Cutting Edge: Identification of the Thymic Stromal Lymphopoietin–Responsive Dendritic Cell Subset Critical for Initiation of Type 2 Contact Hypersensitivity

Masayuki Kitajima and Steven F. Ziegler

J Immunol 2013; 191:4903-4907; Prepublished online 11 October 2013;
doi: 10.4049/jimmunol.1302175
http://www.jimmunol.org/content/191/10/4903

Supplementary Material
http://www.jimmunol.org/content/suppl/2013/10/11/jimmunol.1302175.DC1

References
This article cites 25 articles, 14 of which you can access for free at:
http://www.jimmunol.org/content/191/10/4903.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Cutting Edge: Identification of the Thymic Stromal Lymphopoietin–Responsive Dendritic Cell Subset Critical for Initiation of Type 2 Contact Hypersensitivity

Masayuki Kitajima and Steven F. Ziegler

The cytokine thymic stromal lymphopoietin (TSLP) has been implicated in the initiation and progression of allergic inflammation through its ability to activate dendritic cells (DCs). However, the identity of the DC subset that responds to TSLP is not known. In this study we use a CCL17 reporter strain to identify the TSLP-responsive DC subset. In vitro, TSLP induced CD11bhigh DCs to express CCL17, to increase CCR7-mediated migration activity, and to drive Th2 differentiation of naive CD4 T cells. In vivo, following skin sensitization, we found that a subset of Ag-bearing CCL17+CD11bhigh migratory DCs, but not Ag-bearing CCL17– migratory DCs, in skin lymph nodes were capable of driving Th2 differentiation and were dramatically reduced in TSLPR-deficient mice. Taken together, these results demonstrate that TSLP activated a subset of CD11b+ DCs in the skin to produce CCL17, upregulate CCR7, and migrate to the draining lymph node to initiate Th2 differentiation.

TSLP expression was markedly elevated in lesional skin atopic dermatitis (AD) patients and in the lungs of asthmatics (2, 3). Consistent with these observations, mice overexpressing TSLP or treated with TSLP developed Th2-type CHS (10, 14). In this study, we used CCL17-enhanced GFP (eGFP) reporter mice to detect TSLP-responding DCs. In vitro, TSLP induced CCL17-eGFP+CD11bhighCD24low DCs with increased CCR7-mediated migration. A similar population appeared in draining lymph nodes (dLNs), in a TSLP-dependent manner, 24 h after sensitization. Both in vitro and in vivo, CCL17-eGFP+ DCs could promote Th2 differentiation and CD4 T cell proliferation. Taken as a whole, these data demonstrate that TSLP activated a subset of DCs to migrate to dLNs and attract CD4 T cells for differentiation into Th2 cells.

Materials and Methods

Animals

Female BALB/c and CD45.1 congenic mice on a BALB/c background were purchased from Taconic Farms and The Jackson Laboratory. Tslpr-deficient (TSLPR−/−) mice were backcrossed to BALB/c for 12 generations. OVA-specific TCRαβ (DO11.10) transgenic (Tg) mice were purchased from The Jackson Laboratory (15). TSLP−/− mice on a BALB/c background were from by Dr. Irmgard Förster (7). All mice for this study were maintained under pathogen-free conditions. All animal procedures were performed in accordance with Institutional Animal Care and Use Committee guidelines at the Benaroya Research Institute.

Flow cytometry analysis

Cell preparations and flow cytometric analysis were described previously (10). The Abs were used anti-CD11c, anti-CD11b, anti–MHC class II (MHC II), anti-CD24, anti-B220, anti-CD86, anti-OX40L, anti-CD274, anti-CCR7, anti-
CD4, anti-CD45.1, anti-CD207, anti-IL-4, anti-IFN-γ, anti-phosphorylated STAT5 mAb, and streptavidin (eBioscience, BioLegend, or BD Biosciences).

Bone marrow DC cultures

A modified method was used for bone marrow DC cultures as previously described (5). Cells were purified using a MACS CD11c purification kit (Miltenyi Biotec) or BD FACS Aria II cell sorter. Cells were stimulated with medium alone or medium plus indicated dose of TSLP (gift from Amgen), 10 ng/ml IL-7, or 10 ng/ml GM-CSF (eBioscience) for 24 h.

In vitro migration assay

In vitro migration assays were performed using 5-μm pore size Transwell plates (Costar) and CCL21 (PeproTech). The assay was performed for 4 h, and the numbers of DCs and CCL17-eGFP expression that migrated to the lower well were determined using microsphere beads (Dynospheres) by BD FACS Calibur (BD Biosciences). The numbers were divided by the input samples and are represented as percentage migration.

In vitro proliferation assay and CD4 cell differentiation cultures

A modified method was used for bone marrow DC cultures as previously described (10). Supernatants were collected and ELISA was performed as described (10).

In vitro CD4 differentiation by FL-DC transfer

Sorted DCs were pulsed with OVA323–339 at 1 μg/ml for 1 h. After washing, DCs (3 × 10^6 cells/mouse) were transferred i.v. Splenic CD4+ T cells (2 × 10^6 cells/mouse) from DO11.10 Tg mice were transferred i.d. 1 d before DC transfer. Five days after DC transfer, cells from skin LN were isolated. For intracellular cytokine staining, cells were stimulated with PMA and ionomycin for 4 h in the presence of monensin. For measuring cytokine production, splenic LN cells (4 × 10^5 cells/ml) were stimulated with OVA323–339 at 1 μg/ml for 3 d. Supernatants were collected and ELISA was performed as described (10).

Tetramethylrhodamine isothiocyanate sensitization and isolation of DCs from ear and skin-draining LNs

Hapten tetramethylrhodamine isothiocyanate (TRITC) sensitization and isolation of DCs from skin and skin LNs were performed as previously described (10, 14). Cells were purified using a MACS CD11c purification kit or a BD FACS Aria II cell sorter.

Statistical analysis

The significance between two groups was determined by a two-tailed Student t test. P value <0.05 was considered statistically significant.

Results and Discussion

TSLP induced CCL17-eGFP CD11b^high^ DCs in bone marrow–derived FL-DCs

FLT3L induces differentiation of mouse bone marrow cells into heterogeneous DC subtypes (FL-CD11b DCs, CD11c^-/B220^^-^CD11b^high^, FL-CD24 DCs, CD11c^-/B220^-/CD24^high^, and FL-plasmacytoid DCs [pDCs], CD11c^-/B220^-/CD11b^-), which showed equivalent properties to splenic CD8^-^ DCs, CD8^+^ DCs, and pDCs (16). We have shown that TSLP induced phosphorylation of STAT5 and upregulation of co-stimulatory molecules in FL-CD11b DCs (5, 10). To identify the subset capable of expressing CCL17 following TSLP expression, we generated FL-DCs from CCL17-eGFP bone marrow and cultured the cells in TSLP. TSLP induced CCL17-eGFP expression in CD11b^high^ DCs in a dose-dependent manner, whereas the FL-CD24 DC and pDC subset failed to express CCL17 (Fig. 1A and data not shown). Consistent with these data, TSLPR-deficient FL-CD11b DCs did not express CCL17 following TSLP treatment, whereas IL-7- and GM-CSF–mediated CCL17-eGFP expression was equivalent between TSLPR-sufficient and -deficient CCL17-eGFP Tg CD11b DCs (Fig. 1B and data not shown).

Next, we examined expression of surface molecules on TSLP-induced CCL17-eGFP^+^ FL-CD11b DCs. Bone marrow cells from CCL17^-/^- × TSLPR^-/-^ and CCL17^-/^- × TSLPR^-/^- mice were differentiated by FLT3L. (A and B) CCL17^-/^- FL-DCs were cultured with or without TSLP for 24 h. Expression of CCL17-eGFP and DC subset markers on CD11c^-^ FL-DCs were analyzed. (C and D) Sorted CCL17^-/^- × TSLPR^-/-^ and CCL17^-/^- × TSLPR^-/-^ FL-CD11b^-high^ DCs were cultured with or without TSLP or with IL-7. Mean fluorescence intensities (MFIs) were determined by flow cytometry. Three independent experiments were performed with similar results.

Consistently, migration by CCL21 of CCL17^-/^- eGFP^+^ FL-CD11b DCs was increased compared with CCL17^-/^- eGFP^-^ FL-CD11b DCs from TSLP-treated cultures. CCL17^-/^- eGFP^-^ FL-CD11b DCs had high-level expression of the costimulatory molecules CD86, OX40L, CD274, and MHC II and chemokine receptor CCR7 compared with medium- and TSLP-treated CCL17^-/^- eGFP^-^ FL-CD11b DCs (Fig. 1, C and D). Additionally, TSLP-treated TSLPR-deficient DCs were equal to medium-treated DCs. Thus, these results indicate that TSLP-induced CD11b^-^ CCL17^-/^- eGFP^-^ DCs represent the DC subset activated by TSLP.

TSLP-induced CCL17^-/^- eGFP^-^ DCs increased migration activity and induction of Th2 differentiation

CCR7 is important for the migration of skin DCs into skin-draining LNs under both steady-state and inflammatory conditions (17). Also, CCL17 has also been found to be important for cutaneous DC migration to skin LNs (9). Interestingly, we found that CCL17 expression was elevated on TSLP-induced CCL17^-/^- eGFP^+^ FL-CD11b DCs compared with control CCL17^-/^- eGFP^-^ FL-CD11b DCs (Fig. 1). Using a Transwell migration assay we found that TSLP-treated FL-CD11b DCs had enhanced CCL21-mediated migration compared with untreated FL-CD11b DCs (Fig. 2A). TSLP-treated TSLPR-deficient FL-CD11b DCs failed to show increased migration, whereas migration was equivalent between GM-CSF–treated FL-CD11b DCs from TSLPR-sufficient and -deficient FL-CD11b DCs (Fig. 2A). Consistent with this activity, the proportion of migrated CCL17^-^ DCs was increased in TSLP-induced FL-DCs (Fig. 2B).

Consistently, migration by CCL21 of CCL17^-/^- eGFP^-^ FL-CD11b DCs from TSLP-treated cultures was increased compared with CCL17^-/^- eGFP^-^ FL-CD11b DCs from the same cultures. The CCL17^-^ cells showed equivalent migration as did untreated CCL17^-/^- eGFP^-^ CD11b DCs (Fig. 2C, Supplementary Fig. 1A). Thus, these results indicate that TSLP-induced CCL17^-^ FL-CD11b DCs display increased CCR7-mediated migration activity compared with their CCL17^-^ counterparts.
The Journal of Immunology 4905

FIGURE 2. TSLP induced functional CCL17-eGFP+ FL-CD11b DCs for Th2 response. Sorted FL-CD11b DCs were cultured with or without TSLP or with GM-CSF. Then, cells were cultured in Transwell plates with CCL21 at the indicated dose for 4 h. Cells from the lower well were analyzed. (A) Percentage of migration was calculated. (B) CCL17-eGFP expression in control and migrated FL-CD11b DCs was analyzed by flow cytometry. Migrated DCs represented DCs from the lower well. DCs cultured with conventional wells were used as control DCs. (C–E) Medium-, TSLP-induced CCL17-eGFP+, and CCL17-eGFP− FL-CD11b DCs were sorted. (G) Migration activity was measured. DCs were pulsed with the indicated concentration (D) or 0.01 μM (E) antigenic OVA peptide for 1 h, cultured with DO11.10 Tg CD4 cells. (D) Forty-eight hours later, cells were pulsed with [3H]thymidine for an additional 16 h and proliferation was measured. (E) Five days later, cells were restimulated for 48 h, and cytokine concentrations in the culture supernatant were measured by ELISA. (F and G) DCs were pulsed with 1 μM antigenic OVA peptide, and then DCs were transferred into BALB/c mice i.v. 1 d after CD45.1+ DO11.10 Tg CD4 cell transfer. Five days after DC transfer, skin LN cells were isolated: (F) cells were stimulated with PMA plus ionomycin for 4 h, then stained with Abs. (G) Skin LN cells were cultured in the presence of 1 μM antigenic OVA peptide for 72 h, and then cytokine concentrations in the culture supernatant were measured by ELISA. Three mice were used. Results are representative of two to three independent experiments. *p < 0.05, **p < 0.01 (Student t test).

Next, we investigated the CD4 response initiated by TSLP-induced CCL17-eGFP+ FL-CD11b DCs. TSLP-induced CCL17-eGFP+ FL-CD11b DCs were purified, pulsed with the indicated dose of antigenic peptide, and cultured with DO11.10 CD4 T cells for 2 d, after which proliferation was measured. DO11.10 cells, cocultured with TSLP-induced CCL17-eGFP+ FL-CD11b DCs, displayed increased CD4 proliferation at a low dose of peptide (0.01 μM), whereas proliferation was equivalent at higher Ag doses (1 μM) (Fig. 2D). To examine CD4 T cell differentiation by these DCs, sorted DCs and DO11.10 T cells were cultured with 0.01 μM antigenic OVA peptide for 72 h, and then cytokine concentrations in the culture supernatant were measured by ELISA. Three mice were used. Results are representative of two to three independent experiments. *p < 0.05, **p < 0.01 (Student t test).

Ag-bearing CCL17-eGFP+ migratory DCs were reduced in TSLPR-deficient mice

We have previously shown that the type 2 CHS response to FITC was TSLP-dependent (14). Whereas DCs appeared to be the TSLP target in the skin, displaying an Ag uptake and migration deficit, the precise nature of the APC population responding to TSLP in this model was not clear (10, 18). In a similar CHS model, using TRITC as the hapten, it was found that CCL17-expressing DDCs were critical for the inflammatory response (7, 9). Taken as a whole, these data suggest that TSLP induction of CCL17 by DDCs is a critical aspect of the CHS response. To test this directly we TRITC-sensitized CCL17-eGFP+/− mice, which either could or could not respond to TSLP, and examined Ag-bearing CCL17+ cells (as measured by eGFP expression) in both skin and dLNs 24 h later. At that time there was a significant increase in the both the number and frequency of TRITC−CCL17+MHC II+ in both skin and LNs in TSLPR-sufficient mice that was not seen in TSLPR-deficient mice (Fig. 3). DCs in skin LNs can be separated into CD11c−MHC II+ high migratory DCs (mDCs) and CD11c−MHC II+ low resident DCs, with the TRITC−CCL17+ cells into LNs following sensitization having the mDC phenotype (Supplemental Fig. 1B). Interestingly, the number of TRITC−CCL17− DCs in the LNs was unchanged regardless of TSLPR status, whereas the number and frequency of TRITC+ mDCs in the LNs that expressed CCL17 1 d after TRITC sensitization was significantly increased (Fig. 3C, 3D). These results indicate that allergen-mediated TSLP production in skin induces CCL17 expression by skin-resident DCs. These DCs then migrate to the LN that drains the site of sensitization.

TSLP induced migration of Ag-bearing CCL17-eGFP CD11b+ mDCs

Previous studies using this model of CHS have shown that three subsets of DDCs (CD207+CD11b+, CD207−
CD11b− to low, and CD207+) migrate to the dLNs, peaking 24–48 h after sensitization, whereas epidermal Langerhans cells (LCs) peaked 3–4 d later (19). To identify the TSLP-responsive DC subset in skin-draining LNs, we examined CCL17 expression in Ag-bearing DCs 24 h after TRITC sensitization of WT CCL17-eGFP mice. TRITC+CCL17-eGFP+ mDCs were predominantly CD11bhigh (>80%; Fig. 4A, Supplemental Fig. 2). Alternatively, TRITC+CCL17-eGFP+ mDCs were a mixture of all three subsets 1 d after sensitization. To determine whether TSLP can act directly on CD11bhigh DCs, we assessed phosphorylation of STAT5 in skin LN CD11bhigh mDCs of TSLPR-deficient mice. These results indicate that TSLP acts directly on dermal CD11bhigh mDCs to induce CCL17 expression and migration to LNs.

TSLP-mediated Ag-bearing CCL17−CD11bhigh mDCs induced Th2 differentiation.

In vitro, TSLP-activated DCs have been shown to promote Th2 differentiation of naive CD4 T cells (2). In vivo, Ag-bearing DCs from TSLPR-deficient mice, isolated 24 h after FITC sensitization, displayed a reduced capacity for promoting CD4 proliferation and Th2 differentiation (14). To examine the function of TSLP-induced TRITC+CCL17+ mDCs, we isolated TRITC+CCL17+ and TRITC+CCL17− mDCs from skin LNs 24 h after TRITC sensitization. The cells were pulsed with the indicated dose of antigenic peptide and cultured with CD4 T cells from DO11.10 TCR Tg mice, and proliferation and cytokine production were measured as in Fig. 2. DO11.10 CD4 T cells in cultures with TRITC+CCL17+ mDCs had increased proliferation compared with those cultured with TRITC+CCL17− mDCs at moderate doses of the peptide (0.01 and 0.1 μM), whereas proliferation induced by high dose of the peptide (1 μM) was equivalent (Fig. 4C). We next determined whether these mDCs were capable of driving CD4 T cell differentiation. Levels of IL-4, IL-5, and IL-13 in the supernatants were measured as in Fig. 2D and 2E. Results are representative of three independent experiments. *p < 0.05, **p < 0.01 (Student t test).

FIGURE 4. TSLP-mediated Ag-bearing CCL17-eGFP+ CD11b DCs induced Th2 differentiation. (A) Skin LN cells after sensitization were stained, and profiles of CD207 and CD11b are shown. (B) Isolated skin LN CD11c− cells were stimulated with medium, TSLP, or GM-CSF for 45 min and then pSTAT5 was analyzed. Skin LN cells were pooled from three to four mice. Results are representative of three independent experiments. (C and D) Skin LN cells were isolated 24 h after sensitization. TRITC+CCL17-eGFP+ mDCs and TRITC+CCL17-eGFP− mDCs were sorted, DCs were pulsed with (C) indicated concentration or (D) 0.1 μM peptide, and then cells were cultured with DO11.10 Tg CD4 cells. Skin LN cells were pooled from five to six mice. Proliferation and cytokine concentrations in supernatants were measured as in Fig. 2D and 2E. Results are representative of two to three independent experiments. *p < 0.05, **p < 0.01 (Student t test).

Whereas a connection between epithelial-derived TSLP and the initiation of type 2 inflammation is quite clear, the nature of the cells involved in this process are not. In this study, we demonstrate that TSLP-induced migration of CCL17-producing DCs is critical for initiation of Th2-type CHS. Consistent with previous work with human DCs (6), TSLP-activated bone marrow–derived DCs expressed high levels of CD86 and OX40L, as well as increased CCR7-mediated migration activity, and were capable of driving Th2 differentiation (Figs. 1, 2). Additionally, in a model of CHS, TSLP mediated the migration of Ag-bearing CD11b+ mDCs into skin LNs (Figs. 3, 4). These results suggest that CCL17 expression defines the DC subset that is TSLP responsive both in vitro and in vivo.
Acknowledgments
We are grateful to Dr. Daniel J Campbell for helpful comments in the preparation of the manuscript. We also thank Sylvia McCarty for assistance with preparing the manuscript.

Disclosures
The authors have no financial conflicts of interest.

References