Human Skin Mast Cells Express Complement Factors C3 and C5

Yoshihiro Fukuoka, Michelle R. Hite, Anthony L. Dellinger and Lawrence B. Schwartz

*J Immunol* 2013; 191:1827-1834; Prepublished online 5 July 2013;
doi: 10.4049/jimmunol.1202889
http://www.jimmunol.org/content/191/4/1827

Supplementary Material
http://www.jimmunol.org/content/suppl/2013/07/05/jimmunol.1202889.DC1

References
This article cites 101 articles, 39 of which you can access for free at:
http://www.jimmunol.org/content/191/4/1827.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Human Skin Mast Cells Express Complement Factors C3 and C5

Yoshihiro Fukuoka, Michelle R. Hite, Anthony L. Dellinger, and Lawrence B. Schwartz

We examine whether complement factor C3 or C5 is synthesized by human skin–derived mast cells and whether their synthesis is regulated by cytokines. C3 and C5 mRNAs were assessed by RT-PCR, and proteins by flow cytometry, confocal microscopy, Western blotting, and ELISA. C3 and C5 mRNAs were each expressed, and baseline protein levels/10^6 cultured mast cells were 0.9 and 0.8 ng, respectively, and located in the cytoplasm outside of secretory granules. C3 accumulated in mast cell culture medium over time and by 3 d reached a concentration of 9.4 ± 8.0 ng/ml, whereas C5 levels were not detectable (<0.15 ng/ml). Three-day incubations of mast cells with IL-1α, IL-1β, IL-17, IFN-γ, IL-6, or anti-FcεRI did not affect C3 protein levels in culture medium, whereas incubations with PMA, TNF-α, IL-13, or IL-4 enhanced levels of C3 1.7- to 3.3-fold. In contrast with C3, levels of C5 remained undetectable. Importantly, treatment with TNF-α together with either IL-4 or IL-13 synergistically enhanced C3 (but not C5) production in culture medium by 9.8- or 7.1-fold, respectively. This synergy was blocked by attenuating the TNF-α pathway with neutralizing anti–TNF-α Ab, soluble TNFR, or an inhibitor of NF-κB, or by attenuating the IL-4/13 pathway with Jak family or Erk antagonists. Inhibitors of PI3K, Jnk, and p38 MAPK did not affect this synergy. Thus, human mast cells can produce and secrete C3, whereas β-tryptase can act on C3 to generate C3a and C3b, raising the likelihood that mast cells engage complement to modulate immunity and inflammation in vivo. The Journal of Immunology, 2013, 191: 1827–1834.

mast cells in both humans and mice are recognized as key effector cells of immediate hypersensitivity, and in mice, largely through genetic studies, they regulate an expanded array of innate and acquired immune responses (1–6). The complement system also plays important roles in innate and acquired immune responses (7–11). Some human mast cells, because they express receptors for C3a and C5a, can be activated by these anaphylatoxins to degranulate and produce bioactive lipids, cytokines, and chemokines (12–17). Such mast cells coexpress chymase along with tryptase in their secretory granules and are called the MC\textsubscript{TRC} type of mast cell (18), being essentially the exclusive type of mast cell in skin, but accounting for a minor population of the overall mast cell burden in lung. Most mast cells in lung contain tryptase but not chymase, are unresponsive to complement anaphylatoxins, and are termed the MC\textsubscript{T} type of mast cell (19, 20). Stem cell factor (SCF) supports mast cell development, priming, and survival. SCF binds to CD117 (Kit) on the mast cell surface, preventing apoptosis and facilitating their activation (21–24). Human skin mast cells, capable of proliferating when cultured in serum-free medium containing SCF, retain the functional and phenotypic characteristics from when they were freshly dispersed (25). Human mast cell β-tryptase can activate C3 and C5 to generate the corresponding anaphylatoxins (26), delineating a novel putative amplification loop for inflammation initiated by either mast cells or complement (26, 27) and further linking the complement and mast cell pathways to one another in humans. In mice, expression of receptors for C3a or C5a on mast cells is essential not only for acute intradermal responses to C3a or C5a, respectively, but also for an optimal IgE-mediated cutaneous anaphylactic response to allergen (28).

Although most of the C3 and C5 in the circulation are produced by the liver, their extracellular production by various cell types, including macrophages, dendritic cells, fibroblasts, epithelial cells, endothelial cells, keratinocytes, smooth muscle cells, and neuronal cells, either spontaneously or in response to cytokine stimulation, has been well documented (29–41). Locally synthesized C3 and C5, presumably through their bioactive metabolites, importantly regulate other aspects of inflammation and host defense (42, 43), for example, clearance of immune complexes by macrophages (44). As studied with APCs in murine systems, C3 and C5 affect expression of costimulatory molecules in an autocrine manner and T cell development in a paracrine manner (41, 45–48), thereby modulating murine immunity along with models of inflammatory bowel disease (49), multiple sclerosis (50), and graft-versus-host disease (10). These studies show the importance of locally produced and activated complement proteins.

Synthesis of complement factors C3 and C5 by human mast cells has not been previously reported. However, mice are more likely to succumb to sepsis caused by cecal ligation and puncture if they are deficient either in C3 (51) or in mast cells (1). Moreover, mast cells from C3-deficient mice exhibit reduced degranulation (51), and mice whose mast cells are deficient in C3aR or C5aR show reduced IgE-dependent degranulation and inflammation in skin (52). To further examine the complement/mast cell axis in humans, we studied the expression of factors C3 and C5 by human primary skin mast cells, showing that both are expressed, only C3 is secreted, and production of C3 is synergistically upregulated by TNF-α together with either IL-4 or IL-13.
Materials and Methods

Reagents

Mouse IgG anti-human C3/C5 mAb and biotin-rabbit IgG anti-human C3 (Abcam, Cambridge, MA); mouse IgG anti-human C5/C5b mAb (Cell Sciences, Canton, MA); sheep IgG anti-human C3b Ab, sheep IgG anti-CD5 Ab, goat IgG anti-human TNF-α Ab, rabbit IgG anti-human C3, rabbit IgG anti-human IgG, and rabbit anti-CD88 Ab (GenTex, Irvine, CA); goat IgG anti-human C5 (Complement Technology, Tylre, TX); goat IgG anti-human TNF-α Ab, goat IgG anti-human C3, and goat IgG anti-human C5b were obtained as indicated. Mouse anti-human CD34 mAb (PharMingen, San Diego, CA) and mouse anti-human TNF-α mAb (Austin, TX) were obtained as indicated. Mouse anti-human tyrosinase mAb, B12, was prepared in-house (53); mouse IgG anti-FcRRI mAb (22E7) was generously provided by J. P. Kochan (Hoffman-LaRoche, Nutley, NJ) (54). U-937 cells (human monocyte cell line), A549 cells (human lung carcinoma epithelial cell line), and HMC-1 cells (human mast cell line) were cultured in RPMI-1640, DMEM, and Iscove’s medium, respectively, supplemented with 10% FBS, 2 mM l-glutamine, 100 U/ml penicillin, and 100 μg/ml streptomycin at 37°C. 5% CO2 in a humidified incubator.

Isolation and culture of human MC/TC cells and MC cells

Human skin mast cells and lung mast cells were isolated as described previously (25, 55). Fresh skin and lung were obtained from the Pathology Department of Virginia Commonwealth University (VCU) or Cooperative Human Tissue Network of the National Cancer Institute or National Disease Research Interchange as reviewed and approved by the VCU Institutional Review Board. All donor tissues were obtained as a result of death. Skin was minced in fragments and incubated in a solution of HBSS containing type 2 collagenase (1.5 mg/ml; Worthington Biochemicals, Lakewood, NJ), hyaluronidase (0.7 mg/ml; Sigma-Aldrich), type 1 DNase (0.3 mg/ml; Sigma-Aldrich), 1% FCS, and 1 mM CaCl2 for 2 h at 37°C. The dispensed cells were separated from residual tissues by filtration through #80 mesh sieve and the remaining mast cells were resuspended in serum-free X-VIVO-15 Media (Lonza, Allendale, NJ) with 100 μM ascorbic acid, 10 mM HEPES, and 1% FCS. Cells were layered over 75% Percoll (Sigma-Aldrich) and centrifuged at 450 g at room temperature for 20 min. Nucleated cells were collected from the buffer/Percoll interface, and skin mast cells (MC/TC cells) were resuspended in serum-free X-VIVO-15 Media (Lonza, Allendale, NJ) with 100 μM ascorbic acid, 10 mM HEPES, and 1% FCS. Cells were layered over 75% Percoll (Sigma-Aldrich) and centrifuged at 450 × g at room temperature for 20 min. Nucleated cells were collected from the buffer/Percoll interface, and skin mast cells (MC/TC cells) were resuspended in serum-free X-VIVO-15 Media (Lonza, Allendale, NJ) with 100 ng/ml recombinant human SCF (a gift from Swedish Orphan Biovitrum, Stockholm, Sweden), and cultured up to 2–3 mo. Major contaminated cells are adherent cells including fibroblasts and macrophages. These adherent cells are removed by transferring nonadherent mast cells to another culture plate. To purify freshly dispersed skin mast cells, we cultured these cells overnight to recover from the dispersion process; then they were positively selected with mouse IgG anti-Kit (CD117)-conjugated magnetic beads using an MACS system (Miltenyi Biotec, Auburn, CA).

Lung mast cells (primarily MC/TC cells) were obtained as described previously (55) by protease digestion and Percoll density-dependent sedimentation. MC/TC cells were purified by depleting MC/TC cells with mouse anti-CD88 Ab and rat anti-mouse IgG-conjugated magnetic beads using an MACS system and then positively selecting the remaining mast cells using mouse IgG anti-Kit-conjugated magnetic beads. MC/TC cells were cultured in serum-free X-VIVO-15 Media and 100 ng/ml SCF. The purities of skin and lung mast cells were routinely analyzed by toluidine blue staining and confirmed by flow cytometry using anti-FcRI or anti-CD117 Abs.

Flow cytometry and confocal microscopy

Intracellular labeling of skin mast cells by mouse anti-C3/C3b mAb or mouse anti-C5/C5b mAb was performed using Cytofix/Cytoperm Fixation/permeabilization Kit (BD Biosciences, San Jose, CA) and followed by incubation with PE-labeled goat anti-mouse IgG. Stained cells were assayed by flow cytometry (FACSCanto II using CellQuestPro software; BD Biosciences). For confocal microscopy analysis, permeabilized human skin mast cells were labeled with C5- or C3-specific primary mAbs followed by FITC-goat anti-mouse IgG. Stained cells were attached to poly-L-lysine-treated glass microscope slides and mounted (Vectashield Hard set; Vector Laboratories, Burlingame, CA). Confocal microscopy measurement was performed at VCU Microscopy Facility (Dr. Scott Henderson, Director) in the Department of Anatomy and Neurobiology using a Leica TCS SP2 ADBS confocal laser scanning microscope (Leica Microsystems, Buffalo Grove, IL).

Western blotting and immunoprecipitation

Skin mast cells were extracted using 10 mM Tris-HCL, pH 7.4, buffer containing 150 mM NaCl, 1 mM EDTA, 0.5% sodium deoxycholate, 1% Nonidet P-40, 0.1% SDS, and Protease Inhibitors Set (Roche Applied Science, Indianapolis, IN) for 1 h at 4°C and centrifuged. Supernatants were mixed with SDS-sample buffer containing 2% 2-ME, 5 µg/ml, and subjected to electrophoresis on an 8–16% polyacrylamide gradient gel containing SDS. Proteins were transferred onto a nitrocellulose membrane using a Novex system (Life Technologies, Long Island, NY) for 1 h at 50 V. After applying blocking buffer (LI-COR Biosciences, Lincoln, NE) for 1 h at room temperature, membranes were labeled with each primary Ab for 1 h at room temperature, followed by 1-h incubation with secondary Ab (LR-1 or IRDye 800CW-conjugated secondary Ab (LI-COR Biosciences). Labeling was analyzed using an Odyssey infrared imaging system (LI-COR Biosciences). For immunoprecipitation of C3, rabbit anti-C3 Ab was incubated with Protein A/G PLUS-Agarose (Santa Cruz Biotechnology, Santa Cruz, CA) for 1 h, washed, and added to 30 ml skin mast cell culture medium with Protease Inhibitors Set for 1 h at room temperature. Immunoprecipitation of C3 with SDS-sample buffer containing 2% 2-ME, 5 µg/ml, and subjected to electrophoresis on a 10% polyacrylamide gel containing SDS. Proteins were transferred onto a nitrocellulose membrane. After blocking with PBS, pH 7.4, containing 5% BSA and 0.05% Tween 20 for 1 h, the membrane was probed with goat IgG anti-human C3 for 1 h at room temperature followed by incubations with alkaline phosphatase-conjugated rabbit IgG (DAKO, Norway) for 1 h. After washing, membranes were developed with a 5-bromo-4-chloro-3-indolyl phosphate/NBT alkaline phosphatase liquid substrate solution (Sigma-Aldrich).

Quantitative real-time PCR

Quantitative real-time PCRs (qRT-PCRs) were performed with the CFX96 Real-time System using a C1000 Touch Thermal cycler (Bio-Rad, Hercules, CA) and QPCR SYBR Green Low ROX mixes (Thermo Fisher Scientific, Waltham, MA). Total RNA was isolated from mast cells by RNAeasy Mini kit (Qiagen, Valencia, CA), and 1 μg RNA was treated with RNase-free DNase (Promega, Madison, WI) at 37°C for 1 h. After denaturation at 65°C for 10 min, cDNA was synthesized using the Ready-To-Go You-Prime First-Strand Beads for cDNA synthesis (GE Health Care Biosciences, Pittsburgh, PA) with oligo(dT) primer (Life Technologies) for 1 h at 37°C. Reaction samples include 10 μl SYBR green/low ROX PCR Master Mix (1:100 dilution; BD Biosciences), 0.5 μl of primers and 2 μl of cDNA, and 98-well microplates. The cycling condition was 50°C for 2 min, 95°C for 10 min, 40 cycles of 15°C for 1 s, 60°C for 30 s, and 60°C for 30 s, and a final extension at 68°C for 10 min. Each of the standard PCR products was diluted 104, 103, 102, 101, 10, 10-1, 10-2, and 10-3. The amount of cDNA was determined by the standard curve made by each value of threshold cycle and normalized by dividing by the β-actin threshold cycle value. Primer pairs for C3, C5, and β-actin (synthesized at VCU DNA core facility) were as follows: C3 forward (sense) 5′-CTACCCTGAACACCAAGGTGTCA-3′ and anti-sense 5′-TTTCTTAGTGGTCGGATCTTCCA-3′; C5 (188 bp), sense 5′-TACGCCGTCAACCCGCAAAGGTCTGAC-3′ and anti-sense 5′-TTTCTTAGTGGTCGGATCTTCCA-3′; and β-actin (186 bp), sense 5′-GTGGAAGCCCGGAGAAGAACG-3′ and antisense 5′-AGGGAAAGGACFACCGCAAAGA-3′; β-actin (127 bp), sense 5′-AGGCGACCGGCGTGTAG-3′ and antisense 5′-TGTCCTCGAGTGTGGTGTCC-3′.

C3 and C5 ELISAs

C3 and C5 protein levels, respectively, were measured by ELISA using 1 μg/ml mouse anti-C3 and sheep anti-C5 Abs for capture and 1 μg/ml biotin-rabbit IgG anti-C3 and biotin-goat IgG anti-C5 (goat IgG anti-human C5 IgG was purified by protein G-Sepharose chromatography from antisemum prepared by Comp Tech and was then conjugated with biotin in-house) Abs for detection. After incubation with avidin-peroxidase (1:1000 dilution; BD Biosciences), 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) diamonium salt solution (0.3 mg/ml; Sigma-Aldrich) was added and the absorbance at 405 nm was measured using a SpectraMax 384 Plus plate reader ( Molecular Devices, Sunnyvale, CA). The lower detection limit for each protein was 0.15 ng/ml.

Statistics

Statistical analyses were performed using SigmaStat (Systat Software, Chicago, IL). For parametric data, Student t test for two-group and ANOVA for more than two-group comparisons were used, whereas for nonparametric data, a Kruskal–Wallis ANOVA on ranks was used to compare more than two groups. Differences were considered statistically significant when p values were < 0.05.

Results

C3 and C5 proteins are produced by skin mast cells

To detect C3 and C5 proteins in human skin mast cells, we fixed, permeabilized, labeled with anti-C3/C3b, anti-C5/C5b, or
isotopic C3 and C5 levels in extracts of skin mast cells were 0.9 ng/ml, and C5 protein was not recovered from mast cell culture medium by immunoprecipitation. Levels of C3 and C5 produced secreted into the mast cell culture medium also were examined. Immunoprecipitation from culture medium was performed using sheep anti-human C3 Ab and biotin-goat anti-human C5 Ab (Fig. 1E). Both C3α- and β-chains and C5α- and β-chains were evident in skin mast cell extracts, with molecular masses comparable with those detected in extracts of A549 and HMC-1 cells and with those in purified preparations of C3 and C5. C3 and C5 proteins secreted into the mast cell culture medium also were examined. Immunoprecipitation from culture medium was performed using rabbit IgG anti-human C3 or anti-human C5 bound to protein A/G-agarose to analyze these proteins. As shown in Fig. 1F, eluates from the anti-C3:protein A/G-agarose step revealed C3α- and C3β-chains. Interestingly, the C3α-chain was partially cleaved. In contrast, C5 protein was not recovered from mast cell culture medium by immunoprecipitation. Levels of C3 and C5 produced by skin mast cells were more precisely quantified by ELISA. Medium alone contained no detectable C3 and C5 (<0.15 ng/ml), exogenous complement factors cannot account for the C3 and C5 detected, supporting their production by these mast cells.

To further examine the C3 and C5 protein produced by skin mast cells, we performed Western blotting with protein extracts, using sheep anti-human C3 Ab and biotin-goat anti-human C5 Ab (Fig. 1E). Both C3α- and β-chains and C5α- and β-chains were evident in skin mast cell extracts, with molecular masses comparable with those detected in extracts of A549 and HMC-1 cells and with those in purified preparations of C3 and C5. C3 and C5 proteins secreted into the mast cell culture medium also were examined. Immunoprecipitation from culture medium was performed using rabbit IgG anti-human C3 or anti-human C5 bound to protein A/G-agarose to analyze these proteins. As shown in Fig. 1F, eluates from the anti-C3:protein A/G-agarose step revealed C3α- and C3β-chains. Interestingly, the C3α-chain was partially cleaved. In contrast, C5 protein was not recovered from mast cell culture medium by immunoprecipitation. Levels of C3 and C5 produced by skin mast cells were more precisely quantified by ELISA. Respective C3 and C5 levels in extracts of skin mast cell were 0.9 ± 0.1 and 0.8 ± 0.3 ng per 10^6 cells, whereas those in extracts of A549 were 2.2 ± 0.3 and 25.2 ± 4.8 ng per 10^6 cells. The time course of C3 accumulation in the mast cell culture medium, measured by ELISA, is shown in Fig. 1G. The C3 level increased from <0.15 ng/ml at time 0 to 8.6 ± 1.4 ng/ml on day 3. C3 levels of U937 cell and A549 cell culture medium increased to 10–50 and 10–20 ng/ml on day 3, respectively (data not shown). Consistent with the immunoprecipitation/Western blot finding for secreted C5 noted earlier, the C5 level in mast cell culture medium after 3 d remained at <0.15 ng/ml. In contrast, C5 levels in A549 cell culture medium were 2.5 ng/ml on day 1 and 18.2 ng/ml on day 5 (data not shown).

To address the possible effect of culture condition on C3 and C5 expression, we compared C3 expression by skin mast cells in culture for 2–3 mo with those that were freshly dispersed and isolated. As shown in Table I, C3 and C5 proteins and mRNAs were detected in mast cells from both groups, and comparable amounts of C3 were secreted over a 3-d interval. Thus, expression of C3 and C5 by human skin-derived mast cells is not an artifact of long-term culture.

**C3 and C5 mRNA expression**

Conventional RT-PCR was performed to establish the presence C3 and C5 mRNA. As shown in Fig. 2A, the predicted sizes of the C5 (188 bp) and of the C3 (186 bp) RT-PCR products were detected in skin mast cell–derived cDNA, as well as in U937 cDNA and HMC-1 cDNA. Expression of C3 and C5 mRNA by lung and skin mast cells were compared by qRT-PCR (Fig. 2B). Median levels of C3 mRNA levels in skin and lung mast cells were not signifi-
The effect of cytokines reported to stimulate C3 synthesis in cells other than mast cells, including IL-1α, IL-1β, IL-4, IL-6, IL-13, IL-17, TNF-α, and IFN-γ, were examined with human skin mast cells. Although exposure to PMA for 3 d significantly increased levels of C3 in the culture medium, neither IL-1α, IL-1β, IFN-γ, nor aggregation of FcεRI (22E7 mAb) had such an effect (Fig. 3A). Levels of C3 mRNA also were unaffected by stimulation with 22E7 for 4 h (data not shown). IL-6, as well as the combination of IL-1β with IL-6, also failed to affect C3 levels (Fig. 3A). TNF-α, IL-4, and IL-13 stimulation each enhanced C3 levels 2- to 3-fold above those associated with unstimulated cells (Fig. 3B, 3C). Importantly, the combination of TNF-α with IL-4 and of TNF-α with IL-13 synergistically enhanced C3 levels 9.8 ± 6.6 and 7.1 ± 5.1-fold, respectively. IL-17 had no effect on C3 levels, either by itself or in combination with TNF-α. C5 protein again was not detected in culture medium after exposure to these cytokine combinations. To confirm that the synergistic effect of TNF-α on C3 was, in fact, due to the TNF-α in these commercial preparations, we blocked TNF-α protein by either anti–TNF-α Ab or recombinant soluble TNF-αR. In each case, the synergetic effect of TNF-α and IL-4 was completely blocked by these treatments (Fig. 3D).

To examine the signaling pathways involved in cytokine-stimulated C3 production, we examined the effects of inhibitors of PI3K and MAPK (Fig. 4A). The synergistic effect of TNF-α together with either IL-13 or IL-4 was significantly, but not completely, inhibited by an Erk (U0126) inhibitor, but not by a PI3K (wortmannin), a JNK (SP600125), or a p38 MAPK (SB203580) inhibitor. JNK reportedly is involved in TNF-α signaling and Erk in IL-4/IL-13 signaling.

Because the NF-κB pathway plays a major role in TNF-α signaling, the effect of an NF-κB inhibitor (CAY10470) was examined. As shown in Fig. 4B, the synergistic effect of TNF-α

---

**Table 1. Comparisons of cultured and freshly dispersed skin mast cells**

<table>
<thead>
<tr>
<th>Skin Mast Cells</th>
<th>Cultured</th>
<th>Freshly Dispersed</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3 flow cytometry (net MFI)</td>
<td>115 ± 25 (n = 5)</td>
<td>44 ± 18 (n = 5)</td>
</tr>
<tr>
<td>Secreted C3 (ELISA, ng/ml)</td>
<td>2.5 ± 0.5 (n = 13)</td>
<td>2.5 ± 0.6 (n = 9)</td>
</tr>
<tr>
<td>C3 mRNA (qRT-PCR, fold increase)</td>
<td>1.0 ± 0.3 (n = 3)</td>
<td>2.5 ± 0.3* (n = 4)</td>
</tr>
<tr>
<td>C5 flow cytometry (net MFI)</td>
<td>61 ± 7.4 (n = 3)</td>
<td>31 ± 10.1 (n = 3)</td>
</tr>
<tr>
<td>C5 mRNA (qRT-PCR, fold increase)</td>
<td>1.0 ± 0.2 (n = 3)</td>
<td>1.0 ± 0.1 (n = 3)</td>
</tr>
</tbody>
</table>

*p < 0.05.
FIGURE 4. Effect of signal inhibitors on synergistic enhancement of C3 production by human skin mast cells. (A) The synergistic enhancement of C3 production by human skin mast cells exposed to TNF-α together with IL-13 or IL-4 is partially inhibited by Erk inhibitor (U0126), but not by a PI3K ( Wortmannin), Jnk (SP600125), or p38 MAPK (SB203580) inhibitor. Human skin mast cells were pretreated with each inhibitor for 1 h and stimulated with each cytokine for 3 d. The levels of C3 in culture supernatants were measured by ELISA. TNF-α (10 ng/ml), IL-13 (100 ng/ml), IL-4 (5 ng/ml), Wortmannin (100 nM), U0126 (10, 2 μM), SB203580 (5, 1 μM), and SP600125 (5 μM) were used at the concentrations indicated. Data to the left and to the right of the dashed vertical line represent separate experimental groups. *p < 0.05, comparing by ANOVA the effect of each inhibitor on C3 production by TNF-α plus either IL-4 or IL-13. (B) Effect of NF-κB inhibitor on C3 production by TNF-α together with either IL-13 or IL-4 from human skin mast cells. TNF-α (10 ng/ml), IL-13 (100 ng/ml), IL-4 (5 ng/ml), and CAY10470 (1 μM) were used at the concentrations indicated. *p < 0.05, using a Student t test to compare ± CAY10470. (C) Inhibitors of the Jak/STAT pathway inhibit the synergistic effect of IL-4 and TNF-α on C3 production by human skin mast cells. TNF-α (10 ng/ml), IL-4 (5 ng/ml), Jak inhibitor 1 (0.5 and 0.1 μM), PFTα (2 and 0.4 μM), and tyrphostin AG9 (10 and 5 μM) were used as indicated. Data shown are the average of at least three independent experiments. *p < 0.05 comparing effects of inhibitors on C3 production by TNF-α plus IL-4 by ANOVA. (D) Effect of Jak inhibitor 1 (1 and 0.5 μM) on TNF-α (10 ng/ml)–stimulated C3 production from human skin mast cells. Data shown are the average of at least three independent experiments. The effects of inhibitors on C3 production triggered by TNF-α were examined by ANOVA.

together with either IL-4 or IL-13 was completely inhibited. Because only the IL-4Rα/IL-13Rα1 receptor is stimulated by both IL-4 and IL-13, and this receptor signals through Tyk2 and Jak1, the effect of Jak inhibitor-1 was examined. As shown in Fig. 4C, the synergistic effect of IL-4 together with TNF-α was almost completely inhibited by Jak inhibitor-1. Because Jak inhibitor-1 is promiscuous among all Jak family members, including Tyk2, the effect of a Tyk2–specific inhibitor, tyrphostin AG9, was examined. Tyrphostin AG9 also inhibited the synergistic effect of IL-4, indicating the likely involvement of IL-13Rα1–associated Tyk2 signaling. Inhibition of STAT6, a downstream signaling molecule of the IL-4 response, by PFTα also inhibited the synergy of TNF-α and IL-4. To examine whether the Jak/STAT pathway is also involved in TNF-α signaling in human skin mast cells, we examined the effect of Jak inhibitor 1 on TNF-α–mediated IL-6 synthesis; IL-6 response was significantly inhibited by 26 ± 7 and 51 ± 8% at 0.5 and 1 μM Jak inhibitor 1, respectively, indicating that TNF-α signals, in part, throw a Jak/STAT pathway (data not shown), Fig. 4D shows that the small increment in C3 synthesis caused by TNF-α stimulation was also inhibited, by only 25 and 40% at 0.5 and 1 μM Jak inhibitor 1, respectively, and these levels of inhibition were not statistically significant.

Discussion

Complement proteins and mast cells cross-interact with one another and bridge both innate and adaptive immune responses. Human mast cells of the MC C type, essentially the exclusive type in skin, are distinguished from the MC T type, the dominant type in lung parenchyma and small-bowel mucosa, by expressing both tryptase and chymase instead of tryptase alone, and by being responsive to the anaphylatoxins C5a and C3a, secreting both preformed and newly generated mediators when exposed to these anaphylatoxins, a functional phenotype that is maintained during the serum-free culture conditions used in this study. Moreover, mast cell tryptase can generate C3a and C5a from their respective precursors. This study extends this relationship by showing for the first time, to our knowledge, that both C3 and C5 are produced by primary skin-derived human mast cells.

C3 and C5 were constitutively expressed by human skin mast cells, as shown by detecting C3 and C5 mRNAs and proteins. Skin mast cells (MC C type) and lung mast cells (predominantly MC T type) show similar levels of C3 and C5 mRNAs. Flow cytometry and confocal microscopy, each using fixed and permeabilized cells, as well as Western blotting, using cell extracts, detected C3 and C5 proteins. The 120-kDa α and 75-kDa β subunits of C3 and C5 migrated with the same electrophoretic mobilities as those derived from certain cell lines and as the commercial purified proteins, confirming their identities. The amounts of C3 and C5 measured in mast cell extracts by ELISAs were 0.9 and 0.8 ng/10⁶ cells, respectively. Whereas confocal microscopy localized tryptase to cytoplasmic granules, C3 and C5 both exhibited a diffuse cytoplasmic pattern, indicating they were not localized to secretory granules. In
support of their localization outside of secretory granules, degran-ulation of skin mast cells with anti-FcεRI Ab did not stimulate secretion of C3 or C5. Instead, C3 was constitutively secreted, its concentration in culture medium steadily increasing from <0.15 ng/10^6 cell equivalents in the initial medium to 8.6 ng/10^6 cell equivalents by day 3 and ~17 ng/10^6 cell-equivalents by day 6, indicating that more C3 was secreted within a week than remained inside these cells. In contrast, C5 was not detected in the culture medium at any time point through 6 d, remaining at <0.15 ng/10^6 cells. Whether C5 might have an intracellular role or simply has a yet to be identified secretion signal remains to be determined. Secreted C3, when Western blotted, exhibited a doublet near the α subunit, likely corresponding to α and α′, indicating C3 cleavage during or after secretion. Examples of proteases that can generate C3a from C3 in serum-free medium include mast cell tryptase (26) and granzyme B (60), resulting in C3b (αβ). Mast cell proteases other than tryptase, including membrane-bound metalloproteases, also might have a role in activating C3 and C5. Proteases in mouse Kupffer cells (44), rat alveolar macrophages, and human neutrophils (61), and in a human kidney epithelial cell line (62) process C5 or C3 in a similar manner. Although skin mast cells are typically cultured in serum-free medium with SCF for 2–3 mo before being used experimentally, these culture conditions did not account for the production of C3 and C5, because comparable mRNA and protein levels were found in freshly dispersed and purified skin mast cells. Moreover, levels of C3 secretion from freshly isolated skin mast cells were similar to those that had been in culture for 2–3 mo.

Several inflammatory cytokines, each by themselves, are known to enhance C3 or C5 protein levels, depending on the cell type and pathways potentially affecting both mast cells and nonmast cells. The human C3 promoter has STAT6 and/or MAPK pathways (77–80). The human C3 promoter has STAT6 binding sites (81, 82), consistent with the observed upregulation of C3 expression. The IL-13Rx1 subunit, but not the IL-4Rxα and γc subunits, reportedly signal through Tyk2 (79). The IL-4/13–TNF-α synergies were attenuated with the Tyk2-specific inhibitor Tyrophostin AG9 almost as well as with the Jak inhibitor-1 (which inhibits all four members of the Jak family, including Tyk2) (78–80), indicating that the IL-4Rxα/IL-13Rx1 heterodimer accounts for most, if not all, of the synergy added by IL-4 or IL-13 to TNF-α. However, because TNF-α signaling also involves the Jak/STAT pathway (83, 84), TNF-α may act, in part, through this pathway. It is also possible TNF-α-induced Jak/STAT activation enhances IL-4R–mediated Jak/STAT signaling. The lack of an effect by Wortmannin, SP600125, or SB203580 argues that neither PI3K, Jnk, nor p38 MAPK, respectively, is involved in the synergistic production of C3, whereas partial inhibition by U0126 indicates Jnk involvement. Because TNF-α signals in part through JNK (85, 86), whereas IL-4 and IL-13 signal in part through Erk (80, 87), it is not surprising that Erk clearly contributes to this synergism, whereas the lack of effect of a Jnk inhibitor suggests TNF-α involvement does not involve Jnk.

Mast cells certainly encounter IL-4/13 and TNF-α at sites of inflammation, such as the asthmatic airways and atopic dermatitis skin, themselves being an important source of IL-13. Increased production of C3 by mast cells and conversion of C3 to C3a and C3b at these sites, perhaps by mast cell tryptase, might further modulate inflammation and immunity. Local production of C3 by dendritic cells in mice, for example, promotes Th1 development (41, 47). C3a can amplify pathologic process by increasing vasopermeability, contracting bronchial smooth muscle, stimulating dendritic cells to modulate T cell activation, or activating mast cells and basophils, of likely importance in allergic disorders such as asthma and autoimmune urticaria (88–98). Furthermore, C3adesArg, a metabolite of C3a, serves as an adipokine associated with obesity, type II diabetes, and coronary artery disease (99). Indeed, mast cell numbers are increased in the white adipose tissues of obese subjects (100) and the bronchial smooth muscle of asthmatics (101), providing them with the opportunity to influence disease activity by both producing C3 and, through tryptase or other proteases, converting C3 to C3a and C3adesArg. When C3 is cleaved to yield C3a, C3b presumably is also generated, exposing its reactive thioester domain, thereby allowing covalent binding to nearby proteins or carbohydrates, opsonizing those targets, enhancing their immunogenicity and their susceptibility to phagocytosis or endocytosis (11). Thus, this newfound ability of human mast cells to produce C3 has implications for their involvement in diseases ranging from asthma to obesity.

Acknowledgments
We thank Dr. Scott Henderson, Director of the Microscopy core facility at VCU, for help with the confocal microscopy analysis; Dr. Greg Gomez for providing human lung mast cell RNA; and Constance B. Hartmann for preparing human skin mast cells.

Disclosures
The authors have no financial conflicts of interest.

References
1834 HUMAN SKIN MAST CELLS EXPRESS C3 AND C5


