Cholera Toxin Directly Enhances IL-17A Production from Human CD4+ T Cells

Hsing-Chuan Tsai and Reen Wu

J Immunol 2013; 191:4095-4102; Prepublished online 16 September 2013;
doi: 10.4049/jimmunol.1301079
http://www.jimmunol.org/content/191/8/4095

Supplementary Material
http://www.jimmunol.org/content/suppl/2013/09/16/jimmunol.1301079.DC1

References
This article cites 51 articles, 21 of which you can access for free at:
http://www.jimmunol.org/content/191/8/4095.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Cholera Toxin Directly Enhances IL-17A Production from Human CD4+ T Cells

Hsing-Chuan Tsai and Reen Wu

The significance of Th17 cells and IL-17A signaling in host defense and disease development has been demonstrated in various infection and autoimmune models. Additionally, the generation of Th17 cells is highly influenced by microbes. However, the specific bacterial components capable of shaping Th17 responses have not been well defined. The goals of this study were to understand how a bacterial toxin, cholera toxin (CT), modulates Th17-dominated response in isolated human CD4+ T cells, and what are the mechanisms associated with this modulation. CD4+ cells isolated from human peripheral blood were treated with CT. The levels of cytokine production and specific Th cell responses were determined by ELISA, Lumini assay, and flow cytometry. Along with the decreased production of other proinflammatory cytokines (IFN-γ, TNF-α, and IL-2), we found that CT could directly enhance the IL-17A production through a cAMP-dependent pathway. This enhancement is specific for IL-17A but not for IL-17F, IL-22, and CCL20. Interestingly, CT could increase IL-17A production only from Th17-committed cells, such as CCR6+CD4+ T cells and in vitro-differentiated Th17 cells. Furthermore, we also demonstrated that this direct effect occurs at a transcriptional level because CT stimulates the reporter activity in Jurkat and primary CD4+ T cells transfected with the IL-17A promoter-reporter construct. This study shows that CT has the capacity to directly shape Th17 responses in the absence of APCs. Our findings highlight the potentials of bacterial toxins in the regulation of human Th17 responses. The Journal of Immunology, 2013, 191: 4095–4102.

The Journal of Immunology

Center for Comparative Respiratory Biology and Medicine, University of California, Davis, Davis, CA 95616

Received for publication April 29, 2013. Accepted for publication August 14, 2013. This work was supported by National Institutes of Health Grants L077902, HL096373, and HL097307.

Address correspondence and reprint requests to Dr. Reen Wu, Center for Comparative Respiratory Biology and Medicine, University of California, Davis, GBSF 6523, 451 East Health Science Drive, Davis, CA 95616. E-mail address: rwu@ucdavis.edu

The online version of this article contains supplemental material.

Abbreviations used in this article: CRE, cAMP response element; CT, cholera toxin; CT-A, subunit A of cholera toxin; CT-B, subunit B of cholera toxin; db-cAMP, dibutyryl cAMP; DC, dendritic cell; FK, forskolin; IBMX, 3-isobutyl-1-methylxanthine; IL-17p/CREmt, IL-17 plasmid with mutations on cAMP response element sites 1 and 2; IL-17pWT, pGL3-IL-17A luciferase plasmid; IRF, IFN regulatory factor; PB, peripheral blood; ROR, retinoic acid–related orphan receptor; TPA, 12-O-tetradecanoylphorbol-13-acetate.

Copyright © 2013 by The American Association of Immunologists, Inc. 0022-1767/13 $16.00

www.jimmunol.org/cgi/doi/10.4049/jimmunol.1301079
Davis). PBMCs were purchased from AllCells. According to the manufacturers’ protocols, total CD4+ T cells were positively selected from PBMCs using magnetic CD4 MicroBeads (Miltenyi Biotec) or negatively selected using a human CD4+ T cell enrichment kit (StemCell Technologies). The purity of CD4+ T cells is 98–99% as confirmed by using the FACScan system (BD Biosciences). Human naive CD4+ T cells were negatively selected using the naive CD4+ T cell isolation kit II (Miltenyi Biotec). The purity of isolated naive CD4+ T cells was confirmed as >95% on a FACSAria (BD Biosciences). The purity of each subset was confirmed as 96–99%. The following Abs were used: Brilliant Violet 650–conjugated anti-CD4, Alexa Fluor 700–conjugated anti-CD45RA, Brilliant Violet 570–conjugated anti-CD45RA, Brilliant Violet 421–conjugated anti-CCR7, Alexa Fluor 488–conjugated anti-CXCR3, and PE-conjugated anti-CCR6 (all from BioLegend).

Cell culture and differentiation

CD4+ T cells were cultured for 2–4 d in serum-free X-VIVO 15 medium (Lonza) along with beads coated with anti-CD3 and anti-CD28 (CD3/CD28 beads; 10 cells/bead; Dynabeads human T-activator; Invitrogen), Th17-polarizing cytokines IL-1β (10 ng/ml) and IL-23 (50 ng/ml), as well as other cytokines, including IL-2 (10 ng/ml), IL-6 (20 ng/ml), IL-10 (10 ng/ml), IL-12 (10 ng/ml), IFN-γ (100 ng/ml) and TNF-α (20 ng/ml), were added to the culture as indicated. Cytokines were purchased from R&D Systems. CT (List Biological Laboratories), forskolin (FK; Calbiochem), dithiothreitol-C/AMP (db-cAMP; Calbiochem), PGE2 (Calbiochem), and 3-isobutyl-1-methylxanthine (IBMX; Sigma-Aldrich) were added at various concentrations to the culture media as indicated.

Naive CD4+ T cells were activated with CD3/CD28 beads under Th0 (IL-2) or Th17-polarizing media (IL-1β/IL-23) in the presence or absence of CT. After a 6-day culture, Dynabeads were removed with a magnet and cells were expanded in media supplemented with IL-2 for 3 d.

Cytokine production assay and intracellular CAMP assay

IL-17A and IL-17F protein were detected by the human IL-17 and IL-17F DuoSet (R&D Systems), and other cytokines, including GM-CSF, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IFN-γ, and TNF-α, were detected by using an Invitrogen human cytokine 10-plex panel on the Bio-Plex 200 system (Bio-Rad) according to manufacturers’ protocols. CD4+ T cells were stimulated with subunit B of CT (CT-B), CT, and PGE2 for 30 min at 4°C. Samples were assayed on a FACScan (BD Biosciences), and data analysis was performed using FlowJo software (Tree Star).

RNA isolation and quantitative RT-PCR

Total RNA was extracted from cells with TRIzol according to the manufacturer’s instructions. SYBR Green quantitative real-time PCR (Roche) was carried out to quantitate the levels of cytokine expression after normalization with the housekeeping gene, GAPDH. The primers were designed by Primer3 or were previously described (1, 21) and are listed in Supplemental Table I.

Generation and site-directed mutagenesis of IL-17A promoter-lucferase reporter plasmids

A DNA fragment containing the proximal 229 bp of the IL-17A promoter region from the translation start site was amplified from genomic DNA of human primary CD4+ T cells by PCR. The amplified product was subcloned into a pGL3 vector (Promega) with the firefly luciferase reporter gene to generate pGL3-IL-17A luciferase plasmid (IL-17p/WT). The two individual cAMP response elements (CREs) in the IL-17A promoter construct, CRE1 (183 to –178) and CRE2 (111 to –104), were mutagenized by using the QuickChange II site-directed mutagenesis kit (Agilent Technologies). The resulting CRE constructs were termed IL-17p/CRe1M (mutations on both CRE sites). The authenticity of the clone was confirmed by DNA sequencing. The primer sequences used in this experiment are listed in Supplemental Table II.

Reporter gene transfection assay in activated CD4+ T cells and Jurkat cells

CD4+ T cells were activated with plate-coated anti-CD3 Abs and soluble anti-CD28 Abs for 16–20 h. Activated cells were transfected with indicated plasmids together with Renilla luciferase expression vector pRL-CMV (Promega) using a Nucleofector kit for stimulated human T cells (Amaxa). Twenty-four hours after transfection, cells were further activated with CD3/CD28 beads and treated with CT as indicated. Jurkat cells were transfected with indicated plasmids and Renilla pRL-TK (Promega) using Lipofectamine 2000 (Invitrogen) according to the manufacturers’ instructions. Twenty-four hours after the transfection, cells were treated with 10 ng/ml CT together with TPA and ionomycin (Cell Signaling Technology) for 5 h. Cell extracts were lysed and luciferase activity was quantified in triplicate using a Dual-Glo Luciferase assay system (Promega) according to the manufacturer’s protocol. The relative IL-17A promoter activities were expressed as relative luciferase units after normalization to the internal control, Renilla luciferase activity. The results were averaged from triplicate wells of three separate experiments.

Statistical analysis

A p value was determined using the two-tailed Student t test, and multiple groups were analyzed using one-way ANOVA. A p value ≤0.05 was considered statistically significant.

Results

Direct stimulation of IL-17A production in CD3/CD28-activated PB CD4+ T cells by CT

CT is a potent mucosal immunomodulator and is also known to induce a Th17 response in experimental animals (22, 23). However, it is unclear whether CT can directly regulate IL-17A production from human CD4+ T cells. Total PB CD4+ T cells were stimulated with CT for 3 d under CD3/CD28 activation. We found that CT enhanced IL-17A production by 2.5-fold but slightly decreased IL-17F production in stimulated CD4+ T cells cultured under the nonpolarizing condition (Fig. 1A). As for other cytokine expression, but it decreased mRNA levels of IL-17F production in stimulated CD4+ T cells cultured under the nonpolarizing condition (Fig. 1A). As for other cytokine expression, CT strongly inhibited IFN-γ, IL-2, and IL-10 production but not IL-4 and IL-5 (Fig. 1B–E). Interestingly, CT also induced GM-CSF production by 1.8-fold (Fig. 1D), which was reported as one of Th17 pathogenic cytokines (4). Our results are consistent with prior reports that showed inhibition of Th1 cytokines and IL-10 by CT (18, 20); however, Th2 cytokines, such as IL-4, were not sensitive to the treatment of CT (19, 20). We even observed a slight increase of IL-4 production among some of the CD4+ T cell preparations treated with CT.

To examine whether the changes in cytokine production are also reflected at mRNA levels, RNA was isolated from these cultures 48 h after CT treatment. As shown in Fig. 2A, CT treatment increased mRNA levels of IL17A by 2.5-fold, whereas CT treatment did not enhance the expression of other Th17 cell–associated cytokine genes, such as IL17F, IL22, and CCL20. Retinoic acid–related orphan receptor (ROR)γt and IFN regulatory factor (IRF)4 are two Th17 lineage–specific transcriptional factors. RORγt is the major transcription factor in Th17 cell differentiation to induce IL-17A production (24); IRF4 has been reported to induce both IL-4 and IL-17 production (25, 26). However, the mRNA levels of RORC and IRF4 in CD4+ T cells were not affected by the treatment of CT (Fig. 2C). Regarding other Th cell–associated transcriptional factor genes (Fig. 2C), CT had no effect on FOXP3 expression, but it decreased mRNA levels of TBX21 expression.
but slightly increased GATA3 expression. These last two transcriptional factor expressions were consistent with levels of expression of their downstream cytokine genes, IFNG and IL4, respectively (Fig. 2B).

To characterize the change in cell population, especially with different cytokine expression, CT-treated cultures were analyzed by flow cytometry staining with anti–IFN-γ, anti–IL-17A, anti–IL-17F, and anti–IL-22 Abs. As shown in Fig. 3, CT decreased the percentage of IFN-γ+IL-17A+2 cells and did not change the percentages in IFN-γ+IL-17A+ populations, but it increased the IFN-γ−IL-17A+ population after a 4-d treatment (Fig. 3A). In contrast, there was no change in the percentage of total IL-17F+ or IL-22+ T cells (Fig. 3B). Therefore, CT selectively enhances IL-17A production but constrains IFN-γ in CD4+ T cells.

CT induces more IL-17A production from lineage-committed Th17 or Th1/17 cells but not from Th1 cells

Because CT caused the decrease of IFN-γ+ but the increase of IL-17A+ populations, we first examined whether CT converts non-Th17 cells to Th17 cells or whether CT directly acts on Th17 cells.

FIGURE 1. CT directly induces IL-17A production but decreases Th1 cytokines from stimulated CD4+ T cells. Total CD4+ T cells were stimulated with or without CT (10 ng/ml) for 3 d under CD3/CD28 activation (10 cells/bead). (A) Culture supernatant was analyzed for IL-17A and IL-17F protein production by ELISA (n = 7). *p < 0.05. (B) Th1 cytokines, (C) Th2 cytokines, (D) proinflammatory cytokines, and (E) anti-inflammatory cytokines were detected by using an Invitrogen human cytokine 10-plex panel kit (n ≥ 7). *p < 0.05.

FIGURE 2. CT increases IL17A, IL4, and GATA3 mRNA expression but decreases IFNG and TBX21 expression. CD4+ T cells were treated with or without CT (10 ng/ml) for 2 d under CD3/CD28 activation and total RNAs of cells were collected. The expression of (A) Th17-associated genes, (B) Th1 and Th2-associated genes, and (C) transcription factors were examined by a SYBR Green real-time PCR assay (n ≥ 6). *p < 0.05, **p < 0.01.
Chemokine receptor CXCR3 is expressed primarily on activated T cells and NK cells, being especially preferentially expressed on Th1 cells (27, 28). It has been reported that CCR6 is predominately expressed on Th17 cells (29–31). Using Abs specific to these two receptors, we isolated unstimulated Th1, Th17, and Th1/Th17 hybrid populations (32). The sorted Th cell subsets separately carry CXCR3+CCR6⁻ (enriched Th1), CXCR3⁻ CCR6⁺ (enriched Th17), and CXCR3⁺CCR6⁺ (enriched Th1/17) surface chemokine receptors (Fig. 4A, upper panels). Further flow cytometric analysis of these subtypes confirmed their specificity of cytokine expression for IFN-γ, IL-17A, and both cytokines (IFN-γ/IL-17A) as related to Th1, Th17, and Th1/Th17 subtypes, respectively (Fig. 4A, lower panels). Treatments of these isolated subtypes of cells with CD3/CD28 activation have shown that CT could further enhance IL-17A production from Th17 and Th1/Th17 cells, but not from Th1 cells (Fig. 4B). These results support the notion that CT could only enhance IL-17A production from T cells that are capable of secreting IL-17A.

![Figure 3](http://www.jimmunol.org/)

FIGURE 3. The percentage of IL-17A⁺ T cells is increased by the treatment of CT. CD4⁺ T cells were cultured with or without CT for 4 d and restimulated with TPA (50 ng/ml) and ionomycin (1 μM) for 5 h. Intracellular staining for IFN-γ, IL-17A, IL-17F, and IL-22 expression in T cells was examined by flow cytometry. (A) Data represent the percentage of IFN-γ⁺ IL-17A⁺, IFN-γ⁺ IL-17A⁺, and IFN-γ⁺ IL-17A⁺ cells. (B) Data represent the total percentage of IL-17F⁺ and IL-22⁺ cells (n ≥ 3). ***p < 0.001.

![Figure 4](http://www.jimmunol.org/)

FIGURE 4. CT only enhances IL-17A production from differentiated Th17 subset. Cells were sorted with CCR6 and CXCR3 surface marker to enriched Th1 (CXCR3⁺CCR6⁻), Th17 (CXCR3⁻ CCR6⁺), and Th1/17 (CXCR3⁺CCR6⁺). (A) The purity (upper panels) and cytokine profile (lower panels) of sorted T cells were determined by using FACScan. Cells were activated with CD3/CD28 beads for 4 d, restimulated with TPA (50 ng/ml) and ionomycin (1 μM), and then stained with anti–IL-17A and anti–IFN-γ Abs. Data are representative of one of three experiments. (B) The IL-17A levels in cultured supernatant were examined after 3-d activation in the absence or presence of CT (n = 3). *p < 0.05, **p < 0.01.
CT promotes further IL-17A production from naive CD4+ T cells that were cultured under Th17-polarizing condition

In addition to enhancing the effector function of Th17 cells, CT may also promote Th17 cell differentiation to enhance the overall IL-17A production. To test this possibility, naive CD4+ T cells were differentiated or not to Th17 cells under IL-1β and IL-23 supplemented or unsupplemented culture conditions, respectively. As shown in Fig. 5A, flow cytometric analysis revealed a small increase in IFN-γ–producing cells with a big drop in IL-17A–producing CT cells. In the Th17-polarizing culture condition with IL-1β and IL-23 treatments, CT enhanced more IL-17A–producing cells, but not the IFN-γ–producing cell population. These results are consistent with the enhancement of IL-17A production in this polarized subset of cells activated by anti-CD3 treatment (Fig. 5B). These results suggested that CT alone has a minimal effect on Th17 cell differentiation from naive CD4+ T cells under nonpolarizing conditions. However, this CT effect was further synergized with the IL-1β/IL-23 polarized condition and resulted in more IL-17A–producing cells and IL-17A production from activated CD4+ T cells.

CT-induced IL-17A production is cAMP-dependent

The main biochemical consequence caused by CT is the sustained increase in intracellular cAMP owing to the constitutive activation of adenylate cyclase by subunit A of CT (CT-A), which relies on the binding of CT-B to the cell surface to exert its function (10). To elucidate which CT subunits are responsible for the IL-17A induction, we compared the ability of CT and CT-B in the induction of IL-17A. As expected, CT-B alone did not effectively increase IL-17A production (Fig. 6A). This result indicates that CT-A is required for the increase of IL-17A in T cells. We also measured the intracellular cAMP levels of CD4+ T cells after treatment with CT-B or CT. As shown in Fig. 6B, the intracellular cAMP levels were increased by CT but not by CT-B. These results suggest that CT-A, upon the translocation, exerts its effect on the elevation of both the cAMP levels and IL-17A production.

Next, we examined whether the IL-17A induction by CT is due to the elevation of intracellular cAMP levels. Total CD4+ T cells were treated with various cAMP-elevating agents for 3 d under CD3/CD28 activation. The treatment of FK, which directly activates adenylate cyclase to induce intracellular cAMP, increased IL-17A production (Fig. 6C). A similar result was observed when cells were treated with db-cAMP (cell-permeable cAMP). We also used a phosphodiesterase inhibitor, IBMX, to determine whether the treatment could increase intracellular cAMP levels by blocking its degradation, resulting in an enhancement of IL-17A production. The addition of IBMX slightly increased IL-17A production. We also found that CT and these cAMP-elevating agents synergized with IL-1β/IL-23–polarizing conditions to enhance more IL-17A production (Fig. 6D). In summary, all cAMP-elevating agents can increase IL-17A production either under nonpolarizing or Th17-polarizing condition.

PGE2 has dual roles in anti-inflammation and proinflammation. Several reports also suggest that PGE2 regulates mouse and human Th17 function through cAMP (33, 34). Therefore, we also examined the effect of PGE2 on CD4+ T cells in our system and the results showed that PGE2 also increased cAMP (Fig. 6B) and IL-17A production (Fig. 6C) or Th17-polarizing (Fig. 6D) conditions. Additionally, we have also looked into the similarity of the effects of CT and PGE2 treatments on various cytokine productions by CD4+ T cells. As shown in the Supplemental Fig. 1, both CT and PGE2 have a similar trend of effects on the production of GM-CSF, IFN-γ, TNF-α, IL-2, IL-4, IL-5, IL-6, and IL-10 in this CD4+ T cell system whereas this similarity was not seen in CT-B and control treatments. These results further confirm that both CT and PGE2 enhance IL-17A production and alter other cytokine production via a common cAMP-dependent pathway.

CT also stimulates IL-17A promoter activity in Jurkat cells and primary CD4+ T cells via cis-CRE elements

In addition to cAMP signaling, our data also indicate that CT regulates IL-17A production at the mRNA level (Fig. 2A). To examine whether the effect of CT on IL-17A expression is due to transcriptional activation, a study of the CT effect on the IL-17A promoter activity was conducted both in Jurkat cells and primary CD4+ T cells using transient transfection approach with a PGL3-IL-17A construct. As shown in Fig. 7, CT increased the luciferase activity of IL-17A promoter construct in both Jurkat cells (Fig. 7B) and stimulated CD4+ T cells (Fig. 7C).
Exogenous cytokine effects on CT-induced IL-17A production

This IL-17A promoter construct contains two putative CREs, CRE1 (−183 to −178) and CRE2 (−111 to −104). To further elucidate the role of CRE motifs in the transcriptional regulation of IL-17A gene, we generated one luciferase expression construct containing both mutated CRE1 and CRE2 (i.e., IL-17p/CREmt; Fig. 7A). The data showed that mutation of both CRE motifs of IL-17A promoter significantly reduced the responsiveness to CT (Fig. 7B, 7D). Taken together, our results clearly demonstrate that CRE motifs are essential to the response of IL-17A promoter to CT, mediating via a cAMP-dependent pathway and occurs at the transcriptional level. Our data also indicated that CT exclusively activates the expression of IL-17A and its promoting cytokines IL-6 and GM-CSF. Because various cAMP analogs can have similar CT effects, these results suggest the importance of the cAMP signaling pathway in mediating Th17 cell differentiation.

Unlike IL-17A expression, CT did not increase the expression of other Th17-associated cytokine genes, such as IL-17F and IL-22. The difference in the regulation of Th17 cytokines has also been reported in other studies. For instance, TGF-β suppresses IL-22 expression but enhances IL-17A expression (39). Furthermore, it has been shown that Th17 cytokines act similarly on the induction of downstream genes and signaling; however, their physiological roles and functions in disease pathogenesis are different. (40). IL-17A and IL-17F knockout mice have different disease outcomes in experimental models of allergic encephalitis and allergic airway diseases (41). These studies suggest that in response to various environmental stimuli, Th17 cells secrete various combinations of cytokines to execute their function properly. Our study found that number of studies also showed that microbial components regulate Th17 differentiation directly or via the activation of APCs (6, 8). In this study, we demonstrated a novel function of CT to enhance IL-17A production from human PB CD4+ T cells and the generation of Th17 cells. The mechanism of CT-induced IL-17A production is mediated via a cAMP-dependent pathway and occurs at the transcriptional level. Our data also indicated that CT exclusively activates the expression of IL-17A and its promoting cytokines IL-6 and GM-CSF. Because various cAMP analogs can have similar CT effects, these results suggest the importance of the cAMP signaling pathway in mediating Th17 cell differentiation.

Discussion

Th17 cell differentiation is mediated by the integration of signals from TCRs, costimulatory molecules, and cytokines. An increasing number of studies also showed that microbial components regulate Th17 differentiation directly or via the activation of APCs (6, 8). In this study, we demonstrated a novel function of CT to enhance IL-17A production from human PB CD4+ T cells and the generation of Th17 cells. The mechanism of CT-induced IL-17A production is mediated via a cAMP-dependent pathway and occurs at the transcriptional level. Our data also indicated that CT exclusively activates the expression of IL-17A and its promoting cytokines IL-6 and GM-CSF. Because various cAMP analogs can have similar CT effects, these results suggest the importance of the cAMP signaling pathway in mediating Th17 cell differentiation.

This IL-17A promoter construct contains two putative CREs, CRE1 (−183 to −178) and CRE2 (−111 to −104). To further elucidate the role of CRE motifs in the transcriptional regulation of IL-17A gene, we generated one luciferase expression construct containing both mutated CRE1 and CRE2 (i.e., IL-17p/CREmt; Fig. 7A). The data showed that mutation of both CRE motifs of IL-17A promoter significantly reduced the responsiveness to CT (Fig. 7B, 7D). Taken together, our results clearly demonstrate that CRE motifs are essential to the response of IL-17A promoter to CT.

Exogenous cytokine effects on CT-induced IL-17A production

Our data showed that CT inhibited IL-2, IL-10, IFN-γ, and TNF-α production (Fig. 1). Additionally, IL-2, IL-10, and IFN-γ have been reported to suppress Th17 responses. Therefore, it is possible that the enhancement of IL-17A is due to the decrease of other cytokines. To investigate whether the IL-17A induction by CT is due to the bystander effect from other Th cells, IL-2, IL-10, IFN-γ, and TNF-α were separately added to the culture media during the CT treatment. None of them can block the increase of IL-17A by CT. We also observed the IL-6 increase of IL-17A in some samples. However, the addition of IL-6 or pretreatment of anti–IL-6 Abs did not change the IL-17A induction by CT either (Supplemental Fig. 2).

CT has been also reported to suppress IL-12 production from DCs and in experimental animals, and CT also suppresses Th1 differentiation (35–37). Additionally, IL-12 promotes the transition of Th17 to Th1/Th17 or Th1 cells (29, 38). To address whether IL-12 may interfere with CT-induced Th17 responses, we carried out a combined treatment of CT and IL-12 on CD4+ T cells. As shown in Fig. 8A, flow cytometric analysis revealed that IL-12 could directly promote more IFN-γ+ T cells in the absence of CT, whereas it had no effect on the IL-17A+ T cell population. However, under CT treatment, IL-12 blocked the increase of the IL-17A+ T cell population but promoted more IFN-γ+ T cells. Despite the changes in cell populations, IL-17A production in the secreted media from the cultures with or without CT was not significantly affected by IL-12 (Fig. 8B). These results suggest that IL-12, similar to other cytokines examined, had no direct effects on CT-induced IL-17A production, but it could change the T cell population toward more Th1 subsets of cells.

FIGURE 7. CT directly enhances the IL-17A promoter activity dependent of cis-element CRE. (A) Schematic representation of the human IL-17A promoter depicting cAMP-responsive element motifs used for wild-type and mutated promoter constructs. (B) Jurkat cells were transfected with indicated plasmids (vector, IL-17p/WT, and CREmt) and pRL-CMV using Lipofectamine 2000. One day after transfection, transfected cells were treated with CT for 4 h under the stimulation of TPA and ionomycin and the luciferase activity was measured. Luciferase activity was displayed as relative activity normalized with Renilla luciferase activity. Data represent three independent experiments (n = 3). **p < 0.01. (C and D) Primary T cells were stimulated for 16–18 h and nucleofected individually with indicated plasmids (vector, IL-17p/WT, and CREmt) and pRL-CMV. After a 6-h recovery, cells were treated with CT for an extra 18 h under CD3/CD28 activation. Cell lysates were examined by luciferase reporter assays after the restimulation with TPA and ionomycin for 4 h (D, n = 3). *p < 0.05, **p < 0.01.

FIGURE 8. IL-12 modulates the effect of CT on T cells. Cells were treated with the combination of CT (10 ng/ml) and IL-12 (10 ng/ml) for 3 d and then restimulated with TPA and ionomycin. (A) Restimulated T cells were stained with anti–IL-17A and anti–IFN-γ Abs. Data shown represent three independent experiments with similar results. (B) IL-17A production was assessed by ELISA (n = 6). *p < 0.05.
CT is one of the immunomodulators that selectively enhances IL-17A production from Th17 cells. Besides IL-17A, CT also induced GM-CSF production in T cells. GM-CSF is an activator for the development of DCs and has been used as a cytokine adjuvant in vaccine development (42, 43). Furthermore, GM-CSF is also involved in Th17-mediated autoimmune encephalomyelitis. IL-23 has been reported to drive GM-CSF expression by Th17 cells, and then GM-CSF activates DCs to secrete more IL-23. This IL-23/GM-CSF circuit enhances Th17 responses (4, 44, 45). Whether GM-CSF secreted from CT-treated T cells also has this IL-23/GM-CSF loop to enhance Th17 cell function in vivo needs to be clarified.

We also studied the underlying mechanism of CT-modulated IL-17A production in T cells. Our data suggest that CT-A plays the major role in the induction of IL-17A, the subunit of which activates adenylyl cyclase through ADP ribosylation. Additionally, we found that cAMP-elevating agents, such as FK and db-cAMP, mimic the CT effect on IL-17A stimulation. This result suggests that higher intracellular cAMP levels in T cells promote IL-17A production. Interestingly, naturally occurring regulatory T cells also have higher levels of endogenous cAMP than do conventional CD4+ T cells and they mediate their suppressive function by conferring cAMP to effector T cells through gap junctions (46).

Moreover, the cAMP signaling in T cells has also been reported to suppress T cell activation and proliferation. However, our study suggested a new role of cAMP in immune regulation rather than immunosuppression. Whether endogenous cAMP levels determine different fates of Th cells and whether the cAMP-dependent pathway regulates the balance of regulatory T and Th17 cells are rarely explored but important issues in immune regulation.

To further explore the molecular nature of CT-induced IL-17A expression, we also conducted promoter-reporter gene transfection studies in Jurkat cells and primary T cells. We observed a CT-induced IL-17A promoter-reporter activity in these transfected cells. This result supports an increased transcriptional activity as a mechanism for IL-17A production. We further demonstrated that CRE motifs on the IL-17A promoter are responsible for this CT-induced activity. However, the sequence around these CRE sites can be occupied with multiple transcription factors, such as RORγt, CREMα, and BATF (47). The transcriptional factors RORγt (24, 48) and CREMα (49) have been reported to bind to the region across the CRE2 (−111 to −104) sequence of the IL-17A promoter. RORγt is the major transcription factor of Th17 differentiation and induces IL-17A expression via direct binding to the promoter. In the present study, CT did not enhance mRNA levels of RORγt. Additionally, the small interfering RNA knockdown of RORγt and the pretreatment of RORγt inverse agonist SR101 did not affect CT-induced IL-17A production (data not shown). This result indicates that CT may induce IL-17A production via transcriptional activation but an RORγt-independent pathway. However, whether CT-induced IL-17A expression is dependent on BATF, CREMα, or other transcription factors needs to be explored.

PGE2 is one of the physiological molecules using cAMP as its secondary messenger. PGE2 is a negative regulatory molecule in immune activation. It has been thought to inhibit the function of neutrophils, monocytes, and also IFN-γ production by Th1 cells (50). However, some evidence shows that PGE2 also has proinflammatory properties in inflammatory bowel disease (51) and collagen-induced arthritis (52). In vitro culture of CD4+ T cells with PGE2 showed that PGE2 enhances IFN-γ expression and Th17 expansion in certain conditions (33, 34). In our system, similar to CT, PGE2 inhibited IL-2, IL-10, and TNF-α production but its effect on IFN-γ was not consistent among samples.

A variety of cytokines and other immunomodulators are expressed at the site of infection, and their crossstalk directs Th cells to preform specific effector functions. In this study, we found that IL-6 was increased but IFN-γ and IL-10 were decreased. These results indicate that the CT-induced response favors Th17 cells, although the addition of these cytokines into T cell culture media did not change the ability of CT on IL-17A induction. Furthermore, we also examined cytokines that favor Th17 development and the one that favors Th1 development. Our data showed that CT had a synergistic effect with IL-1β plus IL-23 to promote more IL-17A production. Additionally, we observed that IL-12 could abrogate the ability of CT to inhibit Th1 responses. However, we still detected more IL-17A production from CT-treated cells even when IL-12 was added. Interestingly, the increase in the percentage of IL-17A+ cells is constrained by IL-12. It is likely that IL-12 changes the proliferative ability of different Th cells or IL-12 directly constrains new Th17 cell generation. This finding emphasizes the invincible role of CT on IL-17A stimulation and also indicates that the crosstalk among different modulators is critical to determine the outcome of immune responses.

In conclusion, our findings suggest that CT is a powerful agent to determine the outcome of the T cell response. Therefore, more studies on other bacterial toxins in T cells can be executed to discover new modulators that can directly promote or suppress specific Th responses. The exploration of the mechanism triggered by toxins also provides an attractive target to develop new therapeutic strategies of immune-mediated diseases.

Disclosures
The authors have no financial conflicts of interest.

References
Supplementary Table 1

Primer Sets used in quantitative real-time PCR analysis of human CD4⁺ T cells

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward Primer</th>
<th>Reverse Primer</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAPDH</td>
<td>TGCACCACCAACTGCTTAGC</td>
<td>GGCATGGACTGTGGTCATGAG</td>
<td>(21)</td>
</tr>
<tr>
<td>IFNG</td>
<td>TGGCTTTTCAGCTCTGCACT</td>
<td>CCGCTACATCTGAATGACCTG</td>
<td>This work</td>
</tr>
<tr>
<td>IL4</td>
<td>CCGAGTTGACCAGAAACAGCAT</td>
<td>GTCCTTCTCATGGTGCTGTAG</td>
<td>This work</td>
</tr>
<tr>
<td>IL17A</td>
<td>CAACCGATCACCACCTACTT</td>
<td>GGCACCTTTGCCTCCAGAT</td>
<td>(1)</td>
</tr>
<tr>
<td>IL17F</td>
<td>TGCCAGGAGGTAGTATGAAGCTT</td>
<td>ATGCAGCCCAAGTACTACACT</td>
<td>(1)</td>
</tr>
<tr>
<td>IL22</td>
<td>GCAGGCTTGAACAGATCCACT</td>
<td>GCCTCCTTAGCCAGATGAA</td>
<td>(1)</td>
</tr>
<tr>
<td>CCL20</td>
<td>CTGGCTGCTTTGATGTCAGT</td>
<td>GCGTAAAAGGCTTGCTGC</td>
<td>(1)</td>
</tr>
<tr>
<td>TBX21</td>
<td>GCCTACCAAGATGGGGAATA</td>
<td>GGACTCAAGTTCTCCGGAAT</td>
<td>(21)</td>
</tr>
<tr>
<td>GATA3</td>
<td>TGTGCGCTCCTAAGCTACTCTG</td>
<td>GCTAGACATTTTTCCGTTAAG</td>
<td>This work</td>
</tr>
<tr>
<td>RORC</td>
<td>TGAGAAGGACAGGAGCCA</td>
<td>CCACAGATTTTGCAAGGATC</td>
<td>(1)</td>
</tr>
<tr>
<td>IRF4</td>
<td>GACCGCTCAGGCAAGAAGAA</td>
<td>ATCGTAGCCCTCAGGAAAT</td>
<td>This work</td>
</tr>
<tr>
<td>FOXP3</td>
<td>TGCCCTCCTCTTCTTGAGA</td>
<td>TCCTGGAGGAGTGCTGAAGT</td>
<td>This work</td>
</tr>
</tbody>
</table>
Supplementary Table 2

Primers used for pGL3-IL17A promoter construct and primers for site-directed mutagenesis to create IL17p/CREmt construct

<table>
<thead>
<tr>
<th>Primers for pGL-3 clone</th>
<th>Sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL17A_F</td>
<td>AAGGTACCAGAATTCTGCCCTTCC</td>
</tr>
<tr>
<td>IL17A_R</td>
<td>CAGCTAGCCGTTTCTTTCTTCCAAT</td>
</tr>
<tr>
<td>Mut_CRE1_F</td>
<td>CCTTCAGAAGGAGAGATTCTCTCTACGCCCCATGGGGGCGGAAATT</td>
</tr>
<tr>
<td>Mut_CRE1_R</td>
<td>AATTTCCGCCCCCAATGGGGCCGTAAGAAGATCTCTCCTTCTCTGAAGG</td>
</tr>
<tr>
<td>Mut_CRE2_F</td>
<td>GCGACACGCCACGTAAGCAGTCATAGAAGGAGAAAGCCCT</td>
</tr>
<tr>
<td>Mut_CRE2_R</td>
<td>AGGGCTTTTCTCTTCTATGATCGCTTACCGTGCGTGTCGC</td>
</tr>
</tbody>
</table>
Supplementary Fig S1 PGE₂, compared to CT, induces similar cytokine pattern from stimulated CD4⁺ T cells

CD4⁺ T cells were treated with CTB (10ng/ml), CT (10ng/ml) or PGE₂ (1μM) under CD3/CD28 activation for three days. The cytokine levels in cultured supernatants were assessed by using the kit of Invitrogen Human Cytokine 10-plex panel (n ≥5, *p<0.05, **p<0.01, ***p<0.001).
Supplementary Fig. S2 CT-induced IL-17A production is independent of secretory cytokines from CD4\(^+\) T cells

(A) Cells were stimulated and treated with CT (10ng/ml) and various cytokines for three days. The IL17A production in cultured supernatants was assessed by ELISA. This graph shown is representative of two to three independent experiments. Each bar represents the average of triplicate wells, and the error bars represent the standard error of the mean. The concentrations of cytokines and antibodies are as follows: IL-2 (10ng/ml), IL-6 (20ng/ml), IL-10 (10ng/ml), IFN-\(\gamma\) (100ng/ml), TNF\(\alpha\) (20ng/ml), and an -IL6 antibody (10\(\mu\)g/ml). (B) After treatment, cells were re-stimulated with TPA and ionomycin for 5 hours and stained with a -IL17A and a -IFN\(\gamma\) antibodies. Data represent two to three experiments with similar results.