Connexin43 Is Dispensable for Phagocytosis

Aaron M. Glass, Benjamin J. Wolf, Karin M. Schneider, Michael F. Princiotta and Steven M. Taffet

J Immunol 2013; 190:4830-4835; Prepublished online 3 April 2013;
doi: 10.4049/jimmunol.1202884
http://www.jimmunol.org/content/190/9/4830

Supplementary Material
http://www.jimmunol.org/content/suppl/2013/04/03/jimmunol.1202884.DC1

References
This article cites 19 articles, 12 of which you can access for free at:
http://www.jimmunol.org/content/190/9/4830.full#ref-list-1

Subscription
Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts

The Journal of Immunology is published twice each month by
The American Association of Immunologists, Inc.,
1451 Rockville Pike, Suite 650, Rockville, MD 20852
Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved.
Print ISSN: 0022-1767 Online ISSN: 1550-6606.
Connexin43 Is Dispensable for Phagocytosis

Aaron M. Glass, Benjamin J. Wolf, Karin M. Schneider, Michael F. Princiotta, and Steven M. Taffet

Macrophages that lack connexin43 (Cx43), a gap junction protein, have been reported to exhibit dramatic deficiencies in phagocytosis. In this study, we revisit these findings using well-characterized macrophage populations. Cx43 knockout (Cx43−/−) mice die soon after birth, making the harvest of macrophages from adult Cx43−/− mice problematic. To overcome this obstacle, we used several strategies: mice heterozygous for the deletion of Cx43 were crossed to produce Cx43+/− (wild type [WT]) and Cx43−/− fetuses. Cells isolated from 12- to 14-d fetal livers were used to reconstitute irradiated recipient animals. After reconstitution, thioglycollate-elicited macrophages were collected by peritoneal lavage and bone marrow was harvested. Bone marrow cells and, alternatively, fetal liver cells were cultured in media containing M-CSF for 7–10 d, resulting in populations of cells that were >95% macrophages based on flow cytometry. Phagocytic uptake was detected using flow cytometric and microscopic techniques. Quantification of phagocytic uptake of IgG-opsonized sheep erythrocytes, zymosan particles, and Listeria monocytogenes failed to show any significant difference between WT and Cx43−/− macrophages. Furthermore, the use of particles labeled with pH-sensitive dyes showed equivalent acidification of phagosomes in both WT and Cx43−/− macrophages. Our findings suggest that modulation of Cx43 levels in cultured macrophages does not have a significant impact on phagocytosis. *The Journal of Immunology*, 2013, 190: 4830–4835.

Connexin43 (Cx43) is a multimeric protein conduit that functions to connect the cytoplasms of two cells. Cx43 is expressed in multiple cells and organs of the immune system, and has been suggested to contribute to immune function (1–3). For almost a decade, our laboratory has been engaged in the study of Cx43, specifically its contribution to macrophage function. The most extensive of these studies involves the use of radiation chimeras to produce mice that lack Cx43 in cells of hematopoietic origin (4). Equivalent reconstitution from Cx43+/+, Cx43+/−, and Cx43−/− fetal liver cells is commonly observed in these animals, and populations of inflammatory macrophages are proportionately high for cells of donor origin (>98%). There are no obvious immune defects in these animals (4). Furthermore, macrophages derived from Cx43+/+, Cx43+/−, and Cx43−/− fetal liver cells have been analyzed for bacterial killing, revealing no obvious defect in bactericidal activity (A.M. Glass, T.D. Nguyen, and S.M. Taffet, unpublished observations). Throughout these studies, we have found no evidence that Cx43 is required for phagocytosis, or that macrophages generated from mice that lack Cx43 display any impairment of phagocytic uptake, a prerequisite for bactericidal activity, as compared with macrophages derived from wild type (WT) animals.

The lack of a role for Cx43 in macrophage phagocytosis is in sharp contrast with a study by Anand et al. published in 2008 (5). In that study, a population of adherent cells was isolated from fetal livers of Cx43+/+, Cx43+/−, and Cx43−/− mice. These cells were assessed for phagocytic capacity, and the cells displayed differential phagocytosis, leading the authors to propose a “direct role” for Cx43. However, the cells analyzed were only characterized according to their expression of CD45, not macrophage-specific markers, making the proportion of macrophages in the population difficult to determine.

In this study, we examined phagocytic uptake of three distinct phagocytic target particles (sheep erythrocytes [sRBCs], zymosan, and *Listeria monocytogenes* [Listeria]), comparing WT (Cx43+/+) macrophages and Cx43-deleted (Cx43−/−) macrophages. We present data in this article showing that a well-characterized macrophage population lacking Cx43 is indeed capable of phagocytosis, and that no significant differences between WT and Cx43−/− macrophages were apparent in any phagocytic parameter measured.

Materials and Methods

Animals

Mice heterozygously deficient in Cx43 (Cx43+/−, B6;129-Gja1tm1Kdr/J) were obtained from The Jackson Laboratory. Cx43−/− mice expressing the CD45.1 isoform were generated by first crossing Cx43+/− animals with BALB/c mice (BALB/cAnTac; Taconic) for 11 generations. The resulting BALB/cCx43 strain was then subsequently crossed with BALB/c mice expressing the CD45.1 isoform of CD45 (CBy.SJL[BL6]-Ptprcβ/J; The Jackson Laboratory). All animals were maintained at the Department of Laboratory Animal Resources at State University of New York Upstate Medical University. For each animal, Cx43 status was confirmed by PCR-based genotyping. All experiments and procedures in this study were approved by the Institutional Animal Care and Use Committee at SUNY Upstate.

Cell culture

WT or Cx43−/− fetuses were generated by crossing two Cx43 heterozygous (Cx43+/−) mice. At 12–14 d of gestation, pregnant females were euthanized and the fetuses were explanted. Fetal livers were then isolated from each fetus for derivation to macrophages, whereas the posterior portion of each fetus was removed for genotyping. Livers were placed in DMEM (HyClone) supplemented with 25 nM HEPES buffer and dissociated by gentle pipetting. Fetal liver cell suspensions were cultured in complete medium (DMEM supplemented with...
10% PBS and 5% penicillin/streptomycin for 24 h to allow for selective adherence of contaminating cells (such as fibroblasts and fetal liver resident macrophages).

After genotyping, nonadherent fetal liver cells were collected, pooled according to genotype, and plated at a concentration of 1 × 10^6 nucleated cells/plate in nontissue culture–treated 100-mm petri dishes (BD Falcon). Cells were grown in complete medium supplemented with supernatant from L929 cells, a source of M-CSF, for 7–10 d (6). Mature macrophages, which were adherent to the dishes, were harvested after incubation with cold PBS + 2 mM EDTA.

Generation of radiation chimeric mice

Radiation chimeric mice were generated as previously described (4). Cx43^+/+ mice on a CD45.1 background were mated to produce Cx45.1^+ Cx43^+/+ and Cx43^−/− fetuses from which fetal liver cell suspensions were prepared as described above. A total of 1 × 10^6 fetal liver cells were transferred to an irradiated (950 cGy) CD45.2^+ BALB/c host by retro-orbital injection. After allowing 10 wk for reconstitution, we analyzed peripheral blood leukocytes were donor derived (Cx43+/+ 99.1 ± 0.1 versus Cx43−/− 97.5 ± 0.5).

Preparation of phagocytic targets

sRBCs (Innovative Labs) were washed in PBS and labeled with CFSE (Cell Trace; Invitrogen) according to manufacturer’s specifications. Immediately before use in a phagocytosis assay, labeled erythrocytes were incubated for 30 min with fractionated rabbit anti-sheep RBC antisera (Sigma) diluted 1:10, followed by washing with PBS before addition to macrophages.

Zymosan A from Saccharomyces cerevisiae (Sigma) was fluorescently labeled using the DyLight 649 labeling kit (Thermo Scientific) or using Alexa Fluor 594-conjugated goat anti-rabbit IgG (Invitrogen). For several washes, cells were permeabilized using 0.5% Triton X-100 in PBS and mounted to slides using Prolong Gold with DAPI (Invitrogen). Images were taken at ×200 magnification using a Nikon Eclipse E800 fluorescence microscope equipped with a Spot RT Slider camera. Images were randomized and analyzed in a blinded fashion for the number of internalized sRBCs per macrophage.

For thioglycollate macrophages, noninternalized sRBCs were lysed using distilled water, followed by several washes in PBS. Cells were fixed in 1% paraformaldehyde and placed in a randomized configuration in the wells of a new 12-well plate. An inverted fluorescence microscope (Olympus IX51) was used to count the number of sRBCs per cell.

To compare the phagocytic capacity of WT and Cx43−/− macrophages, we prepared histograms showing the number of particles per cell on the horizontal axis. A relative cell number is reported on the vertical axis to normalize for unequal numbers of cells from each group. Relative cell number = (number of macrophages in each bin/total number of cells counted) × 100. At least 100 cells were counted for each experiment. For both sets of data, averages were analyzed using Student t test. No significant differences (p < 0.05) were observed in any parameter.

Phagocytosis of sRBCs

IgG-opsonized sRBCs were added to wells at a target/macrophage ratio of 100:1 (to ensure an abundance of available targets) or 10:1. During incubation, cultures were maintained at 37°C and 5% CO2. At 20-, 40-, and 60-min time points, external sRBCs were lysed by a 1-min incubation with distilled water, cultures were washed with PBS to remove remaining sRBC fragments, and macrophages in PBS + 2 mM EDTA were placed on ice for several minutes to allow release from the surface of the dish. Fetal liver-derived macrophage suspensions were filtered using 70-μm nylon mesh, transferred to round-bottom tubes (BD Falcon), and kept on ice until flow cytometric analysis. The bone marrow–derived macrophages from radiation chimeric animals were not filtered before analysis.

Phagocytosis of sRBCs by fluorescence microscopy

Fetal liver-derived macrophages or thioglycollate-elicited macrophages, from radiation chimeric animals, were allowed to adhere to 18-mm diameter glass coverslips (Fisherbrand) placed in the wells of a 12-well plate at a density of 5 × 10^5 cells/well. The following day, IgG-opsonized, fluorescently labeled sRBCs were added to each well. After 20 min of incubation, wells were washed three times with PBS and placed on ice.

For macrophages derived from fetal livers, fixation was achieved using 1% paraformaldehyde. Nonspecific secondary Ab binding to macrophage Fcγ receptors was blocked by incubation with 2.4G2 hybridoma supernatant (8). Incompletely internalized sRBCs were labeled using Alexa Fluor 594-conjugated goat anti-rabbit IgG (Invitrogen). For several washes, cells were permeabilized using 0.5% Triton X-100 in PBS and mounted to slides using Prolong Gold with DAPI (Invitrogen). Images were taken at ×200 magnification using a Nikon Eclipse E800 fluorescence microscope equipped with a Spot RT Slider camera. Images were randomized and analyzed in a blinded fashion for the number of internalized sRBCs per macrophage.
Phagocytosis of labeled Zymosan

Either DyLight 649 (DL649)-labeled or pHrodo-labeled zymosan particles were added to cultured macrophages at a target/macrophage ratio of 100:1. For each Cx43 genotype studied, two identical 24-well plates were used: one plate that was incubated at 37˚C and 5% CO2 to measure phagocytic uptake, and a second plate incubated on ice at 4˚C for the same period. The 4˚C plate was used to establish a baseline measurement of particle adherence to macrophages for comparison with actual phagocytic uptake.

After 60 min, the wells of both the 37˚C and 4˚C plates were washed three times to remove unbound/unengulfed zymosan particles. Macrophages were incubated on ice with PBS + 2 mM EDTA, lifted by pipetting, filtered, and kept on ice until flow cytometric analysis.

Phagocytosis of L. monocytogenes and Ag presentation assay

Listeria uptake and Ag presentation assays were performed as previously described (9). In brief, overnight Listeria cultures were used to inoculate bone marrow–derived macrophages from radiation chimeric mice reconstituted with fetal liver cells from WT and Cx43−/− mice are equally capable of phagocytosing opsonized sRBCs. (A) WT (black line) and Cx43−/− (gray line) macrophages were incubated for 20 min with IgG-opsonized, CFSE-labeled sRBCs and analyzed by flow cytometry (shaded black peak represents macrophages incubated with unlabeled sRBCs). (B) Percentage of cells positive for CFSE fluorescence after 20 min of incubation with opsonized sRBCs (average and SEM of eight experiments). (C) Histogram of phagocytosis by WT (black bars) and Cx43−/− (gray bars) fetal liver-derived macrophages after 20 min of incubation with sRBCs. Histograms were normalized for cell counts by dividing the number of cells in each bin by the total number of cells counted. At least 100 cells were counted for each genotype.

FIGURE 3. Bone marrow–derived macrophages from radiation chimeric mice reconstituted with fetal liver cells from WT and Cx43−/− mice are equally capable of phagocytosis of sRBCs. (A) Fluorescence histograms comparing sRBC uptake of WT (black dashed lines) and Cx43−/− (red lines) bone marrow–derived macrophages after 20-, 40- and 60-min coincubation. Macrophages were treated with particles at 10:1 (left panels) and 100:1 (right panels) particle/macrophage ratios. Gray shaded peaks represent nonfluorescent sRBCs. (B) Kinetic plot of phagocytosis by bone marrow–derived macrophages from radiation chimeric animals reconstituted with WT (black dashed lines) and Cx43−/− (red lines) fetal liver cells. Macrophages were incubated with 100:1 (closed symbols) and 10:1 (open symbols) sRBC/macrophage ratios for 20-, 40- and 60-min time points before analysis by flow cytometry (average and SEM for three experiments).
BHII broth and grown to log phase, WT or Cx43−/− fetal liver-derived macrophages were suspended at a concentration of 2×10^6 cells/ml in IMDM supplemented with 10% FBS, but without the addition of antibiotic. Macrophages were infected with midlog phase *Listeria* at a multiplicity of infection = 20 for 1 h at 37˚C, followed by washing and resuspension in IMDM containing 5 μg/ml gentamicin (Cellgro) to kill any remaining extracellular bacteria. Infected cells were incubated at 37˚C, and aliquots were harvested for analysis at 30-min intervals.

To identify *Listeria*-derived SIINFEKL presented by macrophage MHC class I molecules (surface K b-SIINFEKL), we incubated macrophages in extracellular bacteria. Infected cells were incubated at 37˚C, and aliquots in 2.4G2 supernatant, followed by staining with Alexa Flour 647 (Invitrogen)–conjugated 25-D1.16 mAb (Ab). Flow cytometry was used to identify infected cells using GFP fluorescence. In addition, the mean fluorescence intensity (MFI) of AF647 was used to quantify surface K b-SIINFEKL expression in GFP+ cells.

Flow cytometry

Flow cytometry was performed using an LSRII or LSRFortessa cytometer (Becton Dickinson). Phenotypic analysis of cultured fetal liver-derived macrophages was achieved by preincubation with 2.4G2 supernatant followed by staining with anti–CD11b-APC/Cy7 and anti–F4/80-PE Abs (BioLegend). Analysis of thioglycollate-elicited and bone marrow–derived macrophages was performed using anti–CD45.1-BrilliantViolet605, anti–CD11b-APC/Cy7, and anti–F4/80-Brilliant Violet421 (BioLegend). For macrophage phenotyping and analysis of phagocytic activity, at least 1 × 10^6 live cell events were recorded. Analysis was performed using FlowJo software (Tree Star). Data were analyzed using Student t test, and no significant differences ($p < 0.05$) were found.

Results

Derivation of Cx43-deficient macrophages from cultured fetal liver and bone marrow cells

Cx43-deficient (Cx43−/−) mice die soon after birth, making the generation of macrophages from bone marrow impractical (11). Therefore, we used several approaches to obtain WT and Cx43−/− macrophages: 1) derivation from hematopoietic cells harvested from fetal livers, 2) the harvest of thioglycollate-elicited peritoneal macrophages from radiation chimeric mice consisting of irradiated WT animals reconstituted with WT or Cx43−/− fetal liver cells, and 3) production of bone marrow–derived macrophages from radiation chimeric animals.

After 7–10 d in culture in the presence of M-CSF–containing media, fetal liver-derived cells from WT and Cx43−/− fetuses were found to be predominantly macrophages, as demonstrated by their expression of the macrophage markers CD11b and F4/80 (Fig. 1A). Similarly, macrophages prepared in an identical manner from bone marrow cells collected from radiation chimeric mice were overwhelmingly both donor derived, as identified by the marker CD45.1, and expressed both CD11b and F4/80 (Fig. 1B). Importantly, no discrepancy in the proportion of positively stained cells was observed between WT or Cx43−/− macrophages.

Cx43-deficient macrophages phagocyte sRBCs

We next sought to characterize the phagocytic capacity of WT and Cx43−/− macrophages. First, the Fcγ receptor–mediated phagocytic capacity of macrophages was assayed using IgG-opsonized sRBCs as a target. WT and Cx43−/− fetal liver-derived macrophages were equally capable of sRBC uptake (Fig. 2A). Importantly, there was no difference in fluorescence intensity between these two populations (MFI = 54017 ± 2122 WT versus 54899 ± 2018 Cx43−/−), as is evidenced by the overlapping fluorescence histograms. The vast majority (94.6% WT versus 95.6% Cx43−/−) of cultured macrophages from both genotypes were positive for uptake of sRBCs after 20 min of incubation (Fig. 2B), increasing to nearly 100% of cells after 60 min (data not shown). As evidence that this uptake was FcR dependent, nonopsonized sRBCs were taken up at a rate ∼20-fold less (<5% of cells at 20 min) than that of opsonized targets.

The phagocytic capacity of WT and Cx43−/− fetal liver-derived macrophages after 20 min of incubation with sRBCs was also quantified microscopically. The resulting histograms demonstrate the phagocytic capabilities of WT and Cx43−/− macrophages were comparable (WT versus Cx43−/−: 5.5 ± 0.3 versus 6.1 ± 0.2 particles/cell; Fig. 2C). A similar assay was also performed on thioglycollate-elicited macrophages from radiation chimeric animals and again, no major difference in phagocytic ability was observed (WT versus Cx43−/−: 4.3 ± 0.4 versus 3.6 ± 0.3, on average; Supplemental Fig. 1).

Bone marrow–derived macrophages were produced from radiation chimeric mice reconstituted with WT or Cx43−/− fetal liver cells. These cells were >99% donor derived. Both WT and Cx43−/− macrophages were exposed to fluorescently labeled opsonized sRBCs and were phagocytic. This phagocytosis was dependent on time and target concentration. Both populations exhibited identical mean fluorescence intensities at 20-, 40-, and 60-min time points when treated with a specific amount of sRBCs. This identity was observed at a particle/macrophage ratio of 100:1, as well as 10:1 (Fig. 3).

Cx43-deficient macrophages can phagocytose zymosan and the resultant phagosomes acidify normally

We next sought to measure the ability of Cx43−/− fetal liver-derived macrophages to phagocyte zymosan, another commonly used target for in vitro phagocytosis. In contrast with targets opsonized with IgG, uptake of zymosan by macrophages is mediated not by FcRs, but by several different receptors, including...
Analysis of Kb-SIINFEKL was limited to live GFP+ cells only. One representative experiment of three is shown. Labeled zymosan after incubation at 4˚C (left panel) depict SEM.

Panel A shows the percentage of cells positive for labeled zymosan after incubation at 4˚C (left panel) or at 37˚C (right panel); shaded black peak represents macrophages not treated with zymosan. Panel B shows the Mann-Whitney U test of pHrodo fluorescence at 4˚C (left panel) or at 37˚C (right panel); averages from three experiments, error bars depict SEM.

Panel C shows the MFI of pHrodo signal in macrophages incubated at 4˚C (left panel) or at 37˚C (right panel); averages from three experiments, error bars depict SEM.

Vertical axis: pHrodo fluorescence
Horizontal axis: % of Max

FIGURE 5. Fetal liver-derived macrophages from WT and Cx43−/− mice can phagocytose zymosan and are capable of phagosome acidification. (A) WT (black line) and Cx43−/− (gray line) macrophages were incubated with zymosan particles labeled with pHrodo for 60 min at 4˚C (left panel) or at 37˚C (right panel); shaded black peak represents macrophages not treated with zymosan. (B) Percentage of cells positive for labeled zymosan after incubation at 4˚C (left panel) or at 37˚C (right panel). (C) MFI of pHrodo signal in macrophages incubated at 4˚C (left panel) or at 37˚C (right panel); averages from three experiments, error bars depict SEM.

Cx43-deficient macrophages are able to phagocytose Listeria and present Listeria-derived Ags on MHC class I molecules

We next measured the ability of Cx43−/− macrophages to phagocytose a physiologically relevant target: pathogenic bacteria. We chose the Gram-positive facultative intracellular bacterium *Listeria* for these assays. This is an ideal target because immunity to *Listeria* is dependent on phagocytosis and subsequent killing by activated macrophages (14). For these studies, we used a recombinant *Listeria* strain (Lm-PASFLAG) that expresses a nonsecreted form of GFP as well as a secreted protein that includes the model MHC class I binding peptide SIINFEKL. The nonsecreted GFP was used to identify macrophages that have internalized *Listeria*, whereas the secreted SIINFEKL-containing recombinant protein was used to measure the ability of macrophages to process and present foreign Ags (7). Notably, internalization of *Listeria* in this model system

FIGURE 6. Cx43-deficient macrophages are capable of phagocytosis of *L. monocytogenes* and presentation of a foreign Ag. (A) Flow cytometry histogram of gated live cells demonstrating engulfment of GFP+ *Listeria* at 90 min postinfection; black line represents *Listeria* uptake by WT macrophages and gray line represents uptake by Cx43−/− cells. (B) Percentage of WT and Cx43−/− macrophages positive for GFP fluorescence at 90 min postinfection (graph representative of three independent experiments). (C) Kinetics of surface Kb-SIINFEKL production in WT (circle) and Cx43−/− (square). Analysis of Kb-SIINFEKL was limited to live GFP+ cells only. One representative experiment of three is shown.
requires phagocytosis, because mice lack the receptors required for nonphagocytic uptake of these bacteria (15).

WT and Cx43\(^{-/-}\) macrophages were infected with *Listeria* and analyzed by flow cytometry. No differences were observed in either the percentage of cells positive for *Listeria* (63.1% in WT versus 63.3% in Cx43\(^{-/-}\); Fig. 6B) or in the number of *Listeria* ingested, as displayed in the histogram of GFP fluorescence (Fig. 6A). There was also no difference in the kinetics of surface expression of K\(^{-}\)-SINFEKL (Fig. 6C) between WT and Cx43\(^{-/-}\) cells. This suggests that there are no major differences in the abilities of WT and Cx43\(^{-/-}\) macrophages to ingest *Listeria* and process *Listeria*-derived proteins for presentation on MHC class I molecules.

Discussion

In contrast with a previous report (5), we provide evidence in this article that modulation of Cx43 levels does not have a major impact on macrophage phagocytosis of opsonized SRBC, zymosan particles, or *Listeria*. The discrepancies between the results reported by Anand et al. (5) and this study may lie in the nature of the model systems studied.

Because animals unable to express Cx43 die soon after birth, the direct harvest of knockout macrophages or the culture of bone marrow–derived macrophages is essentially impossible (11). To circumvent this issue, Anand et al. (5) harvested mouse fetal livers as a source of macrophages. In their protocol, macrophages were selected by adherence to coverslips, based on the method of Morris et al. (16). These resident fetal cells were identified as mostly (>95%) macrophages based on expression of CD45. Although it was used as a macrophage marker in the study by Anand et al. (5), it is widely accepted that CD45, also known as leukocyte common Ag, is present on many cell types derived from hematopoietic cells.

That the adherent population of fetal liver cells contains such a high proportion of macrophages is at odds with Morris et al. (16), who found that the resident fetal liver population was composed of only 50% macrophages, based on the more specific marker F4/80. Our own analysis of this adherent, resident cell population from fetal liver found that only a limited number of the cells could be characterized as macrophages, making analysis of phagocytosis by flow cytometry impossible. Therefore, it is possible that the results from Anand et al. (5) can be explained by contamination of cultures by nonmacrophage constituents of fetal livers. It is also not clear whether there may be a difference in the maturation of resident macrophages within the fetal liver of a Cx43\(^{-/-}\) mouse.

In the model system used in this study, pluripotent cells derived from fetal livers or bone marrow harvested from radiation chimeric mice were differentiated to the monocyte/macrophage lineage by the use of radiation chimeric animals (4). Recipients of Cx43\(^{-/-}\) fetal liver cells appeared healthy overall. Peritoneal macrophages elicited by injection of thioglycollate broth into animals reconstituted with WT and Cx43\(^{-/-}\) donors were >98% donor derived and had similar proportions of CD11b\(^+\) cells. Furthermore, peritoneal macrophages from WT and Cx43\(^{-/-}\) donors were equally capable of phagocytosis (Supplemental Fig. 1). In previous experiments with Cx43\(^{-/-}\) chimeric mice, animals have survived for prolonged periods, in some cases, >6 mo, without morbidity or mortality; a feat that would not be expected of animals that have been immunocompromised by reconstitution with poorly phagocytic macrophages. That result and the data presented in this article clearly demonstrate that there is no primary role for Cx43 in macrophage phagocytosis and phagosome maturation.

Acknowledgments

We thank Wanda Coombs for critical reading of this manuscript.

Disclosures

The authors have no financial conflicts of interest.

References

