Divergent Immunomodulating Effects of Probiotics on T Cell Responses to Oral Attenuated Human Rotavirus Vaccine and Virulent Human Rotavirus Infection in a Neonatal Gnotobiotic Piglet Disease Model

Kuldeep S. Chattha, Anastasia N. Vlasova, Sukumar Kandasamy, Gireesh Rajashekara and Linda J. Saif

J Immunol 2013; 191:2446-2456; Prepublished online 5 August 2013; doi: 10.4049/jimmunol.1300678

http://www.jimmunol.org/content/191/5/2446

References

This article cites 62 articles, 14 of which you can access for free at: http://www.jimmunol.org/content/191/5/2446.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at: http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
Divergent Immunomodulating Effects of Probiotics on T Cell Responses to Oral Attenuated Human Rotavirus Vaccine and Virulent Human Rotavirus Infection in a Neonatal Gnotobiotic Piglet Disease Model

Kuldeep S. Chattha, Anastasia N. Vlasova, Sukumar Kandasamy, Gireesh Rajashekar, and Linda J. Saif

Rotaviruses (RVs) are a major cause of acute gastroenteritis in infants and children. Annually, RV diarrhea is responsible for ~450,000 deaths in children <5 years old (1). The two licensed oral RV vaccines have higher efficacy against severe RV gastroenteritis in developed countries than in developing countries, where the burden of RV infection is higher (2). Probiotics are alternative low-cost treatments to moderate infectious diarrhea, and they may also enhance oral vaccine efficacy in developing countries (3, 4). In children, initial microbial colonization depends on the mode of delivery and the type of feeding (breast versus formula fed). Lactobacilli (belongs to Firmicutes) and Bifidobacteria (belongs to Actinobacteria) spp. are dominant Gram-positive commensals in breastfed infants, and contribute to immune- and health-related benefits (5–7). Moreover, randomized clinical trials have shown that certain Lactobacilli and Bifidobacteria spp. reduced RV diarrhea in children (8, 9). Colonization by commensals (selected probiotics) results in induction of different subsets of Th cells including Th1, Th2, Th17, and T regulatory cells (Tregs) through interactions with dendritic cells, which may modulate immune responses to vaccines and infections (10–13). Commensal/probiotic colonization and their associated beneficial effects play a critical role early in life that may result in lifelong benefits (14). Thus, early colonization by probiotic species (Lactobacillus rhamnosus strain GG [LGG], Bifidobacterium animalis subsp. lactis Bb12 [Bb12]) may mature gut immunity to enteric pathogens and enhance oral vaccine efficacy and also moderate the severity of enteric infections.

RV induces diarrhea, dehydration, and vomiting in infants and gnotobiotic (Gn) pigs (15). Human RV (HRV)–induced diarrhea in both infected children and Gn pigs is characterized by upregulated proinflammatory cytokines in the blood, which correlates with diarrhea severity and viremia (16–18). Acute RV infection in children is associated with higher expression of TLR2, TLR3, TLR4, TLR7, and TLR8 on blood mononuclear cells (MNCs)
Colonized negative controls (Control: prechallenge \(n = 6 \), postchallenge \(Bb12 \) and at 5 d of age with LGG+\(Bb12 \) at a dose of 10\(^5\) CFUs (CFU)/

Intervals (postinoculation day [PID] 10 and PID20; Fig. 1). A subset of pigs received vaccine dose at 6 d of age and then received two additional doses at 10-d intervals (PID10 and PID20; Fig. 1). The absolute number of Tregs (CD8\(^+\)CD25\(^+\)Foxp3\(^+\)/CD8\(^+\)CD25\(^+\)Foxp3\(^+\)) was determined by multiplying frequencies of Tregs among MNCs with

The immunomodulation as compared with low-dose \(L. \) acidophilus supplementation (21). A combination of \(L. \) acidophilus and \(L. \) reuteri given in multiple low doses also did not enhance protection against diarrhea and fecal shedding post-

VisHRV infection in a Gn pig model, which coincided with no significant differences in HRV-specific Ab responses between probiotic colonized and noncolonized groups postchallenge (23).

In children, probiotics and HRV studies have focused primarily on B cell responses, with limited studies investigating cell-mediated immune responses (8, 9, 24). We focused on comprehensively investigating how cell-mediated immune responses can be modulated by early colonization with probiotics (combination of LGG and \(Bb12 \)), mimicking colonization kinetics of commensal species (\(Lactobacilli \) and \(Bifidobacteria \)) in breastfed infants.

In this study, we investigated the role of selected probiotics (\(LGG +Bb12 \)), mimicking colonization patterns in breastfed infants, on T cell and cytokine responses to \(\text{VisHRV Wa} \) (G1P[8]) vaccine (genotypically similar to Rotarix, G1P[8]) and to \(\text{VisHRV Wa} \) infection. We hypothesize that initial cocolonization by LGG and \(Bb12 \) will enhance immune maturation and responses (adjuvant properties) to an oral \(\text{AttHRV Wa} \) vaccine and reduce \(\text{VisHRV diarrhea} \) (prophylactic properties). We show that probiotics \(\text{LGG+Bb12} \) enhanced immunostimulatory Th1 responses to oral \(\text{AttHRV Wa} \) and induced immunoregulatory responses to \(\text{VisHRV Wa} \) infection.

Materials and Methods

Virus and probiotic strains

Cell culture adapted \(\text{AttHRV Wa} \) was used as vaccine at a dose of 5 \(\times 10^7 \) fluorescent foci-forming units (FFU) (23). The \(\text{VisHRV Wa} \) was used for challenge at a dose of 1 \(\times 10^7 \) FFU as previously described (15). The probiotics LGG strain ATCC 53103 (American Type Culture Collection, Manassas, VA) and \(Bb12 \) (Christian Hansen, Hørsholm, Denmark) were used to colonize Gn pigs as previously described (25).

Animals and experimental design

All experimental procedures were approved by The Ohio State University Institutional Animal Care and Use Committee (no. 2010A0088) and were conducted in compliance with local and federal guidelines. Piglets were surgically derived from near-term sows (Landrace \(\times \) Yorkshire \(\times \) Duroc crossbred) and maintained in sterile isolators as previously described (26). All pigs were seronegative for HRV Abs and were fed ultra-high-temperature processed commercial cow milk (Parmalat, Parma, Italy) throughout the trial. On piglets were randomly assigned to one of four treatment groups: \(3X\text{AttHRV Wa} \) vaccinated and probiotic colonized (Vac+Pro; prechallenge \(n = 6 \), postchallenge \(n = 7 \)), \(3X\text{AttHRV Wa} \) vaccinated only (Vac; prechallenge \(n = 6 \), postchallenge \(n = 6 \), probiotic colonized only (Probiotics; prechallenge \(n = 6 \), postchallenge \(n = 5 \), and unvaccinated and nonprobiotic colonized negative controls (Control; prechallenge \(n = 5 \), postchallenge \(n = 4 \)). Probiotic-fed groups were sequentially colonized orally at 3 d of age with \(Bb12 \) and at 5 d of age with LGG+\(Bb12 \) (1:1) at a dose of 10\(^7\) CFUs (CFU)/pig/time point (Fig. 1). Vaccinated pigs were orally inoculated with the first vaccine dose at 6 d of age and then received two additional doses at 10-d intervals (postinoculation day [PID] 10 and PID20; Fig. 1). A subset of pigs was euthanized at PID27/postchallenge day (PCD) 0 to assess prechallenge responses. Remaining pigs were challenged with \(\text{VirHRV} \) and euthanized at PID34/PCD7 (Fig. 1).

Detection of HRV and probiotic shedding and assessment of clinical signs

Rectal swabs were collected daily postchallenge to detect and quantitate infectious HRV by cell culture immunofluorescence assay as previously described (15). Piglets were observed daily for diarrhea post-\(\text{VirHRV} \) challenge. Probiotic intestinal colonization and fecal shedding was determined as previously described prechallenge and postchallenge (23, 25). In brief, sections (2–3 g) of small intestinal (duodenum, ileum and jejunum) and large intestinal (cecum, colon, and rectum) tissues were collected prechallenge and postchallenge, and were rinsed and homogenized in 0.1% peptone water. Enumeration of probiotics in rectal swab fluids and gut tissues was done by plating dilutions on MRS agar containing 0.05% cycloheximide, which were incubated in sealed BBL Gaspak jars (Fisher, Hanover Park, IL) containing Anaerogen packs (BD) for 24 h at 37°C. The combined LGG and \(Bb12 \) colonies in rectal swab fluids and tissues were enumerated collectively as total CFU and were expressed as CFU/ml for rectal swabs and CFU/g for gut tissues. Colonization by both LGG and \(Bb12 \) was confirmed using specific primers by quantitative PCR on DNA extracted from representative pigs as previously described (25).

Isolation of MNCs and flow cytometry

The MNCs were isolated from blood, spleen, duodenum, and ileum as previously described (22, 27). In brief, lymphoid tissues were collected aseptically and placed in ice-cold wash medium (RPMI 1640 with 10 mM HEPES, 200 \(\mu \)g/ml gentamicin, and 20 \(\mu \)g/ml ampicillin). Spleens were cut into small pieces and pressed through a stainless-steel 80-mesh screen of cell collector (E-C Apparatus, St. Petersburg, FL) to obtain single-cell suspensions. Intestinal tissues (duodenum = 15 cm and ileum = 18 cm in length) were rinsed twice with Ca\(^2+\) and Mg\(^2+\) free HBSS and were then incubated with HBSS containing 10 mM DTT (Sigma, St. Louis, MO), 5 mM EDTA, 40 mM HEPES, and antibiotics on shaker at 37°C for 15 min to dislodge and remove mucus, epithelial cells, and intraepithelial cells. Subsequently, these segments were minced and further digested for 20 min at 37°C with RPMI 1640 containing 400 U/ml collagenase type II (Invitrogen/Life Technologies, New York, NY), 10 mM EDTA, 20 mM HEPES, 8% FBS, and antibiotics. The supernatants (containing MNCs) and digested tissue were processed through 80-mesh screens and single-cell suspensions were collected. The MNCs in cell suspensions from spleen and intestinal tissues were isolated by using 43–70% Percoll solution (Sigma) gradients. The MNCs from blood were isolated by using Ficoll-Paque solution (GE Healthcare, Uppsala, Sweden). After isolation, cells were resuspended in RPMI containing 8% FBS, 2 mM L-glutamine, 1 mM sodium pyruvate, 0.1 mM nonessential amino acids, 20 mM HEPES, and antibiotics (E-RPMI). The viability of each MNC preparation was determined by trypan blue dye exclusion (all were \(\geq 90\% \)). Fresh MNCs on the same day were stained for determining T cells (CD3\(^+\)CD4\(^+\)CD3\(^+\)CD8\(^+\)), natural (CD4\(^+\)CD25\(^+\)Foxp3\(^+\)/CD8\(^+\)Foxp3\(^+\)) and inducible (CD4\(^+\)CD25\(^-\)Foxp3\(^-\)CD8\(^+\)CD25\(^-\)Foxp3\(^-\)) Treg subsets, and activated T cells (CD4\(^+\)CD25\(^+\)Foxp3\(^-\)CD8\(^+\)CD25\(^+\)Foxp3\(^-\)) T cells. To determine Th cells (CD3\(^+\)CD4\(^+\)) and cytotoxic T cells (CD3\(^+\)CD8\(^+\)), we stained each sample with anti-porcine CD3-FITC (clone PCT3; Southern Biotech, Birmingham, AL), CD4-PF (clone 74-12-4; BD Biosciences, San Jose, CA), and CD8-SPRD (clone 76-2-11; BD Biosciences) for 15 min at 4°C. The frequency of T cells was expressed as percentage among lymphocytes (determined based on forward and side-scatter characteristics).

Tregs and activated T cells. MNCs were stained with either CD4-PE or CD8-PE, and anti-porcine CD25 (Clone K231.3B2; Serotec, Raleigh, NC), followed by allyllophycocyanin-conjugated rat anti-mouse (RAM) IgG1 Ab (clone \(\times 56; \) BD Biosciences). All samples were fixed and permeabilized with Cytotox/Cytoperm buffer (BD Biosciences) per manufacturer’s instructions. RAM Foxp3-FITC Ab (clone FJK-16s; eBioscience, San Diego, CA) was incubated with MNCs for 45 min at 4°C. Appropriate isotype and secondary Ab controls were used for each reaction. After resuspending in complete wash buffer (BD Biosciences), 100,000 events were acquired on Accuri C6 flow cytometer (BD, Franklin Lakes, NJ), and data were analyzed using C6 flow sampler software (BD). Frequency of Tregs was expressed as percentage among respective T cell subsets (CD4 or CD8) and among total MNCs (Fig. 3A, Supplemental Fig. 1A). Frequency of activated T cells was expressed as percentage among respective T cell subsets. The absolute number of Tregs (CD3\(^+\)CD4\(^+\)CD25\(^+\)Foxp3\(^+\)CD8\(^-\)CD25\(^+\)Foxp3\(^+\)) was determined by multiplying frequencies of Tregs among MNCs with
total MNCs isolated from 50 ml blood, complete spleen, and measured sections of ileum and duodenum. HRV-specific IFN-γ-producing CD4 and CD8 T cells. Freshly processed MNCs from blood, spleen, and ileum were restimulated in vitro with unpurified HRV Ag (12 µg/ml) and porcine reactive anti-human CD40d mAb (0.5 µg/ml; clone 9F10; BD Pharmingen) for 18 h at 37°C in E-RPMI media as previously described (22, 28). Brefeldin A (10 µg/ml; Sigma), a protein transport inhibitor, was added for the last 5 h to prevent extracellular transfer of cytokines produced by the MNCs. Subsequently, stimulated MNCs were stained with CD3, CD8-PE, and CD4-biotin followed by RAM IgG1-allophycocyanin and streptavidin PE-Cy7 (BD Biosciences) as secondary Abs. Samples were stained intracellularly with anti-porcine IFN-γ-PE Ab (clone P2G10; BD Biosciences). CD3+CD4+IFN-γ+ and CD3+CD8⁺IFN-γ+ cells were expressed as percentage of CD3⁺CD4⁺ and CD3⁺CD8⁺ T cells, respectively (Fig. 2A).

Detection of cytokines in serum, intestinal contents, and bile by ELISA

Blood was collected at multiple time points; PIDs 0, 2, 6, 14, 20, 27 (PCD0), 29 (PCD2), and 34 (PCD7), and intestinal contents (IC) were collected at euthanasia. Blood was spun at 1850 × g for 15 min, and serum was collected and stored at −20°C until tested. The IC collected were diluted 1:1 in MEM (Invitrogen/Life Technologies). Protease inhibitor mixture (Sigma) was added to the diluted IC and bile samples to prevent cytokine degradation. Bile and IC samples were centrifuged at 2000 × g, and supernatants were collected and stored at −20°C until tested. TGF-β, IL-4, IL-12, IFN-γ, and IL-6 were measured as previously described (18, 25). Porcine TNF-α ELISA Kit was used per manufacturer’s recommendations (Thermoscientific Pierce, Rockford, IL). Nunc MaxiSorp 96-well plates were coated with anti-porcine IL-10 (4 µg/ml; Thermoscientific Fisher), IL-8 (0.2 µg/ml; Bethyl Laboratories, Montgomery, TX), IL-17 (0.5 µg/ml; Kingfisher Biotechnologies, St. Paul, MN), and IFN-α (clone K9.2, 25 µg/ml; PBL IFN Source, Piscataway, NJ). All coated plates were incubated overnight at 4°C except IFN-α (37°C). Biotinylated anti-porcine IL-10 (1 µg/ml), IL-8 (0.02 µg/ml), IL-17 (0.1 µg/ml), and IFN-α (clone F17, 2 µg/ml) Abs were used for detection. Porcine IFN-α detection Ab was biotinylated using a commercial kit (Thermoscientific Pierce) as per manufacturer’s recommendations. Plates were developed and cytokine concentrations were calculated as previously described (18).

Statistical analysis

Statistical analysis was done by SAS version 9.3 (SAS Institute, Cary, NC). Mean RV fecal shedding, diarrhea scores, and duration of diarrhea were compared by one-way ANOVA (ANOVA-general linear model), followed by Duncan’s multiple range test. The area under the curve (AUC) for diarrhea severity was calculated from diarrhea score-time graph of individual animals (29). Frequencies of cells determined by flow cytometry, absolute number of MNCs and Tregs, cytokine concentrations, and AUC for diarrhea severity between and within groups were compared using Kruskal–Wallis rank sum test.

Results

Probiotics reduce diarrhea severity and HRV fecal shedding post-VirHRV challenge

Diarrhea scores and HRV fecal shedding were recorded daily post-VirHRV challenge (Fig. 1). Vacc+Pro group had significantly lower mean AUC (2.9 versus 5.0; Table I) and mean diarrhea scores at PCD3 and PCD5 compared with the Vac group, indicating increased clinical protection in Vacc+Pro pigs post-VirHRV challenge. All 100% of Vacc+Pro pigs were protected from virus shedding compared with 83% of Vac pigs (Table I). Probiotics only pigs had significantly lower mean duration of diarrhea (1.2 versus 3 d) and AUC (5.7 versus 8.5; Table I), and lower mean diarrhea scores from PCD4 through PCD7 compared with Control group, suggesting that early colonization by LGG+Bb12 moderates severity of VirHRV infection. Lower diarrhea scores coincided with delayed onset and significantly lower mean fecal HRV shedding from PCD4 through PCD7, and significantly lower average peak titer shed (977.5 versus 3343.8 FFU/ml; Table I) in the Probiotics only group compared with Control group. In both probiotic groups, LGG and Bb12 colonized small and large intestines both prechallenge and postchallenge (Supplemental Table I) and were shed fecally as reported previously (25). Postchallenge probiotic counts were significantly lower in cecum and colon of probiotic colonized groups compared with the prechallenge bacterial counts in the counterpart groups (Supplemental Table I).

LGG+Bb12 colonization increased intestinal Th cells prechallenge and systemic cytotoxic T cells postchallenge in vaccinated pigs

The Vacc+Pro group had significantly higher frequencies of duodenal and higher, although not significant (p = 0.07), ileal Th cells (CD3⁺CD4⁺) prechallenge compared with the Vac group (Fig. 2A). No differences in T cell subsets were observed between Vacc and Vacc+Pro groups in the intestinal tissues postchallenge. However, the Probiotics only group had higher duodenal Th cells prechallenge and significantly higher ileal cytotoxic T cells (CD3⁺CD8⁺) postchallenge compared with Control pigs, which coincided with lower shedding and diarrhea scores in the LGG+Bb12 colonized only group (Fig. 2B, Table I). Vacc+Pro had significantly higher systemic CD3⁺CD8⁺ (blood and spleen) and CD3⁺CD4⁺ T cells (spleen) postchallenge compared with the Vac group (Fig. 2D). These findings suggest that colonization by LGG+Bb12 may prime for cell-mediated immune responses to AttHRV vaccine and HRV infection.

Vaccination increased activated (CD25⁺Foxp3⁻) intestinal CD4 T cells prechallenge and decreased systemic activated CD8 T cells postchallenge

Vaccinated groups had higher frequencies of CD4⁺CD25⁺Foxp3⁻ T cells in blood and ileum compared with unvaccinated groups at PID27 (Fig. 2E), suggesting that peripheral blood may reflect increase of intestinal activated CD4 T cells. Interestingly, probiotic colonization significantly enhanced CD4⁺CD25⁺Foxp3⁻ T cells prechallenge in duodenum of the Vacc+Pro group compared with the Vac group (Fig. 2E), which coincided with higher numbers of duodenal IgA Ab-secreting cells and intestinal IgA Ab titers in the Vacc+Pro group compared with the Vacc group post-
challenge (Kandasamy, Saif et al., unpublished observations). No significant differences were observed for activated CD8+ T cells prechallenge in blood and tissues, and activated CD4+ T cells postchallenge in intestinal tissues among groups (Supplementary Fig. 1). Vaccinated pigs had significantly reduced systemic (blood and spleen) CD8+CD25+Foxp3+ T cells compared with unvaccinated pigs at PID34/PCD7, indicating localized control of infection in intestinal tissues without systemic dissemination (Fig. 2F).

Probiotics colonization in vaccinated pigs increased systemic IFN-γ-producing T cells pre- and post-VirHRV challenge

IFN-γ-producing T cells were investigated pre- and post-VirHRV challenge. Vac+Pro group had higher frequencies of systemic (blood and spleen) CD3+CD4+IFN-γ+ and CD3+CD8+IFN-γ+ T cells at PID27/PCD0 compared with the Vac group (Fig. 3B, 3C), suggesting Th1-enhancing effects of probiotics on AttHRV vaccine. At PID34/PCD7, the Vac+Pro group had significantly higher frequencies of splenic CD3+CD4+IFN-γ+ (4.6 fold) and

![Probiotics colonization enhanced intestinal Th cells and activated CD4 T cells prechallenge and systemic cytotoxic T cells postchallenge in vaccinated pigs. Mean frequencies (n = 4–7/group prechallenge and postchallenge) of CD3+CD4+ and CD3+CD8+ T cells among the lymphocytes (± SEM) in blood, spleen, ileum, and duodenum prechallenge and postchallenge (A–D). Mean frequencies of CD4+CD25+Foxp3− (prechallenge) (E) and CD8+CD25+Foxp3− (postchallenge) (F) T cells among CD4+ and CD8+ T cells subsets (± SEM), respectively. Significant differences between groups are indicated by *p < 0.05, as determined by non-parametric Kruskal–Wallis rank sum test. Control, Nonvaccinated and noncolonized control; Probiotics, probiotic colonized only.](http://www.jimmunol.org/)

Table I. Summary of HRV shedding and diarrhea scores in the four different treatment groups

<table>
<thead>
<tr>
<th>Treatment</th>
<th>N</th>
<th>Mean Days to Onset of Shedding</th>
<th>Average Peak Titer Shed (FFU/ml)</th>
<th>Protection Rate (%) against HRV Shedding</th>
<th>Diarrhea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vac + Pro</td>
<td>7</td>
<td>NA†</td>
<td>12.5‡</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Vac</td>
<td>6</td>
<td>NA‡</td>
<td>32.3*</td>
<td>83</td>
<td>0</td>
</tr>
<tr>
<td>Probiotics</td>
<td>5</td>
<td>NA†</td>
<td>977.5**</td>
<td>0</td>
<td>1.2*</td>
</tr>
<tr>
<td>Control</td>
<td>4</td>
<td>3.5**</td>
<td>3343.8***</td>
<td>0</td>
<td>3**</td>
</tr>
</tbody>
</table>

†Determined by cell culture immunofluorescence assay and expressed as FFU/ml.
‡Pigs with fecal score >1 were considered diarrheic. Fecal consistency was scored as follows: 0, normal; 1, pasty/semiliquid; and 2, liquid.
§Means with different asterisks in the same column differ significantly (determined by one-way ANOVA followed by Duncan’s multiple range test, p < 0.05).
¶AUC indicates diarrhea severity. Means in the same column, with different asterisks, differ significantly (determined by Kruskal–Wallis rank sum test, p < 0.05).
∥No virus shedding was observed.
*Samples negative for HRV detection (<25) were assigned a titer value of 12.5 for statistical analysis.
*Only 16% (1/6) of piglets shed virus, and determination of mean days to onset of virus shedding is not applicable (NA).
CD3+CD8+IFN-γ+ (10.8-fold), and a trend for higher frequencies of circulatory CD3+CD8+IFN-γ+ T cells compared with the Vac group (Fig. 3D, 3E). Interestingly, in ileum, probiotic colonization resulted in slight decrease in CD3+CD4+IFN-γ+ T cells in vaccinated pigs, suggesting different modulatory effects of probiotics on systemic versus mucosal responses.

Vaccination and/or probiotic colonization–induced intestinal CD25+Foxp3+ Tregs post-VirHRV challenge

CD3+CD8+IFN-γ- (10.8-fold), and a trend for higher frequencies of circulating CD3+CD8+IFN-γ+ T cells compared with the Vac group (Fig. 3D, 3E). Interestingly, in ileum, probiotic colonization resulted in slight decrease in CD3+CD4+IFN-γ+ T cells in vaccinated pigs, suggesting different modulatory effects of probiotics on systemic versus mucosal responses.

Vaccination and/or probiotic colonization–induced intestinal CD25+Foxp3+ Tregs post-VirHRV challenge

Postchallenge, vaccinated groups had significantly higher frequencies of CD4+CD25+Foxp3+ and CD8+CD25+Foxp3+ cells in ileum and CD8+CD25+Foxp3+ cells in blood, as compared with the Control group (Fig. 4C, 4E, Supplementary Fig. 2C, 2E). The AttHRV vaccine-induced Treg responses post-VirHRV challenge coincided with lower diarrhea severity scores in these groups compared with the Control group. The absolute number of CD4+CD25+Foxp3+ and CD8+CD25+Foxp3+ cells in blood and tissues followed the general trend observed for mean frequencies of CD4 and CD8 Tregs among MNCs and among respective CD4 and CD8 T cell subsets (Fig. 4C, 4E, Supplementary Figs. 2C, 2E, 3B, 3C). Similarly, the Probiotics only group also had higher frequencies of CD8+CD25+Foxp3+ cells in ileal MNCs postchallenge as compared with the Control group (Fig. 4C, Supplemental Fig. 2C), suggesting the role of probiotics in inducing Treg responses after VirHRV infection to restore gut homeostasis and alleviate HRV-
induced diarrhea. Contrary to the ileum, lower CD4 and CD8 Treg frequencies among MNCs were observed in spleen (systemically) of the Probiotics only group compared with the Control group (Supplemental Fig. 2C, 2E), coinciding with higher CD3+CD8+ IFN-γ+ T cell frequencies in blood (4.4-fold) and spleen (2.9-fold) at PID34/PCD7 in the former group (Fig. 3E).

Probiotic colonization in vaccinated pigs (Pro+Vac) enhanced systemic effector Th1 cells, but not CD4 and CD8 Tregs (Figs. 3D, 4C). The Pro+Vac group had higher systemic effector T cell (CD3+CD4+IFN-γ+ T cells)/Treg (CD4+CD25+Foxp3+) ratios pre-challenge and postchallenge compared with the Vac group, suggesting the immunostimulating (Th1) potential of LGG+Bb12 for AttHRV vaccine (Fig. 5).

Probiotic colonization and/or vaccination increased ileal CD4+CD25+Foxp3+ Tregs post-VirHRV infection. Representative dot plot of frequencies of ileal CD4+CD25+Foxp3+ T cells among CD4 T cells from the Vac+Pro group (A). Mean frequencies (n = 4–7/group prechallenge and postchallenge) of CD4+CD25+Foxp3+ (B, prechallenge; C, postchallenge), CD8+CD25+Foxp3+ (D, prechallenge; E, postchallenge), and CD4+CD25−Foxp3+ T cells (F, prechallenge and postchallenge) ± SEM in blood, spleen, ileum, and duodenum. Significant differences between groups are indicated with *p < 0.05, as determined by nonparametric Kruskal–Wallis rank sum test. Control, Nonvaccinated and noncolonized control; Probiotics, probiotic colonized only.

Probiotics increased serum innate (IFN-α), Th1 (IFN-γ and IL-12), and reduced Th2 (IL-4) cytokine responses to oral AttHRV vaccine

Innate, Th1, Th2, Th17, and Treg cytokines were measured to determine type of immune response and its modulation by LGG+Bb12 colonization. Vaccinated groups had significantly higher serum IFN-γ, IL-12, and IFN-α cytokines at PID2, and IFN-γ at PID6 as compared with unvaccinated groups (Fig. S). The Pro+Vac group had significantly higher IFN-α (3-fold) at PID2, IFN-γ at PID4 (after second AttHRV inoculation), and IL-12 at PID6 as compared with Vac group, suggesting an adjuvant effect of probiotics on AttHRV vaccine. Moreover, the Pro
Vac group had significantly lower IL-4 at PID2 (after first vaccine) and PID20 (during third vaccine dose) as compared with the Vac group (Fig. 6D), suggesting deviation toward Th1 responses. Pro+Vac pigs reached mean peak for IL-4 levels at PID20, whereas Vac pigs reached peak earlier at PID6. Vaccinated pigs had lower serum Treg cytokine TGF-β (PID2) as compared with controls irrespective of probiotic colonization (Fig. 6E). Fourteen of 22 (64%) vaccinated pigs had decreased TGF-β at PID2 compared with PID0.

Probiotics decreased proinflammatory (TNF-α and IL-8) and Th17 (IL-17), and increased Treg (TGF-β) cytokine responses post-VirHRV challenge compared with noncolonized control pigs. Postchallenge, no significant differences were observed between Vac+Pro and Vac groups for most cytokines in serum except IL-12, which was significantly higher in the Vac+Pro group (PID34/PCD7; Fig. 7A–E). Probiotics only and Control groups had higher IFN-α, IL-12, and IL-8 (PCD2), and IL-17 (PCD7) compared with nonvaccinated and noncolonized control; Probiotics, probiotic colonized only.
pared with vaccinated pigs postchallenge. The Probiotics only group had significantly lower IL-8 (PCD2 and PCD7), IL-17 (PCD7), and higher TGF-β (PCD2) compared with the Control group (Fig. 7B–E). Mean concentrations (± SEM) of TNF-α (proinflammatory), IL-12, and IL-17 in bile and small intestinal contents (SIC) of pigs from different groups (F–H). Different alphabetical letters in (A)–(E) indicate significant differences (derived by nonparametric Kruskal–Wallis rank sum test, p < 0.05) at the same time point among treatment groups. The * in (F)–(H) indicate significant differences (derived by nonparametric Kruskal–Wallis rank sum test, p < 0.05) between treatment groups for bile and SIC. Cont, Nonvaccinated and noncolonized control; Pro, probiotic colonized only.

FIGURE 7. LGG+Bb12 colonization reduced proinflammatory and innate cytokines, and maintained regulatory cytokine responses post-VirHRV challenge in nonvaccinated pigs. Mean concentrations (± SEM) of IL-12 (Th1), IFN-α, and IL-8 (innate), TGF-β (Treg), and IL-17 (Th17) in serum of pigs from different groups (A–E). Mean concentrations (± SEM) of TNF-α (proinflammatory), IL-12, and IL-17 in bile and small intestinal contents (SIC) of pigs from different groups (F–H). Different alphabetical letters in (A)–(E) indicate significant differences (derived by nonparametric Kruskal–Wallis rank sum test, p < 0.05) at the same time point among treatment groups. The * in (F)–(H) indicate significant differences (derived by nonparametric Kruskal–Wallis rank sum test, p < 0.05) between treatment groups for bile and SIC. Cont, Nonvaccinated and noncolonized control; Pro, probiotic colonized only.
ensuing exacerbated host immune responses (16–18). Recently, Rodrigues et al. (35) showed that pretreatment of neonatal mice with *Lactobacillus helveticus* and LGG induced Tregs and higher expression of regulatory and anti-inflammatory cytokines and lower expression of proinflammatory cytokines, which coincided with higher protection in these mice against the murine enteric pathogen *Citrobacter rodentium*. A combination of *Lactobacilli* and *Bifidobacterium* spp. prevented chemically induced colitis in mice (36) and alleviated clinical symptoms in patients with inflammatory bowel disease (37). In mice, protection was associated with induction of Tregs and reduction of inflammatory cytokines (IL-12, IFN-γ, TNF-α) (36). Moreover, in a randomized clinical trial involving healthy adults, probiotics LGG and Bb12 induced an anti-inflammatory environment indicated by lower serum C-reactive protein in vivo and lower TNF-α and IL-2 in vitro (38). Thus, early colonization by LGG+Bb12 in breastfed infants may establish gut homeostasis and reduce the severity of RV infection by induction of intestinal Tregs without suppressing systemic effector T cells (higher CD3+CD8+IFN-γ+ T cells in Probiotics only group versus Control, postchallenge). Similar to our study, induction of Tregs also reduced inflammation in other infectious conditions (39, 40).

The combination of LGG+Bb12 likely enhanced AttHRV vaccine efficacy by enhancing the frequency of intestinal CD4 T cells (prechallenge), systemic CD8 T cells (postchallenge), systemic CD4 and CD8 IFN-γ–producing T cells (prechallenge and postchallenge), and activated duodenal CD4 T cells prechallenge, all of which coincided with lower diarrhea severity scores in the Vac+Pro compared with the Vac group. IFN-γ–producing T cells are a correlate of protection to RV infection in pigs, and IFN-γ secreted by T cells after vaccination has been shown to have anti-RV activity in mice (22, 28, 41). Similar to pigs, HRV infection in children and adults is also known to increase IFN-γ–producing T cells in the peripheral blood (42, 43). Increased systemic IFN-γ–producing T cells and higher effector T cell/Treg ratios both prechallenge and postchallenge coincided with higher Th1 cytokines (prechallenge and postchallenge) and lower Th2 cytokine prechallenge, suggesting a systemic Th1 bias induced by the selected probiotics. The ratio of effector T cells to Tregs reflects IL-12/IL-10 cytokine ratios, which have been previously used to designate the type of immune response (Th1, Th2, or Treg) (44, 45). However, in this study, we did not investigate Th2 cytokine-producing cells per se and because of a technical limitation, we could not definitively type the gut immune responses based on cytokine levels (18). The early increased IFN-γ, IL-12, and IFN-α in the Vac+Pro compared with the Vac group coincides with higher stimulation of innate responses in this group, which affects subsequent development of adaptive T cell and Ab responses (46). Thus, the probiotics LGG+Bb12 increased effectiveness of AttHRV vaccine by increasing both innate and adaptive immune responses. Moreover, LGG+Bb12 colonization may prime for development of Th1 responses in infants, which are needed for protection from viral and intracellular bacterial infections. This is important because infants exhibit a bias toward Th2 responses (47).

In our study, probiotics mediated differential immunomodulation of the mucosal versus systemic immune system in vaccinated animals. In contrast with systemic tissues, no significant increase in intestinal IFN-γ–producing T cells and intestinal IL-12 was observed in the Vac+Pro group compared with the Vac group, although the former group had increased intestinal IgA Ab responses and IgA Ab-secreting cells, suggesting that intestinal B cell responses synergistically with increased systemic T cell (Th1) responses may have a played a role in clearing RV infection. The increased intestinal natural Tregs, along with slightly increased intestinal IFN-γ–producing effector T cells in vaccinated animals (irrespective of probiotics) compared with controls suggests that simultaneous expansion of these two subsets of T cells in the intestine may have been necessary to control RV infection and/or the associated tissue inflammation/pathology caused by RV. Similar to our study, IL-2–dependent expansion of Tregs and effector IFN-γ–producing CD4 and CD8 T cells occurred in lungs and was associated with resistance from tuberculosis infection in macaques (48). Recently, Wen et al. (49) suggested an important role for inducible Tregs in determining protection from HRV infection in the Gn pig model and showed that lower numbers of inducible Tregs coincided with higher protection rates. Similarly, we also show reduced inducible Tregs in vaccinated animals in duodenum postchallenge, which coincided with higher protection rates in vaccinated groups. However, in contrast with our findings, Wen et al. (49) showed lower numbers of intestinal natural Tregs in vaccinated animals compared with control animals postchallenge. The reasons for this discrepancy is unknown, but in our study, we vaccinated pigs with three doses of AttHRV (mimicking HRV vaccine [Rotarix] doses in children), whereas Wen et al. (49) used only two doses. Moreover, difference in pig breed and age of animals may have influenced these observations.

Modulation of the immune system by probiotics is bacterial strain and type specific, and can be attributed to differences in microbe-associated molecular patterns expressed by these bacteria (50). In vitro studies have shown differential modulation of cytokine responses and dendritic cell maturation by *Lactobacilli* and *Bifidobacterium* spp. and their products; however, these functions are not always replicated or comparable in vivo (50–52). This can be attributed to various contributing factors including host genetics, individual immune function, stress, age, species, nutritional status, diet, gut microbiome, experimental conditions, among others. Both LGG and Bb12 individually exhibited proinflammatory as well as anti-inflammatory responses under different conditions (44, 53–56). In our study, we showed differential effects of dual LGG+Bb12 cocolonization in HRV vaccinated and infected pigs, and suggest that interactions between probiotics and vaccine and/or infection and host immune response together derive different outcomes in vivo.

The role of CD8 Tregs in RV infection is unknown and, to our knowledge, this is the first study showing induction of these cells in AttHRV vaccinated pigs post-VirHRV challenge. CD8 Tregs were shown previously to be induced by both viral and bacterial infections (57, 58). Moreover, they have been shown to control SIV infection and type I diabetes (57, 59). Thus, in our study, both CD4 and CD8 Tregs may play synergistic roles in moderating RV infection and/or the associated tissue inflammation/pathology caused by RV. Similar to our study, IL-2–dependent expansion of cytotoxic and dendritic cell maturation by *Lactobacilli* and *Bifidobacterium* spp. and their products; however, these functions are not always replicated or comparable in vivo (50–52). This can be attributed to various contributing factors including host genetics, individual immune function, stress, age, species, nutritional status, diet, gut microbiome, experimental conditions, among others. Both LGG and Bb12 individually exhibited proinflammatory as well as anti-inflammatory responses under different conditions (44, 53–56). In our study, we showed differential effects of dual LGG+Bb12 cocolonization in HRV vaccinated and infected pigs, and suggest that interactions between probiotics and vaccine and/or infection and host immune response together derive different outcomes in vivo.
Whether the findings from this study using Gn animals can be generalized to conventional pigs or other species containing normal enterococcus microbiota and humoral immune responses. J. Pediatr. 147: 186–191.

References

