IFN-α Inhibits Telomerase in Human CD8+ T Cells by Both hTERT Downregulation and Induction of p38 MAPK Signaling

Alessio Lanna, Elias Coutavas, Lauretta Levati, Judith Seidel, Malcolm H. A. Rustin, Sian M. Henson, Arne N. Akbar and Ornella Franzese

J Immunol 2013; 191:3744-3752; Prepublished online 30 August 2013;
doi: 10.4049/jimmunol.1301409
http://www.jimmunol.org/content/191/7/3744

Supplementary Material
http://www.jimmunol.org/content/suppl/2013/08/30/jimmunol.1301409.DC1

References
This article cites 60 articles, 33 of which you can access for free at:
http://www.jimmunol.org/content/191/7/3744.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
IFN-α Inhibits Telomerase in Human CD8⁺ T Cells by Both hTERT Downregulation and Induction of p38 MAPK Signaling

Alessio Lanna, Elias Coutavas, Lauretta Levati, Judith Seidel, Malcolm H. A. Rustin, Sian M. Henson, Arne N. Akbar, and Ornella Franzese

The cytokine IFN-α is secreted during viral infections and has been shown to inhibit telomerase activity and accelerate T cell differentiation in vivo. However, the mechanism for this inhibition is not clear. In this study, we show that IFN-α inhibits both the transcription and translation of human telomerase reverse transcriptase (hTERT), the catalytic component of telomerase, in activated CD8⁺ T cells. This was associated with increased activity of the repressor of hTERT transcription E2 transcription factor and decreased activation of NF-κB that promotes hTERT transcription. However IFN-α did not affect the translocation of hTERT from the cytoplasm to the nucleus. IFN-α also inhibits AKT kinase activation but increases p38 MAPK activity, and both of these events have been shown previously to inhibit telomerase activity. Addition of BIRB796, an inhibitor of p38 activity, to IFN-α–treated cells reversed, in part, the inhibition of telomerase by this cytokine. Therefore, IFN-α can inhibit the enzyme telomerase in CD8⁺ T cells by transcriptional and posttranslational mechanisms. Furthermore, the addition of IFN-α to CD8⁺ CD27⁺CD28+ T cells accelerates the loss of both these costimulatory molecules. This suggests that persistent viral infections may contribute to the accumulation of highly differentiated/senescent CD8⁺CD27⁻CD28⁻ T cells during aging by promoting IFN-α secretion during repeated episodes of viral reactivation. The Journal of Immunology, 2013, 191: 3744–3752.
enzyme during persistent viral infections. This may be a mechanism that prevents the overproliferation of T cells as a result of repeated antigenic challenge.

Materials and Methods
Preparation of CD8+ T cells from human peripheral blood

Written informed consent was obtained, and whole blood was collected in standard heparinized tubes from healthy volunteers. Unless stated, donors tested were <40 y of age. The study was approved by the Local Research Ethics Committee of the Royal Free and University College Medical School. Donors did not have any comorbidity, were not on any immunosuppressive drugs, and retained physical mobility and lifestyle independence. PBMCs were isolated from buffy coat samples obtained from healthy donors by Ficoll-Hypaque (Pharmacia, Uppsala, Sweden) density gradient centrifugation and resuspended in RPMI 1640 medium (Life Technologies, Paisley, Scotland, U.K.) supplemented with 10% FCS (Life Technologies), 2 mM glutamine (Flow Laboratories, McLean, VA), and 100 IU/ml penicillin/streptomycin at 37°C in a humidified 5% CO2 incubator. CD8+ T cells (95% pure at FACS analysis) were obtained from PBMC by magnetic bead isolation using Miltenyi columns (Miltenyi Biotec, Auburn, CA). Purified CD8+ T cells were activated in the presence of anti-CD3 Ab (purified OKT3; 0.5 μg/ml) plus recombinant human IL-2 (rhIL-2; 20 IU/ml; R&D Systems). In some experiments, the p38 MAPK inhibitor BIRB796 (BIRB) was added to the culture at a final concentration of 500 nM (20). Cells were pretreated with the inhibitor for 30 min. A solution of 0.1% DMSO was used as control.

Determination of donor CMV status

The CMV status of donors was obtained by the overnight stimulation of fresh PBMCs with CMV viral lysate and identification of IFN-γ production by CD4+ T cells as previously described (5). There was total concordance between IFN-γ responses and seropositivity obtained from IgG serology obtained from the diagnostic laboratory of University College London Hospital.

PBMCs were isolated from buffy coat samples obtained from healthy donors by Ficoll-Hypaque (Pharmacia, Uppsala, Sweden) density gradient centrifugation and resuspended in RPMI 1640 medium (Life Technologies) supplemented with 10% FCS (Life Technologies), 2 mM glutamine (Flow Laboratories), and 100 IU/ml penicillin/streptomycin at 37°C in a humidified 5% CO2 incubator. CD8+ T cells (95% pure at FACS analysis) were obtained from PBMC by magnetic bead isolation using Miltenyi columns (Miltenyi Biotec). Purified CD8+ T cells were activated in the presence of anti CD3 Ab (purified OKT3; 0.5 μg/ml) plus recombinant human IL-2 (rhIL-2; 20 IU/ml; R&D Systems). In some experiments, the p38 MAPK inhibitor BIRB was added to the culture at a final concentration of 500 nM (20). Cells were pretreated with the inhibitor for 30 min. A solution of 0.1% DMSO was used as control.

Measurement of telomerase activity

Telomerase activity was determined using the TRAPEze telomerase detection kit (Chemicon Europe) or using the TelomAGG telomerase ELISA kit from Roche, according to the manufacturer’s instructions, from extracts of 2 × 10^5 viable CD8+ T cells. Nuclear and cytoplasmic extracts were obtained as described by Andrews and Faller (26). Band intensity was quantified by bidimensional densitometry (Bio-Rad, Richmond, CAA). The absolute numbers of CD8+ T cells were enumerated using trypan blue (Sigma-Aldrich) and Ki67 analysis (BD Pharmingen).

Real-time PCR

Briefly, 1 × 10^5 viable CD8+ T cells stimulated with anti-CD3 Ab plus rhIL-2 and treated or not with IFN-α were harvested after 24 h incubation. Samples were resuspended in TRizol (Ambion) and RNA extracted according to the manufacturer’s instructions. For cDNA synthesis, 1 μg total RNA/sample was retro-transcribed using M-MuLV Reverse Transcriptase (Invitrogen) and random primers. hTERT mRNA was quantitatively detected by real-time RT-PCR. For quantitative real-time RT-PCR, 1 μl cDNA/sample was amplified according to the manufacturer’s instructions (Applied Biosystems) on an ABI-PRISM 7500. Levels of hTERT were normalized against ACTB housekeeping expression. hTERT (Hs00972656_m1) and ACTB (Hs00606657_g1) RT primers were purchased from Applied Biosystems. All real-time RT-PCR reactions were performed in triplicate. Normalized TERT expression (TERT/ACTB) was calculated using the ΔΔ threshold cycle method according to the supplier’s protocol.

EMSA

Transcription of hTERT has been shown to be inhibited by the repressor E2F (27), whereas NF-κB promotes the transcription of the catalytic subunit of telomerase (21). However, as no NF-κB-specific consensus binding site has been found, and p65 was not detected on the hTERT promoter (21), the effect mediated by NF-κB may be indirect. hTERT was separately isolated on E2F and NF-κB binding to their specific DNA binding sites was analyzed by EMSA. Nuclear extracts were obtained as previously described (26). Five micrograms nuclear proteins/reaction was incubated with 30,000 cpm [32P]ATP (Amersham Biosciences) end-labeled oligonucleotides. Extracts were incubated with the sequence corresponding to −184 to −161 bp of the hTERT promoter containing the putative E2F site (5′-CGCCCAAG-GGAATCTCTCCTCACGT-3′) and with a commercially available oligonucleotide containing an NF-κB consensus sequence (obtained from Promega), respectively. Reactions were performed in a 10-μl volume for 20 min at room temperature in a buffer consisting of 5 mg/ml poly (deoxyinosinic-deoxyribocytic) acid, 10 mM Tris–HCl, 50 mM NaCl, 0.5 mM DTT, 0.5 mM EDTA, 1 mM MgCl2, and 4% glycerol (pH 7.5; Promega). Protein–DNA complexes were resolved by 5% PAGE at 4°C. Dried gels were exposed to x-ray film (Amersham Biosciences) at −70°C for 12 h.

Western blot analysis

For Western blot analysis of whole-cell extracts, purified CD8+ T cells were activated in the presence of anti-CD3 Ab plus rhIL-2 and lysates obtained by sonicating cells in 50 mM Tris–HCl (pH 7.5), 2 mM EGTA, and 0.1% Triton X-100 buffer. Cytoplasm and nuclear extracts were prepared as previously described (26). Lysates from 2 × 10^6 cells for whole-cell extracts and 5 × 10^5 cells for nuclear extracts were separated by 10% SDS-PAGE gels and transferred to Hybond-P membranes (Amersham Pharmacia Biotech, Piscataway, NJ). Membranes were then probed with anti-p-AKT1/2/3 (Ser473), p-AKT (Thr473), hTERT, P2PA, and P-P2PA (Tyr385) Abs (all from Santa Cruz Biotechnology) and anti-AKT1, p38 MAPK, and p38 MAPK (Thr180/Tyr182) Abs (from Cell Signaling Technology) following the instructions provided by the manufacturers. All filters were probed with anti-β-actin Ab (Santa Cruz Biotechnology) as a loading control. Quality of nuclear extracts was analyzed using anti-histone H1 Ab (Upstate Biotechnology, Lake Placid, NY). Analysis was performed using the ECL Plus Western detection kit (Amersham Pharmacia Biotech).

Nuclear pore complex analysis

Isolated CD8+ T cells in PBS at ~2000 cells/μl were allowed to settle in the center of a previously poly-L-lysine–coated (P8920; Sigma-Aldrich) and washed coverslip in a humidified chamber at room temperature for 10 min. Cells were fixed with 2% formaldehyde in PBS for 20 min, permeabilized with 0.5% Triton X-100 in PBS for 5 min, and then incubated with anti-Nup158 or anti-nuclear pore complex (NPC) 414 Abs (Covance) for 45 min in a humidified chamber and then with secondary Abs conjugated to Alexa 488 or Alexa 647 (Life Technologies). Cells were washed with PBS and 0.1% Triton X-100 in PBS plus 1 μg/ml Hoechst 33342. The coverslips were then mounted on glass slides with 2 μl Prolong Gold (P36934; Life Technologies). The images were collected on an inverted confocal microscope (Olympus) with a ×60 objective (numerical aperture 1.45) with an SIM scanner using the Fluoview software. The fluorescence within a region of interest surrounding the nuclear envelope in four midplane sections was measured using ImageJ (Wayne Rasband, National Institutes of Health).

p38 MAPK blockade

A total of 2 × 10^5 human CD8+ T cells were stimulated in the presence of anti-CD3 Ab– precoated plates plus rhIL-2 (5 ng/ml). Where necessary, p38 blockade was achieved by preincubating the cells with the chemical inhibitor BIRB (500 nM) at 37°C for 30 s as previously described (20). After 3 d in culture, telomerase activity was measured using the TelomAGG telomerase ELISA kit from Roche according to the manufacturer’s instructions. A total of 2 × 10^5 viable CD8+ T cells were used for the assay.

Statistical analysis

Statistical significance was evaluated using a paired one-way Student t test. Differences were considered significant when p < 0.05.

Results

The inhibition of hTERT transcription regulation in CD8+ T cells by IFN-α

We began by confirming that telomerase activity in CD8+ T cells activated by anti-CD3 Ab and rhIL-2 was inhibited in a dose-
dependent manner by IFN-α (representative data Fig. 1A; pooled data, Fig. 1B). This inhibition was significant at the highest concentration of IFN-α used (500 IU/ml; p < 0.05), which did not affect cell viability (trypan blue dye exclusion assay, data not shown).

A key mechanism for regulating telomerase activity in human cells is the transcriptional control of the telomerase catalytic subunit gene hTERT (9, 15–17). We therefore examined hTERT mRNA levels in IFN-α–treated CD8+ T cells activated by anti-CD3 Ab plus rhIL-2 for 24 h by quantitative real-time RT-PCR analysis. IFN-α significantly reduced the hTERT mRNA levels normalized against ACTB housekeeping gene expression (Fig. 1C). We next investigated whether the inhibition of telomerase activity was due to downregulation of hTERT protein expression by Western blot analysis. Time-course studies indicated that hTERT protein was expressed optimally at 36 h (data not shown), when IFN-α induced a significant decrease in hTERT protein expression (representative result in Fig. 1D; pooled data in Fig. 1E). Therefore, the IFN-α–induced decline of telomerase activity in activated CD8+ T cells is associated with the decrease in hTERT transcription and translation.

IFN-α reduces both cytoplasmic and nuclear levels of hTERT and telomerase activity in activated CD8+ T cells

Nuclear localization of hTERT is essential for telomerase function (17, 21). We therefore investigated whether the decreased levels of total cell telomerase activity was accompanied by a reduction in its cytoplasmic and/or nuclear localization. We showed that telomerase activity was detected in both cytoplasmic and nuclear extracts of activated CD8+ T cells and that there was a significant reduction of telomerase activity induced by IFN-α in both compartments (Fig. 2A, 2B). This was associated with the decreased expression of cytoplasmic and nuclear hTERT protein (Fig. 2C, 2D).

The significant inhibition of telomerase activity and hTERT levels observed in the nuclei of IFN-α–treated CD8+ T cells prompted us to analyze whether this was a consequence of a interference with the nuclear import machinery. The trafficking of macromolecules across the nuclear envelope occurs exclusively through large multisubunit assemblies called NPCs. The core of the NPC consists of a lumenal spoke-ring complex sandwiched between peripheral rings (28–30). This scaffold encloses a central channel for signal-mediated transport (30). We next investigated the distribution and composition of NPCs in CD8+ T cells from three different donors by indirect immunofluorescence after 24-h stimulation. A representative example of NPC staining of CD8+ T cells within unfractionated PBMC is shown in Fig. 2E. Using anti-Nup358 or anti-414, which targets a panel of phenylalanine-glycine repeats containing nucleoporins (Nup358, Nup214, Nup153, and p62), no qualitative differences in NPC numbers or staining intensity were observed in control and IFN-α–treated cells (Supplemental Fig. 1). Collectively, these data indicate that the inhibition of telomerase activity by IFN-α is unlikely to be due to alterations of machinery responsible for the transport from the cytoplasm to the nucleus.

FIGURE 1. IFN-α downregulates telomerase activity in CD8+ T cells. A representative blot of telomerase activity (TRAP assay; see Materials and Methods) of whole-cell extracts from 5 × 10^6 viable CD8+ T cells determined 72 h following activation with anti-CD3 Ab plus rhIL-2 is shown in (A). Graph depicting pooled results of the effect of IFN-α on telomerase activity from three separate donors is shown in (B). The effect of IFN-α (500 IU/ml) on hTERT mRNA expression of CD8+ T lymphocytes 24 h following activation with anti CD3 Ab plus rhIL-2 analyzed by quantitative real-time RT-PCR is shown in (C). Levels of hTERT are normalized against ACTB housekeeping gene expression. The graph shows the difference in terms of gene expression working out the ΔΔ threshold cycle (CT) algorithm between TERT and the housekeeping ACTB. Data shown are representative of three independent experiments. The effect of IFN-α on hTERT expression tested on whole-cell extracts of 2 × 10^6 viable CD8+ T lymphocytes 36 h following activation with or without anti-CD3 Ab plus rhIL-2 was analyzed by Western blot. A representative blot is shown in (D). IFN-α reduces total cell expression of hTERT in CD8+ T cells. Gel loading control was based on β-actin expression. Graph showing the mean ± SD of the ratio protein/β-actin band intensity values for three donors is shown in (E). All p values were calculated using one-way paired Student t test. * p < 0.05.
IFN-α inhibits hTERT transcription by modulating NF-κB and E2F activation

Transcription of hTERT mRNA has been shown to be inhibited by the repressor E2F (27), whereas NF-κB can promote the transcription of the catalytic subunit of telomerase (21). Because the NF-κB–specific consensus binding site has been identified in the proximal hTERT promoter, the effect of this transcription factor on telomerase has been suggested to be indirect (22). EMSA-based experiments were performed to analyze whether there was evidence for the presence of proteins in activated CD8+ T cells that bind to the E2F and NF-κB–specific DNA sequences. Nuclear proteins were isolated from CD8+ T cells that were activated in the presence of IFN-α (26). A representative experiment showing the effect of IFN-α on hTERT expression tested on cytoplasmic and nuclear extracts from 5 × 10^6 viable CD8+ T lymphocytes 36 h following activation by Western blot is shown in (C). Quality of extracts was tested using anti–β-actin and histone H1 Ab, respectively. The graph in (D) shows the mean ± SD of the ratio protein/β-actin and histone H1 for cytoplasmic and nuclear compartments, respectively, for three donors. The effect of IFN-α on the distribution and composition of NPCs was tested on CD8+ T cells in terms of changes in the expression levels of Nup358 in three different donors by indirect immunofluorescence following 24-h stimulation with anti-CD3 Ab plus rhIL-2 with or without IFN-α. No qualitative differences in NPC numbers or staining intensity were observed (see Supplemental Fig. 1). In (E), a representative image of the staining is shown. The images were collected on an inverted confocal microscope (Olympus) with a ×60 objective (numerical aperture 1.45) with a SIM scanner using the Fluoview software. The fluorescence within a region of interest surrounding the nuclear envelope in 12 midplane sections was measured. All p values were calculated using one-way paired Student t test. *p < 0.05.

FIGURE 2. IFN-α downregulates telomerase activity in the cytoplasm and the nucleus of CD8+ T cells. A representative gel showing telomerase activity (TRAP Assay; see Materials and Methods) of cytoplasmic and nuclear extracts from 5 × 10^5 viable CD8+ T cells tested 72 h following activation with anti-CD3 Ab plus rhIL-2 is shown in (A). Graph depicting pooled results of the effect of IFN-α on telomerase activity of fractioned extracts from three separate donors is shown in (B). A representative experiment showing the effect of IFN-α on hTERT expression tested on cytoplasmic and nuclear extracts from 5 × 10^6 viable CD8+ T lymphocytes 36 h following activation by Western blot is shown in (C). Quality of extracts was tested using anti–β-actin and histone H1 Ab, respectively. The graph in (D) shows the mean ± SD of the ratio protein/β-actin and histone H1 for cytoplasmic and nuclear compartments, respectively, for three donors. The effect of IFN-α on the distribution and composition of NPCs was tested on CD8+ T cells in terms of changes in the expression levels of Nup358 in three different donors by indirect immunofluorescence following 24-h stimulation with anti-CD3 Ab plus rhIL-2 with or without IFN-α. No qualitative differences in NPC numbers or staining intensity were observed (see Supplemental Fig. 1). In (E), a representative image of the staining is shown. The images were collected on an inverted confocal microscope (Olympus) with a ×60 objective (numerical aperture 1.45) with a SIM scanner using the Fluoview software. The fluorescence within a region of interest surrounding the nuclear envelope in 12 midplane sections was measured. All p values were calculated using one-way paired Student t test. *p < 0.05.
presence or absence IFN-α (Fig. 3A, 3B). These nuclear protein extracts were incubated with the sequence corresponding to −184 to −161 bp of the hTERT promoter containing the putative E2F site (27) and with the standard oligonucleotide containing NF-κB consensus sequence, respectively. We found that IFN-α upregulated the binding of proteins (presumably E2F) to the E2F-specific sequence of the hTERT promoter and decreased the binding activity of proteins (presumably NF-κB) to its specific consensus sequence (representative experiment in Fig. 3A; pooled data from three different experiments in Fig. 3B). These observations suggest that the IFN-α–mediated decrease of hTERT mRNA transcription is related to increased activation of the E2F transcription factor and a decline of NF-κB activity.

IFN-α mediates downregulation of AKT signaling

AKT signaling is crucial for the regulation of telomerase activity by activating hTERT and promoting its nuclear translocation (17, 19, 31), and defective AKT phosphorylation at both p-AKTThr308 and p-AKTSer473 sites is a molecular feature of highly differentiated CD8+ T cells (14, 18, 32). We therefore investigated whether the downregulation of telomerase activity in activated CD8+ T cells by IFN-α was related to AKT expression or phosphorylation. We found that the addition of this cytokine was able to decrease AKT phosphorylation in CD8+ T cells at both Ser473 and Thr308 sites, whereas total AKT expression was not significantly affected (representative result in Fig. 4A). In addition, the mean of the ratio of the densitometric values of Ser473-AKT and Thr308-AKT values to total AKT showed a substantial reduction of AKT phosphorylation at both sites, which reflects a significant kinase inactivation 24 h following IFN-α treatment (Fig. 4B). We next investigated whether IFN-α had any effect on proteins upstream of AKT activation. PP2A phosphatase has been known to negatively regulate AKT activity by dephosphorylation (24). We therefore investigated whether the addition of IFN-α to activated CD8+ T cells had any effect on the expression of PP2A. We found that addition of this cytokine increased the total levels PP2A and at the same time decreased the inactive form of the enzyme that is phosphorylated on Tyr307 (Fig. 4A, 4B) (33). Therefore, the inhibition of telomerase by IFN-α is associated with the increased synthesis and activity of PP2A that inhibits AKT, which is essential for telomerase activity in human CD8+ T cells (13, 14). Housekeeping β-actin was used as loading control in these experiments (Fig. 4A).

IFN-α activates p38 MAPK signaling that inhibits telomerase activity

Active p38 MAPK signaling pathway has recently been demonstrated to be involved in the decline of telomerase activity in highly differentiated CD4+ T cells (20). Upon activation, in response to both inflammatory cytokines and stress, p38 MAPK is phosphorylated on Thr180 and Tyr182 (34). We found that activated p-p38 Thr180/Tyr182 MAPK was found to be upregulated in activated CD8+ T cells by IFN-α, whereas total p38 expression was not affected (Fig. 5A). The ratio of the densitometric values of p-p38 Thr180/Tyr182 to total p38 showed a strong increase of p38 phosphorylation after 24-h exposure to IFN-α (Fig. 5B), which reflects a significant activation of the kinase. In all of these experiments, housekeeping β-actin was used as loading control (Fig. 5A).

To confirm a direct role of p38 MAPK signaling in the IFN-α–mediated impairment of telomerase activity in CD8+ T cells, we blocked p38 signaling, in IFN-α–treated cells, by the addition of BIRB, an inhibitor that blocks the activation of all four of the isoforms of p38 (35). The addition of BIRB reversed the down-regulation of telomerase activity that was induced by this cytokine (Fig. 5C, 5D). However, we have not yet determined whether p38 blockade also reverses the inhibition of hTERT transcription or the inactivation of AKT that is also induced by IFN-α.

IFN-α accelerates the loss of CD27 and CD28 after activation of CD27+CD28+ T cells

CD8+ T cells can be subdivided on the basis of costimulatory receptor expression into those that are CD27+CD28+ that have relatively long telomeres, CD27−CD28− cells that have intermediate telomere length, and CD27−CD28+ cells that have the shortest telomeres and characteristics of highly differentiated T cells (14). We found that the CD27−CD28+ T cells decrease, whereas the CD27−CD28− T cells increase significantly with age (Fig. 6A, 6B). Furthermore, we found that persistent infection with CMV induces a further decrease of CD27−CD28− and increase of CD27+CD28+ T cells independently of age (Fig. 6B). We found that the CD27+CD28+ T cells expressed significantly lower telomerase activity compared with the other two subsets after activation (Fig. 6C). Furthermore, in a previous study (14), we also showed that these cells have decreased hTERT transcription and AktSer473 phosphorylation after activation, therefore showing close resemblance to IFN-α–treated cells. Therefore, the effects of IFN-α on reducing telomerase activity are likely to reflect the effects of this cytokine on the CD27−CD28− and CD27+CD28+ T cells rather than on the CD27+CD28+ population that already exhibits these features.

The loss of CD27 and CD28 in CMV-infected individuals has been suggested to be a consequence of CMV-induced IFN-α secretion (5). We show that the addition of IFN-α during the activation of isolated CD27+CD28+ T cells accelerates the loss of both CD27 and CD28 on these cells (Fig. 6C, representative experiment shown) that confirms reports in CD4+ T cells (5) and previous data showing that IFN-α induces the loss of CD28 on activated CD8+ T cells (4). Therefore, multiple strands of evidence suggest indirectly that persistent viral infections may induce the
secretion of proinflammatory cytokines such as IFN-\(\alpha\) that may inhibit telomerase activity as well as induce phenotypic differentiation of CD8\(^+\) T cells.

Discussion

Because thymic involution occurs early in life (36), long-term immunity requires the expansion and contraction of specific T cell populations upon re-encounter with Ag. However, there is a limit, imposed by telomere erosion, to the extent that T cells can proliferate, suggesting that repeated activation may eventually lead to loss of specific cells (37). The reactivation of telomerase in T cells upon antigenic stimulation compensates for telomere loss but highly differentiated T cells, induced by repeated stimulation, lose the ability to upregulate this enzyme (5, 11, 14). The broad implication for this is the potential loss of memory T cells as a result of repeated antigenic challenge that may lead to the impairment of immunity during aging (37). Understanding why telomerase is downregulated in highly differentiated T cells may identify signaling pathways that can be manipulated to enhance the persistence of functional T cells during aging. The proof of principle that restoration of telomerase activity promotes T cell persistence comes from studies showing that the transduction of

![Figure 4](http://www.jimmunol.org/)

FIGURE 4. IFN-\(\alpha\) mediates downregulation of AKT signaling. A representative experiment showing the effect of IFN-\(\alpha\) on p-Ser\(^{473}\)-AKT, p-Thr\(^{308}\)-AKT, total AKT, p-Tyr\(^{307}\)-PP2A, and total PP2A expression tested on whole-cell extracts of \(2 \times 10^6\) viable CD8\(^+\) T lymphocytes 24 h following activation with anti-CD3 Ab plus rhIL-2 by Western blot is shown in (A). IFN-\(\alpha\) reduces phosphorylation of AKT on both Ser\(^{473}\) and Thr\(^{308}\) sites, whereas total AKT is not affected. IFN-\(\alpha\) treatment upregulates total PP2A and decreases the inactive form Tyr\(^{307}\)-PP2A. Gel loading control was performed analyzing \(\beta\)-actin expression. Graphs of the mean ± SD of the ratio of band intensity values of Ser\(^{473}\)-AKT and Thr\(^{308}\)-AKT to total AKT and pTyr\(^{307}\)-PP2A to total PP2A, respectively, for three donors are shown in (B). All \(p\) values were calculated using one-way paired Student \(t\) test. \(p < 0.05\).

![Figure 5](http://www.jimmunol.org/)

FIGURE 5. IFN-\(\alpha\) activates MAPK p38 signaling. A representative experiment showing the effect of IFN-\(\alpha\) on p-Thr\(^{180/182}\) MAPK and total p38 MAPK expression tested on whole-cell extracts of \(2 \times 10^6\) viable CD8\(^+\) T lymphocytes 24 h following activation with anti-CD3 Ab plus rhIL-2 by Western blot is shown in (A). Gel loading control was performed analyzing \(\beta\)-actin expression. IFN-\(\alpha\) treatment induces activation of p38 through phosphorylation of Thr\(^{180/182}\). (B) shows the mean of the ratio ± SD of p-38 p-Thr\(^{180/182}\) to total p38 for three donors. The role of p38 in IFN-\(\alpha\)-mediated inhibition of telomerase activity is evaluated by a p38 inhibition experiment by blocking p38 signaling in stimulated T cells by the addition of BIRB, an inhibitor that blocks the activation of all four of the isoforms of p38. Telomerase activity measured by ELISA is shown as proportional to the OD at 450 nm after due normalization against a negative control (heat-inactivated telomerase sample). (C) p38 blockade enhances cell telomerase activity in CD8\(^+\) T cells. All \(p\) values were calculated using one-way paired Student \(t\) test. \(p < 0.05\).
highly differentiated T cells with hTERT considerably extends their proliferative lifespan in vitro (38–40).

We showed previously that highly differentiated T cells have reduced hTERT transcription and that there is a defect in AKT phosphorylation at the Ser473 site in these cells (14). We also showed that p38 MAPK signaling, which is increased in highly differentiated T cells, is involved in telomerase downregulation and that blocking p38 activity with a specific inhibitor can restore telomerase activity in these cells (20). It appears, therefore, that telomerase inhibition in highly differentiated T cells occurs by both translational and posttranslational mechanisms. The key observation of the current study is that IFN-α inhibits telomerase by mechanisms that are identical to those responsible for inhibition of this enzyme in naturally occurring highly differentiated CD8$^+$ T cells. This includes the decreased transcription and translation of hTERT, the decrease in AKT phosphorylation, and the increase of p38 MAPK activity. In this regard, persistent infection with CMV induces large numbers of highly differentiated T cells (44), and this may be associated with the release of high concentrations of IFN-α by plasmacytoid dendritic cells, which are activated with CMV Ags (5, 45).

A previous study by Liu et al. (46) highlighted the importance of phosphorylation and translocation of hTERT to the nucleus of activated human T cells. In this study, we showed that IFN-α reduced both telomerase activity and hTERT expression in both the cytoplasmic and nuclear compartments. This, in conjunction with the observation that NPC (47) numbers were not altered by IFN-α treatment, suggests that this cytokine is unlikely to inhibit telomerase activity in CD8$^+$ T cells by altering nuclear translocation of hTERT. Instead, we found that the decreased AKT activation by IFN-α was linked to an upstream event, namely the upregulation of the activity of the enzyme PP2A, which deactivates AKT and possibly also hTERT (23, 24). In addition, IFN-α induced p38 MAPK signaling, which we showed was directly involved with inhibition of telomerase activity. However, we do not know at present how these two posttranscriptional events that inhibit telomerase activity are linked. Furthermore, other proinflammatory cytokines such as TNF-α can also induce p38 expression and telomerase downregulation in T cells (20). It is not clear whether this and other cytokines can inhibit telomerase by the same or different mechanisms, but it does highlight the impact...
that excessive inflammation induced by persistent infections or autoimmune diseases may have on driving T cells toward senescence. In this context, the correlations that have been observed between excessive telomere erosion in leukocytes and certain forms of ill health (48–50) are likely to be a secondary consequence of the deleterious effects of inflammation on different tissues.

IFN-α therapy has been approved for the treatment of hepatitis C, viral infections, and cancer (51–54) and is currently used as an adjuvant in vaccination protocols in melanoma patients (55). The present study has critical clinical implications in this regard. Sustained treatment with IFN-α has been shown to increase telomere loss in naïve T cells, while inhibiting the accumulation of T cell memory expansions (56). Furthermore, the presence of IFN-α during a cutaneous immune response in humans in vivo has also been linked with accelerated local T cell differentiation (6). These studies collectively confirm our current observations and highlight the previously unappreciated role of this cytokine in regulating end-stage T cell differentiation. The fact that multiple mechanisms are engaged by this cytokine in the inhibition of telomerase in T cells underscores the importance of this process in vivo. Our results lead to the question of whether IFN-α and other proinflammatory cytokines can regulate telomerase activity in proliferative nonlymphoid tissues and if this is detrimental to their function. This may explain the link between excessive leukocyte differentiation, inflammation, and ill health that is found in certain individuals (57–59).

Finally, it has been shown recently that although the secretion of type I IFN (that includes IFN-α) during early infection with lymphocytic choriomeningitis virus is essential for viral clearance, the prolonged exposure to this group of cytokines can suppress the immune system and prevent the control of virus replication (60, 61). It has been suggested that this may be a control mechanism that limits immunopathology that may arise from chronic stimulation in tissues (6, 60, 61). The therapeutic inhibition of IFN-α/β signaling led to an increase in virus-specific T cell responses and re-establishes control of the virus (60, 61). Our observations suggest that the detrimental effects of these cytokines may be mediated in part by the induction of end-stage differentiation of reactive T cells that has been shown to occur in both in vitro (5) and in vivo (6).

Disclosures

The authors have no financial conflicts of interest.

References

KLRG1 signaling induces defective Akt (ser473) phosphorylation and proliferative dysfunction of highly differentiated CD8+ T cells. Blood 113: 6619–6628.

