD8\(^a\)/CD103\(^+\) DCs is required for optimal anti-\(L.\ monocytogenes\) responses

When challenged i.p. with an LD\(_{50}\) dose of \(L.\ monocytogenes\) \(\left(2.5 \times 10^5\right)\), all of the \(\text{Itgax-cre}\text{-Ifngr}^0\) mice succumbed to infection (Fig. 4A, left panel). At a sublethal dose \(\left(1 \times 10^7\right)\), \(\text{Itgax-cre}\text{-Ifngr}^0\) mice exhibited significantly increased \(L.\ monocytogenes\) burdens in the spleen, liver, and peritoneum compared with \(\text{Ifngr}^0\) mice during the first 7 d of infection (Fig. 4C). As previously reported (41, 42), the LD\(_{50}\) dose of \(L.\ monocytogenes\) administered i.v. \(\left(\text{between } 5 \times 10^5 \text{ and } 1 \times 10^5\right)\) is much lower than that for i.p. challenge \(\left(2.5 \times 10^7\right)\) (Fig. 4A, 4D). The defect in \(L.\ monocytogenes\) clearance in \(\text{Itgax-cre}\text{-Ifngr}^0\) mice was not dependent on the route of infection because \(\text{Itgax-cre}\text{-Ifngr}^0\) mice harbored more \(L.\ monocytogenes\) than did \(\text{Ifngr}^0\) mice, even when the bacteria were administered i.v. (Fig. 4D, 4E). We failed to detect any bacteria in peritoneum after i.v. challenge. This result indicates that the larger \(L.\ monocytogenes\) burdens in the spleen and liver following i.p. infection compared with i.v. infection may represent an increased unidirectional seeding of bacteria from the peritoneum in \(\text{Itgax-cre}\text{-Ifngr}^0\) mice to spleen/liver (Fig. 4C, 4E). Histologically, \(\text{Itgax-cre}\text{-Ifngr}^0\) mice showed highly increased numbers and sizes of \(L.\ monocytogenes\) foci in both spleen and liver compared with \(\text{Ifngr}^0\) mice (Supplemental Fig. 2A). Eighteen hours after \(L.\ monocytogenes\) infection, infectious foci in the PALS were observed in both \(\text{Itgax-cre}\text{-Ifngr}^0\) and \(\text{Ifngr}^0\) mice, indicating that the normal migration of \(L.\ monocytogenes\)-infected CD8\(^a\) DCs had occurred, regardless of their ability to respond to IFN-\(\gamma\) (Supplemental Fig. 2B). Mice solely expressing cre protein (\(\text{Vav-icre}\) or \(\text{Itgax-cre}\) mice) exhibited no differences in bacterial burdens compared with wild-type C56BL/6 mice, thus excluding potential influences of the cre protein on \(L.\ monocytogenes\) susceptibility (Supplemental Fig. 2C).

Two sets of data revealed that the increased susceptibility to \(L.\ monocytogenes\) infection in \(\text{Itgax-cre}\text{-Ifngr}^0\) mice was specifically due to IFN-\(\gamma\) unresponsiveness in CD8\(^a\)/CD103\(^+\) DCs. First, strong expression of EGFP was detected in CD8\(^a\) DCs, less in CD4\(^+\) DCs, and not at all in other cells before and after \(L.\ monocytogenes\) infection (Supplemental Fig. 2D). This result rules out the possibility that \(L.\ monocytogenes\) infection might result in an infection-mediated deletion of Ifngr in other cells by upregulating expression of the transgenic cre-EGFP bicistronic construct. Second, the observation that CD11c-cre mice displayed significant response defects to \(L.\ monocytogenes\) infection compared with \(\text{Ifngr}^0\) mice during the first 7 d of infection (44–46). Therefore, we examined the effects of endogenously produced IFN-\(\gamma\) on IL-12 production by splenic CD8\(^a\) DCs and monocytes from \(\text{Ifngr}^0\) and \(\text{Itgax-cre}\text{-Ifngr}^0\) mice during the first 24 h of infection (Fig. 5). The limit of detection for ex vivo intracellular staining of IL-12p40 in \(\text{CD8}^\alpha/\text{CD103}^+\) DCs was 1 \(\times 10^5\) \(L.\ monocytogenes\) i.e., although we can still detect IL-12 transcripts with as few as 1 \(\times 10^5\) \(L.\ monocytogenes\) (Supplemental Fig. 3A, 3B). To synchronize bacterial infection and generate enough cytokine-producing cells, mice were infected i.v. with 10\(^6\) \(L.\ monocytogenes\). The percentage of splenic CD8\(^a\) DCs producing IL-12p40 in \(\text{Ifngr}^0\) mice increased to 4.2\% at 9 h, reaching a maximum level of 9.4\% at 12 h, then decreasing to 5.9\% at 18 h, and back to baseline at 24 h (Fig. 5A, 5B). In contrast, the proportion of splenic CD8\(^a\) DCs producing IL-12p40 in \(\text{Ifngr}^0\) mice...
IL-12p40–producing CD8α+ DCs from Itgax-cre+Ifngr1f/f mice was significantly less (1.9% at 9 h; 3.6% at 12 h; and 1.3% at 18 h). Listeria-infected Ifngr1WU2/2 mice showed complete abrogation of IL-12 production in CD8α+ DCs, demonstrating that the low-level induction of IL-12 in CD8α+ DCs from Itgax-cre+Ifngr1f/f mice was due to incomplete deletion of the Ifngr1 gene (Fig. 5C).

Expression of IL-12p35 was also significantly decreased in CD8α+ DCs from Listeria-infected Itgax-cre+Ifngr1f/f mice compared with infected Ifngr1f/f mice, whereas CD8α+ DCs from either mouse did not produce significant amounts of IL-23p19 (Fig. 5D). Thus, CD8α+ DCs required IFN-γ responsiveness for IL-12 production.

FIGURE 3. Itgax-cre+Ifngr1f/f mice lack functional IFNGR1 in CD8α+/CD103+ DCs. (A) Splenic IFNGR1 expression in Itgax-cre+Ifngr1f/f mice was measured. IFNGR1 levels in the indicated cellular subsets in Itgax-cre+Ifngr1f/f mice compared with Ifngr1f/f mice are summarized in the bar graph. (B) FACS analysis in liver and peritoneal cavity to confirm the lack of IFNGR1 expression in hepatic and peripheral CD103+ DCs in Itgax-cre+Ifngr1f/f mice. (C) After in vitro IFN-γ stimulation (1000 U/ml) for 15 min at 37°C, phosphorylated STAT1 in splenocytes from Itgax-cre+Ifngr1f/f mice was analyzed. pSTAT1 staining of unstimulated controls was indistinguishable from that in Ifngr1WU2/2 mice (Supplemental Fig. 1B). (D) Selective lack of upregulation of CD40 in splenic CD8α+ DCs in Itgax-cre+Ifngr1f/f mice after in vitro IFN-γ stimulation (500 U/ml) for 18 h at 37°C. Splenic CD11c+ cells were positively enriched by MACS purification prior to IFN-γ stimulation. The wild-type, knockout, and isotype controls for (A) and (C) are the same as for Fig. 2A and 2B because the flow cytometry was performed at the same time. All data are representative of at least two separate experiments. Gating strategies are depicted in Supplemental Fig. 1A. *p ≤ 0.05.
mice occurred concomitantly with the decreased percentage of IL-12p40+CD8a+ DCs. However, the levels of IFN-γ+ NK/NKT cells in Itgax-cre*Ifngr1f/f mice normalized to those found in Ifngr1f/f mice by 18–24 h, when Ly6Chi inflammatory monocytes produced a second wave of IL-12p40.

At 18 h p.i., IFN-γ production was observed in CD8+ T cells in both Itgax-cre*Ifngr1f/f and Ifngr1f/f mice (Fig. 6A, 6D). These T cells could represent the MP CD8+ T cells reported to produce IFN-γ during Listeria infection (47). MP CD8+ T cells express high levels of CD44 and CD62L and very high levels of CXCR3 and a selective depletion of our CXCR3-specific mAb (CXCR3-173) (38) (Supplemental Fig. 4). CD4+ DCs, plasmacytoid DCs, CD4+ T cells, B cells, macrophages, and neutrophils were not significant sources of either IL-12 or IFN-γ in the first 24 h of infection (Supplemental Fig. 3D).

NK/NKT cells provide the initial IFN-γ to CD8α+ DCs for optimal production of IL-12

We considered the possibility that either NK/NKT cells or MP CD8+ T cells might be the initial source of IFN-γ that primes CD8α+ DCs for the first wave of IL-12. To test this idea, we treated Ifngr1f/f mice with NK1.1 mAb, CXCR3-173 mAb, or both in combination (Fig. 7A) and assessed whether there was a corresponding decrease in IL-12 production by CD8α+ DCs (Fig. 7B). Depletion of NK and NKT cells resulted in a 53% decrease in IL-12p40+CD8α+ DCs (2.7% anti-NK1.1 mAb–treated mice versus 5.7% control mice). In contrast, the elimination of ∼80% of MP CD8+ T cells did not reduce IL-12p40+CD8α+ DCs. These results point to a cross-talk between NK/NKT cells and CD8α+ DCs mediated by IFN-γ and IL-12.

TNF-α induces IFN-γ from NK/NKT cells and thereby initiates the reciprocal activation of NK/NKT cells and CD8α+ DCs

The cytokines TNF-α, IL-18, and IL-1 are known to be involved in initiating anti-Listeria immunity, in part by inducing IFN-γ production from NK cells (8, 35, 48). Therefore, we assessed whether any of these cytokines initiated the cross-talk between NK/NKT cells and CD8α+ DCs mediated by IFN-γ and IL-12.

FIGURE 4. Both Vav-icre*Ifngr1f/f and Itgax-cre*Ifngr1f/f mice display increased susceptibility to Listeria infection. (A) Mice were infected with 2.5 × 10^6 (left panel) or 1 × 10^6 (right panel) L. monocytogenes i.p., and the survival was monitored over time. (B and C) Listeria CFU in spleen, liver, and peritoneum infected with 10^9 L. monocytogenes i.p. (D) Mice were infected with 1 × 10^4 (left panel), 5 × 10^4 (middle panel), or 2.5 × 10^5 (right panel) L. monocytogenes i.v., and the survival was monitored over time. (E) Listeria CFU in spleen, liver, and peritoneum at 3 d after i.v. infection with 10^3 or 10^4 L. monocytogenes. Each symbol represents an individual mouse, and horizontal lines represent the mean log_{10} CFU. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.
a 24% decrease in IL-12p40+CD8α+ DCs without altering the percentage of IFN-γ NK/NKT cells (Fig. 8C). Thus, the initial production of IFN-γ from NK/NKT cells upon *Listeria* infection that sets in motion a reciprocal activation of NK/NKT cells and CD8α+ DCs is a consequence of a process induced predominantly by TNF-α with potential participation of other early arising proinflammatory cytokines.

IL-4 production increases the *Listeria* susceptibility of *Itgax-cre*/*Ifngr1f/f* mice by inducing alternatively activated macrophages

Enhanced *Listeria* susceptibility of *Itgax-cre*/*Ifngr1f/f* mice could have resulted from a loss-of-function of the early IL-12/IFN-γ–amplification cycle or from a gain-of-function process due to inappropriate induction of cytokines that create a *Listeria*-permissive environment. Thus, we compared systemic cytokine mRNA induction in spleens of infected *Itgax-cre*/*Ifngr1f/f* mice and *Ifngr1f/f* mice (Fig. 9A). As expected, at 9 h p.i., splenocytes from *Itgax-cre*/*Ifngr1f/f* mice exhibited a significantly decreased transcription of IL-12p40, IL-12p35, and IFN-γ compared with *Ifngr1f/f* mice. In contrast, we observed enhanced induction of IL-4 transcripts selectively in *Itgax-cre*/*Ifngr1f/f* mice. IL-10 and IL-13 transcripts were induced comparably in both *Itgax-cre*/*Ifngr1f/f* mice and *Ifngr1f/f* mice. NKT cells were identified as one source of IL-4 in *Itgax-cre*/*Ifngr1f/f* mice (Fig. 9B). We next examined whether increased *Listeria* susceptibility in *Itgax-cre*/*Ifngr1f/f* mice was due to increased IL-4 production. Administration of IL-4–neutralizing mAb (11B11) to *Itgax-cre*/*Ifngr1f/f* mice significantly reduced their *Listeria* burden, bringing bacterial loads down to levels observed in *Ifngr1f/f* mice (Fig. 9C). IL-4 neutralization in *Ifngr1f/f* mice slightly increased the ability of these mice to resist infection, but this increase was not statistically significant. These results demonstrate that the increased bacterial burdens seen in *Itgax-cre*/*Ifngr1f/f* mice represented a gain-of-function process resulting from the ectopic expression of IL-4 as a consequence of the absence of early IL-12 from CD8α+ DCs.

FIGURE 5.

Early production of IL-12 from CD8α+ DCs is significantly decreased in *Listeria*-infected *Itgax-cre*/*Ifngr1f/f* mice. All mice were infected with 10⁶ *L. monocytogenes* i.v. (A) Representative flow cytometry plots for IL-12p40 expression from CD8α+ DCs and Ly6C⁺ monocytes. For each quadrant, gating was based on cells from uninfected controls that were analyzed at every time point. For simplicity, only the uninfected control at 9 h p.i. is shown. (B) Summary of percentages of IL-12p40+CD8α+ DCs in the spleen during the first 24 h of infection (n = 4 at each time point). (C) Percentages of IL-12p40+CD8α+ DCs in the spleen from *Ifngr1f/f* mice and *Ifngr1WU2/2* mice at 9 h of infection. (D) The expression of indicated genes in sorted CD8α+ DCs from spleens was determined by qRT-PCR after 9 h of infection. (E) Summary of percentages of IL-12p40+Ly6C⁺ monocytes in the spleen during the first 24 h of infection (n = 4 at each time point). *p ≤ 0.05, **p ≤ 0.01. n.s., not significant.
IL-4 is known to induce alternatively activated (M2) macrophages that do not possess strong bactericidal activity compared with IFN-\(\gamma\)-activated (M1) macrophages (49). Strikingly, at 12 h p.i., splenocytes from \(\text{Itgax-cre}+\text{Ifngr1f/f}\) mice expressed significantly higher levels of mRNA encoding arginase 1, mannose receptor, and the secretory protein Ym1—hallmarks of M2 macrophages—compared with \(\text{Ifngr1f/f}\) mice (Fig. 9D). Moreover, expression of inducible NO synthase—a hallmark of M1 macrophages—was decreased in \(\text{Itgax-cre}+\text{Ifngr1f/f}\) mice compared with \(\text{Ifngr1f/f}\) mice. Thus, these results demonstrate that the lack of IFN-\(\gamma\) responsiveness in the CD8\(^a\)+ DC compartment not only compromises the initiation of the anti-\(\text{Listeria}\) response (i.e., reduces the early

FIGURE 6. Early production of IFN-\(\gamma\) from NK and NKT cells is significantly decreased in \(\text{Listeria}\)-infected \(\text{Itgax-cre}+\text{Ifngr1f/f}\) mice. All mice were infected with \(10^6\) \(L.\) monocytogenes i.v. (A) Representative plots for IFN-\(\gamma\) from NK, NKT, and CD8\(^+\) T cells during the first 24 h of infection. Summary of the percentages of IFN-\(\gamma\)-positive splenic NK cells (B), NKT cells (C), and CD8\(^+\) T cells (D), respectively \((n \geq 4\) at each time point). *\(p \leq 0.05\).

FIGURE 7. Depletion of NK/NKT cells producing early IFN-\(\gamma\) significantly reduces IL-12p40 production from CD8\(^a\)+ DCs. (A) Representative FACS plots documenting depletion of NK/NKT cells by anti-NK1.1 mAb (top and second rows), depletion of MP CD8\(^+\) T cells by anti-CXCR3 mAb (third row), and IL-12p40 production from CD8\(^a\)+ DCs at 9 h of infection with \(10^6\) \(L.\) monocytogenes i.v. (bottom row). (B) Summary of percentages of IL-12p40+CD8\(^a\)+ DCs after treatment with depleting mAbs \((n \geq 5)\). **\(p \leq 0.01\). n.s., not significant.
IL-12 production from CD8+ cells. Spleens were harvested at 9 h p.i., and cells were analyzed for expression of IFN-γ by NK cells. Anti-TNF/12, anti-IL-18, and anti-IL-4 treatment lowered IFN-γ expression compared to control Ab. (A) % NK+ cells expressing IFN-γ after 1 × 10⁶ Listeria infection. (B) % NKT+ cells expressing IFN-γ after 1 × 10⁶ Listeria infection. (C) % CD8+ DCs expressing IL-12p40 after 1 × 10⁶ Listeria infection. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001. n.s., not significant.

Induction of IL-12, IFN-γ, and TNF-α are characterized by the presence of a number of cytokines—the three studied here—TNF-α, IFN-γ, and IL-12—as well as type 1 IFNs, IL-1α/IL-1β, IL-6, IL-10, and others. This early response also involves various cells: tissue-resident macrophages, DCs, neutrophils, γδ T cells, NK cells, and innate CD8+ T cells. In this study, we used novel mice with a selective deficit of IFNGR1 expression in CD8α+ DCs to identify the roles of TNF-α, IFN-γ, and IL-12 in initiating the critical cytokine and cellular interactions that lead to the effective elimination of Listeria infection.

TNF-α, potentially produced by infected splenic marginal zone macrophages (50), sits at the top of the initiating cytokine cascade and induces the first IFN-γ from NK/NKT cells that, in turn, induces the early IL-12 from CD8α+ DCs. TNF-α was originally identified as a major participant with IL-12 in the induction of IFN-γ by NK cells, although the sequence of events was never defined (7). The transient IFN-γ–dependent induction of IL-12 from CD8α+ DCs represents a key step in forming an amplification loop that enhances IFN-γ by NK/NKT cells, depresses the latter’s ability to produce IL-4, and establishes an environment within the myeloid compartment that remains receptive to stimulation of enhanced antimicrobial function. Despite the defect in early IL-12 production within several hours p.i., the biggest difference in spleen colony counts was observed in Ifngr1f/f mice at day 3 after Listeria infection. It was reported that administration of either rIL-12 or anti–IL-12 Ab into Listeria-infected mice produced effects on bacterial counts after day 3 (51). This timing agrees with ours and supports the conclusion that defects in early IL-12 production require a certain time window before they manifest changes in bacterial burdens. The basis of the transient nature of the initial IL-12 production remains unclear. Disappearance of CD8α+ DCs was reported to occur at ~18 h p.i. (21). It is also possible that IL-12 production may be actively inhibited by IL-10, a powerful inhibitor of IL-12 produced by DCs (52). It is noteworthy that there is production of IL-10 in splenocytes in the first 9 h of infection. Strikingly, the cellular source of IL-12 shifts, in a relatively short period of time, from CD8α+ DCs to Ly6C+CD11b+CD11c− inflammatory monocytes, whose vastly greater numbers induce higher levels of IFN-γ from NK/NKT cells.

The role of NK1.1+ cells in host defense against Listeria has been seemingly controversial. We (6–8, 10) and other investigators (9, 11) found that IFN-γ produced by NK cells plays an important role during Listeria infection by activating mononuclear phagocytes. In contrast, it was proposed that NK1.1+ cells have a detrimental role in listeriosis by studies showing enhanced clearance of Listeria after mAb depletion of NK1.1+ cells (53, 54) or in Jx18−/− mice lacking the majority of NKT cells (55). This apparent discrepancy can be explained by one particularly novel finding made in this study using Igax-cxIfngr1f/f mice showing that the first wave of IFN-γ/IL-12 from NK/NKT cells and CD8α+ DCs contributes to the clearance of Listeria infection mainly by controlling IL-4 production from NKT cells (and possibly other cells, such as basophils, eosinophils, mast cells, and innate lymphoid type 2 cells) (56). A rapid burst of IL-4 from splenic NKT cells was previously observed in C57BL/6 mice, which peaked at 30 min p.i. and disappeared by 3 h (57), and neutralization of this transient IL-4 resulted in increased L. monocytogenes resistance in C57BL/6 mice (58). Thus, depletion of IL-4–producing NKT cells by anti-NK1.1 mAb treatment or genetic deficiency of NKT cells possibly rendered host more resistant to infection, whereas the loss of IFN-γ–producing NK/NKT cells is rapidly compensated for by IFN-γ–producing MP T cells. A recent study using adoptive transfer of NK and MP T cells into IFN-γ−/− mice showed that MP T cells colocalize with Listeria and macrophages, whereas NK cells do not, thus providing the latter with a spatial advantage in mediating IFN-γ–dependent clearance of Listeria (59). Our data support a model wherein early IL-12 production from CD8α+ DCs not only promotes IFN-γ production from NK/NKT cells, but also suppresses IL-4 production from NKT cells. It is not known...
whether the second wave of IL-12 produced by Ly6Chi monocytes also participates in downregulating IL-4 production.

An issue to note is that the interactions between NK cells and DCs are dependent upon both cell contact and cytokine production (60, 61). Interestingly, Xu et al. (62) reported that IFN-γ production from NK cells is stimulated via triggering of TNFR2 on NK cells via membrane-associated TNF-α but not via soluble TNF-α. Our results support this concept because, although we could inhibit early IFN-γ and IL-12 production using mAbs that block TNFRs, we could not inhibit early IFN-γ production using our TN3-19.12 mAb (63) that neutralizes soluble forms, but not membrane-associated forms, of TNF-α (data not shown). Thus, we suggest that reciprocal activation between NK/NKT and CD8α+ DCs is likely to occur in infectious foci containing both cell types via direct cellular contact, as well as cytokine secretion (20).

FIGURE 9. Neutralization of IL-4 restores Listeria resistance in Itgax-cre+Ifngr1f/f mice. (A) Spleens were harvested at 9 h p.i. with 10^6 L. monocytogenes i.v. and analyzed for the expression of indicated genes by qRT-PCR. (B) IL-4 expression in NK and NKT cells sorted from spleens was determined by qRT-PCR after 9 h of infection with 10^6 L. monocytogenes i.v. (C) Listeria CFU in spleen and liver of infected mice at 3 d p.i. Mice were treated with 11B11 mAb prior to infection with 10^3 L. monocytogenes i.v. Data are a combination of two separate experiments. (D) The expression of indicated genes was analyzed by qRT-PCR at 12 h p.i. with 10^6 L. monocytogenes i.v. All qRT-PCR data are represented relative to the expression of 18S (ΔCt). To facilitate visualization, values were transformed as indicated on the y-axis. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.

In sum, this study reveals that NK/NKT cell production of IFN-γ and subsequent IL-12 production by CD8α+ DCs are critical initiators of the innate response to L. monocytogenes and, thus, illustrate how genetically homogeneous mice with tissue-selective defects in IFN-γ responsiveness help to refine our understanding of IFN-γ’s physiologic roles in vivo.

Acknowledgments
We thank I. Foerster (University of Duesseldorf, Duesseldorf, Germany) and T. Henry (Finovi Foundation, Lyon, France) who generously provided the SK113AE-4 IL-18 mAb and S. Gifillan (Washington University) for help with generating the gene-targeted mice. Experimental support was provided by the Transgenic and Knockout Facility and the Speed Congenic Facility of the Rheumatic Diseases Core Center.

Disclosures
The authors have no financial conflicts of interest.

A

Spleen

<table>
<thead>
<tr>
<th>CD4⁺ T, CD8⁺ T, and NK</th>
<th>B and pDC</th>
<th>Macrophage, Neutrophil and Monocyte</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD3⁺</td>
<td>CD8⁺ T</td>
<td>Macrophage</td>
</tr>
<tr>
<td>CD4⁺</td>
<td>CD3⁺</td>
<td>Neutrophil</td>
</tr>
<tr>
<td>CD11c⁺</td>
<td>CD4⁺</td>
<td>Macrophage</td>
</tr>
<tr>
<td>CD4⁺ DC</td>
<td>CD8⁺ T</td>
<td>Neutrophil</td>
</tr>
<tr>
<td>CD11c⁺</td>
<td>CD4⁺ DC</td>
<td>Macrophage</td>
</tr>
<tr>
<td>Neutrophil (CD4⁺ gated)</td>
<td>CD4⁺ DC</td>
<td>Endothelium (CD4⁺ gated)</td>
</tr>
</tbody>
</table>

Blood

<table>
<thead>
<tr>
<th>Neutrophil</th>
<th>Eosinophil</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD11b⁺</td>
<td>CD11b⁺</td>
</tr>
<tr>
<td>CD4⁺</td>
<td>CD4⁺</td>
</tr>
<tr>
<td>CD3⁺</td>
<td>CD3⁺</td>
</tr>
<tr>
<td>Monocyte</td>
<td>CD4⁺ T</td>
</tr>
<tr>
<td>CD4⁺ T</td>
<td>CD4⁺ T</td>
</tr>
</tbody>
</table>

Liver

<table>
<thead>
<tr>
<th>CD103⁺ DC and CD11b⁺ DC</th>
<th>Kupffer cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD103⁺ DC</td>
<td>CD11b⁺ DC</td>
</tr>
<tr>
<td>CD11b⁺ DC</td>
<td>CD103⁺ DC</td>
</tr>
</tbody>
</table>

Peritoneum

<table>
<thead>
<tr>
<th>CD103⁺ DC and CD11b⁺ DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD103⁺ DC</td>
</tr>
<tr>
<td>CD11b⁺ DC</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Ifngr1⁺⁺⁺</th>
<th>CD8⁺⁺⁺⁺ DCs</th>
<th>CD4⁺⁺⁺⁺ DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ifngr1⁺⁺⁺</td>
<td>Ifngr1⁺⁺⁺</td>
<td>Ifngr1⁺⁺⁺</td>
</tr>
<tr>
<td>Ifngr1⁺⁺⁺</td>
<td>Ifngr1⁺⁺⁺</td>
<td>Ifngr1⁺⁺⁺</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Events (%) max</th>
<th>5 min</th>
<th>15 min</th>
<th>30 min</th>
<th>60 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>pStat1</td>
<td>No stimulation</td>
<td>+ IFNγ</td>
<td>+ IFNγ</td>
<td>+ IFNγ</td>
</tr>
<tr>
<td>Neutrophil</td>
<td>No stimulation</td>
<td>+ IFNγ</td>
<td>+ IFNγ</td>
<td>+ IFNγ</td>
</tr>
<tr>
<td>CD4⁺⁺⁺⁺⁺⁺⁺</td>
<td>No stimulation</td>
<td>+ IFNγ</td>
<td>+ IFNγ</td>
<td>+ IFNγ</td>
</tr>
</tbody>
</table>
Supplemental Figure 1

(A) Cells from spleen were labeled with antibodies against lineage markers to detect the following populations; CD3ε^−CD4^+CD8α^− T cells, CD3ε^−CD4^+CD8α^+ T cells, CD3ε^−NK1.1^− NK cells, CD3ε^int^NK1.1^int^ NKT cells, B220^+^ B cells, CD11c^−B220^−PDCA-1^+ pDCs, CD11b^int^F4/80^+^ macrophages, CD11b^+^Ly6C^+^Ly6G^+^ monocytes, CD11b^+^Ly6C^int^Ly6G^−^ neutrophils, CD11c^−Dec205^−CD8α^− DCs, CD11c^−Dec205^−CD4^+^CD11b^−^ DCs, and CD45^−^CD31^+^ endothelial cells. Cells from blood were labeled with antibodies against lineage markers to detect the following populations; SSC^hi^CD11b^+^GR1^+^ neutrophils, SSC^hi^SiglecF^+^ eosinophils, SSC^lo^CD11b^+^CD115^+^ monocytes, SSC^lo^CD3ε^−CD4^+CD8α^− T cells, and SSC^lo^CD3ε^−CD4^+CD8α^+ T cells. Cells from peritoneal cavity and liver were stained with antibodies against lineage markers to detect the following populations; CD11c^+^NK1.1^−CD103^+^Dec205^−^CD11b^−^ DCs, CD11c^+^NK1.1^−CD103^−^Dec205^−^CD11b^+^ DCs, SSC^hi^CD11b^+^Ly6G^−^F4/80^+^ Kupffer cells, and CD11c^+^NK1.1^−B220^+^PDCA-1^+^ pDCs.

(B) Phosphorylated STAT1 in splenocytes from Ifngr1^ff^, Itgax-cre^+^Ifngr1^ff^, Ifngr1^wu^−/− mice was analyzed with or without in vitro IFN (1000 U/ml) for 15 minutes at 37°C.

(C) Phosphorylated STAT1 in splenocytes from Ifngr1^ff^ and Itgax-cre^+^Ifngr1^ff^ mice was analyzed with in vitro IFNγ (10,000 U/ml) for up to 60 minutes at 37°C.
Supplemental Figure 2

(A) H&E staining of infected spleens and livers from \textit{Ifngr1}flo/flo and \textit{Itgax-cre}+\textit{Ifngr1}flo/flo mice 5 days after infection (105 \textit{Listeria} i.p.). Right panels show magnified regions (dashed boxes in left panels). Scale bar for spleen represents 200 \(\mu\text{m}\) in low-power images and 50 \(\mu\text{m}\) in high-power images; scale bar for liver represents 100 \(\mu\text{m}\) in low-power images and 50 \(\mu\text{m}\) in high-power images.

(B) Both \textit{Ifngr1}flo/flo and \textit{Itgax-cre}+\textit{Ifngr1}flo/flo mice were i.v. infected with 107 \textit{Listeria}. After 18 hours of infection, spleen sections were harvested and stained with Listeria O (red), B220 for B cells (pink), CD3\(\epsilon\) for T cells or CD11b for myeloid cells (green), and DAPI (blue). Lower panels show magnified regions (dashed boxes in upper panels). Scale bar represents 100 \(\mu\text{m}\).

(C) \textit{Listeria} CFUs in spleen and liver from WT, \textit{Vav-icre}+, \textit{Itgax-cre}+, and \textit{Ifngr1WU}/\textit{WU} mice on C53BL/6 background 3 days after infection with 105 \textit{L. monocytogenes} i.p. **, \(p \leq 0.01\).

(D) \textit{Ifngr1}flo/flo and \textit{Itgax-cre}+\textit{Ifngr1}flo/flo mice were infected with 105 \textit{Listeria} i.p. Spleens were harvested at 3 days after infection, gated as in Supplemental Fig. 1, and analyzed for expression of EGFP. Expression of EGFP is expected to have equimolar expression with cre recombinase because the \textit{Itgax} promoter directs bicistronic cre and EGFP protein expression. A graph shows geometric mean \(\pm\) SEM.

(E) Both \textit{Ifngr1}flo/flo and \textit{Itgax-cre}+\textit{Ifngr1}flo/flo mice were infected with 107 \textit{Listeria} i.v. Eighteen hours after infection, spleen sections were obtained and stained with either MOMA-1 or MARCO (green), CD11c (red), or DAPI (blue). Scale bar represents 100 \(\mu\text{m}\).
Supplemental Figure 3

(A) Percentages of IL-12p40 positive CD8α⁺ DCs in the spleen at 12 hr after infection with 1 x 10⁴ and 1 x 10⁵ *Listeria* i.v.

(B) Spleens were harvested at 9 hr after infection with 1 x 10⁴ and 1 x 10⁵ *Listeria* i.v. and analyzed for the expression of IL-12p40 by qRT-PCR.

(C) TNFα and iNOS expression by IL-12p40 producing Ly6C⁷ monocytes were analyzed at 24 hr after infection.

(D) *Ifngr1flof* and *Itgax-cre⁺Ifngr1flof* were infected with 10⁶ *Listeria* i.v. Spleens were harvested at 6, 9, 12, 18, and 24 hours after infection, splenocytes gated as in Supplemental Fig. 1, and analyzed for the cellular source of IL-12p40 and IFNγ by intracellular cytokine staining. Data are representative FACS plots. The gating of each quadrant was based on uninfected controls at every time point (for simplicity only the 6 hour uninfected control is shown).
Supplemental Figure 4

(A) Expression of CD44, CD62L, and CXCR3 on IFNγ producing CD8+ T cells were analyzed at 24 hr after infection. (B) The level of CXCR3 expression was compared in indicated cellular subsets. (C) C57BL/6 WT mice were injected i.p with 200 μg of anti-CXCR3 mAb, and 3 days later the frequencies of MP CD8+ T, MP CD4+ T, and NKT cells were analyzed by flow cytometry. ***, p ≤ 0.001.