Cutting Edge: NADPH Oxidase Modulates MHC Class II Antigen Presentation by B Cells

Victoria L. Crotzer, Juan D. Matute, Andrés A. Arias, Heng Zhao, Lawrence A. Quilliam, Mary C. Dinauer and Janice S. Blum

J Immunol 2012; 189:3800-3804; Prepublished online 14 September 2012;
doi: 10.4049/jimmunol.1103080
http://www.jimmunol.org/content/189/8/3800

Supplementary Material
http://www.jimmunol.org/content/suppl/2012/09/14/jimmunol.1103080.DC1

Why *The JI*?

- **Rapid Reviews! 30 days** from submission to initial decision
- **No Triage!** Every submission reviewed by practicing scientists
- **Speedy Publication!** 4 weeks from acceptance to publication

*average

References
This article cites 29 articles, 12 of which you can access for free at:
http://www.jimmunol.org/content/189/8/3800.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Cutting Edge: NADPH Oxidase Modulates MHC Class II Antigen Presentation by B Cells

Victoria L. Crotzer,* Juan D. Matute,†,1 Andrés A. Arias,†,2 Heng Zhao,* Lawrence A. Quilliam,‡ Mary C. Dinauer,*†,3 and Janice S. Blum*†

Phagocyte NADPH oxidase plays a critical role in pathogen clearance via reactive oxygen species (ROS) production. Defects in oxidase function result in chronic granulomatous disease with hallmark recurrent microbial infections and inflammation. The oxidase’s role in the adaptive immune response is not well understood. Class II presentation of cytoplasmic and exogenous Ag to CD4+ T cells was impaired in human B cells with reduced oxidase p40phox subunit expression. Naturally arising mutations, which compromise p40phox function in a chronic granulomatous disease patient, also perturbed class II Ag presentation and intracellular ROS production. Reconstitution of patient B cells with a wild-type, but not a mutant, p40phox allele restored exogenous Ag presentation and intracellular ROS generation. Remarkably, class II presentation of epitopes from membrane Ag was robust in p40phox−/− B cells. These studies reveal a role for NADPH oxidase and p40phox in skewing epitope selection and T cell recognition of self Ag. The Journal of Immunology, 2012, 189: 3800–3804.

The phagocyte NADPH oxidase plays a critical role in microbial killing by catalyzing electron transfer from NADPH to molecular oxygen, giving rise to superoxide and other forms of reactive oxygen species (ROS) (1). This oxidase contains several phox subunits, including gp91phox and p22phox, which comprise flavocytochrome b558 as well as cytoplasmic p40phox, p47phox, and p67phox. The binding of ligands to phagocyte receptors stimulates cytoplasmic subunit translocation to membrane-bound flavocytochrome b558, facilitating superoxide production (1). Phox subunit mutations are associated with chronic granulomatous disease (CGD), characterized by the absence of or marked reduction in ROS production, recurrent pathogenic infections, and granulomatous inflammation (2, 3).

Whereas the microbial role of phagocyte NADPH oxidase during the innate immune response to pathogenic infections is established (2), its function in APC/T cell interactions is less well understood. In gp91phox−/−-deficient dendritic cells, but not macrophages, NADPH oxidase temps phagosome acidification, preserving internalized Ags for efficient MHC class I-mediated cross-presentation to CD8+ T cells (4, 5). In contrast, CD4+ T cell activation was enhanced in response to murine macrophages with p47phox mutations (6). Thus, mutation of distinct oxidase subunits may differentially affect cellular immune responses.

Evidence is conflicting regarding a direct role for NADPH oxidase in regulating MHC class II (MHC II) Ag presentation. Presentation of exogenous OVA but not tetanus toxoid Ag was altered in APCs from CGD patients (7, 8). Neither study identified the defective oxidase subunits in the CGD patient-derived APCs. ROS produced by NADPH oxidase can regulate autophagy in phagocytes (9), and oxidase subunits are detected in endosomes and phagosomes (10). Presentation of exogenous Ag via MHC II requires Ag transit and proteolysis in endosomes and lysosomes to yield peptide ligands (11). Cytoplasmic or nuclear Ag can also access MHC II via several autophagy pathways (12). MHC II αβ complexes are directed via the invariant chain (Ii) to endosomes where proteases fragment Ii (13). HLA-DM, whose function is regulated by HLA-DO, facilitates the removal of these fragments and antigenic peptide capture by MHC II. The resulting peptide/MHC II complexes then traffic to the cell surface for immune surveillance by CD4+ T cells.

The p40phox subunit has been associated with Crohn’s disease and rheumatoid arthritis in genome-wide association studies.

*Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202; †Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202; ‡Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202.

1Current address: Boston Children’s Hospital and Harvard Medical School, Boston, MA.

2Current address: Grupo de Inmunodeficiencias Primarias y Grupo de Inmunomodulación, Facultad de Medicina y Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia.

3Current address: Departments of Pediatrics and Pathology and Immunology, Washington University School of Medicine, St. Louis, MO.

Received for publication October 25, 2011. Accepted for publication August 20, 2012.

This work was supported by National Institutes of Health Grants R01 AI079065, R01 AI056097 (to J.S.B.), and R01 HL45635 (to M.C.D.), as well as by grants from the Indiana Clinical and Translational Sciences Institute and the Center of Excellence in Molecular Hematology at Indiana University (NIDDK P30 DK099948), the Children’s Discovery Institute at Washington University and St. Louis Children’s Hospital, and the American Heart Association (to J.D.M.).

Address correspondence and reprint requests to Dr. Janice S. Blum, Indiana University School of Medicine, 635 Barnhill Drive, MS 420, Indianapolis, IN 46202. E-mail address: jblum@iupui.edu

The online version of this article contains supplemental material.

Abbreviations used in this article: B-LCL, B lymphoblastoid cell line; CGD, chronic granulomatous disease; GAD, glutamate decarboxylase; HLA-DO, human B2-microglobulin; HSA, human serum albumin; Ii, invariant chain; MHC II, MHC class II; PI3P, phosphatidylinositol 3-phosphate; ROS, reactive oxygen species; shRNA, short hairpin RNA; WT, wild-type.

Copyright © 2012 by The American Association of Immunologists, Inc. 0022-1767/12$16.00
studies (14–16), but its role in Ag presentation has not been investigated. In this study, we examine how loss of p40_{phox} in human B cells affects MHC II Ag presentation and oxidase function. In the absence of functional p40_{phox}, human B cells displayed a reduced capacity for cytoplasmic Ag presentation. Perturbations in p40_{phox} also disrupted MHC II exogenous Ag presentation, yet presentation of membrane autoantigens was efficient. Disruption in p40_{phox} compromised intracellular but not extracellular ROS production by B cells. These results suggest roles for NADPH oxidase and its regulatory subunit p40_{phox} in skewing epitope selection by MHC II.

Materials and Methods

Cell lines

Human B lymphoblastoid cell lines (B-LCLs) and T cells have been described (17, 18). Lentiviral short hairpin RNA (shRNA) targeting human p40_{phox} (19) or β₂-microglobulin (hβ_{2m}) transcripts (Sigma-Aldrich) were used to transduce B-LCLs to generate p40_{phox}- or hβ_{2m}-deficient cells. Institutional approval was obtained for human blood collection. A B-LCL, AR40, from a p40_{phox}-deficient patient (3) (DR_{B1*0101}, DR_{B1*0701}), was generated and transduced to express DR_{B1*0401} (17). Retroviruses encoding p40_{phox} wild-type (WT) or p40_{phox} R105Q were used to transduce AR40.DR4 (3). Frev and AR40 B-LCLs synthesize Igα-chains but not Igκ-chains.

Western blotting

Cell lysates were analyzed by immunoblotting (10, 17) using Abs for p22_{phox} (10), p40_{phox} (Upstate Biotechnology), p47_{phox}, p67_{phox} (BD Biosciences, San Jose, CA), gp91_{phox} (10), and glutamate decarboxylase (GAD; Sigma-Aldrich). The mAb DA6.147 detects HLA-DR_b (10), and glutamate decarboxylase (GAD; Sigma-Aldrich), and gp91_{phox} (10), and glutamate decarboxylase (GAD; Sigma-Aldrich), and gp91_{phox} (10). The mAb PIN1.1 detects li (21). Membranes were stripped and reblotted for β-actin (Sigma-Aldrich) or GAPDH (Chemicon) as controls for sample loading. Quantity One multidimensional analysis software (Bio-Rad) was used to quantify protein expression.

Ag presentation

APCs were incubated with or without 10–20 μM human serum albumin (HSA), human IgG Ag (Sigma-Aldrich), or peptides HSA_{C4a-76}, k_a188–205, and kH₁₄₅–159 (Quality Controlled Biochemicals) for 6 h at 37°C. APCs were washed and incubated with epitope-specific T cells for 24 h at 37°C prior to analysis for T cell activation (17). Data shown are the averages of triplicate samples for each assay, and the error bars indicate the mean T cell activation (±SD). Statistical comparisons between two groups were performed using an unpaired t test, whereas comparison among three groups was performed using a one-way ANOVA. In each case, p ≤ 0.01 was considered to be significant. Adjustment for multiple comparisons was made using the Bonferroni correction.

Flow cytometry and ROS production

Cells were fixed, permeabilized, and incubated with the mAb MaP.DM1 or HLA-DO (BD Biosciences) (17). To detect intracellular ROS, viable cells were incubated with 5 μM 5-(and-6)-chloromethyl-2,7’-dichlorodihydrofluorescein diacetate, acetyl ester (Invitrogen) and stimulated with or without 10 μg/ml PMA (Sigma-Aldrich) for 30 min at 37°C (22). Cellular ROS production was sensitive to the oxidase inhibitor diphenyleneiodonium.

Results and Discussion

Diminished cytoplasmic Ag presentation in B-LCLs with reduced p40_{phox} expression

Autophagy promotes cytoplasmic Ag presentation by MHC II (12, 23). To test whether p40_{phox} plays a role in cytoplasmic GAD Ag presentation, p40_{phox} expression was disrupted in the B cell line PriessGAD using shRNA. Expression of p40_{phox} was reduced ~80% in these cells compared with parental PriessGAD, whereas GAD Ag expression was unperturbed (Supplemental Fig. 1A, 1B). The ability of p40_{phox}-deficient B-LCLs to present GAD epitopes was substantially reduced (Fig. 1A). PriessGAD cells transduced with control hβ_{2m} shRNA (Supplemental Fig. 1C) stimulated GAD-specific T cells comparably with parental PriessGAD (Fig. 1A). Levels of LC3-II, a marker of autophagosome formation (24), were similar in each B cell line tested, suggesting little change in autophagy with disruption of p40_{phox} (Supplemental Fig. 1D). Surface expression of HLA-DR4 was equivalent for PriessGAD and shRNA-treated cells (Supplemental Fig. 1E, 1F). Notably, PriessGAD cells with reduced p40_{phox} levels stimulated T cells specific for endogenous Ag Igκ more efficiently than did the parental PriessGAD cells (Fig. 1B). These results suggest that reduced p40_{phox} expression in B-LCLs may compromise cytoplasmic Ag presentation while favoring epitope presentation from endogenous Igκ.

Reducing B-LCL p40_{phox} expression disrupted MHC II exogenous Ag presentation

To evaluate the role of p40_{phox} in exogenous Ag presentation, p40_{phox} expression was diminished ~80% by treating Frev B-LCL with a p40_{phox}-specific shRNA (Supplemental Fig. 1G). T cell responses to the exogenous Ag HSA and Frev cells with diminished p40_{phox} levels were significantly reduced compared with Frev cells transduced with hβ_{2m} shRNA (Fig. 2A, Sup-

![Figure 2](http://www.jimmunol.org/Download.png)
Supplemental Fig. 1I, 1J). Only minor differences were observed in exogenous peptide presentation by Frev cells with diminished p40phox expression compared with cells treated with hβ2m shRNA (Fig. 2A–C). These results suggest that a reduction in p40phox expression in B-LCLs may perturb multiple routes for Ag presentation by MHC II.

Analysis of the MHC II pathway in B-LCLs with mutations in p40phox

A new genetic subgroup of CGD with mutations in the gene NCF4 encoding p40phox was described in a patient and linked to functional defects in the neutrophil NADPH oxidase (3). In this patient, one NCF4 allele harbors a frame-shift mutation with a premature stop codon, whereas the other allele encodes a point mutation (R105Q) resulting in a nonfunctional form of p40phox. A B-LCL from this patient (AR40) expressing HLA-DR4 was further transduced with either WT p40phox (AR40.DR4.p40phox WT) or the R105Q mutant allele (AR40.DR4.p40phox R105Q) to evaluate the effects of p40phox mutation and reconstitution. Immunoblots demonstrated reduced p40phox expression in AR40.DR4 cells, consistent with the frame-shifted NCF4 allele as seen in patient neutrophils (3), and higher levels of WT or mutant p40phox in the reconstituted cells (Fig. 3A). Levels of gp91phox and p67phox were comparably reduced in the reconstituted cells relative to the patient line, likely due to clonal variation. Extracellular ROS production upon PMA stimulation was similar in the patient and WT p40phox-reconstituted B cells (Supplemental Fig. 2A) as observed in p40phox-deficient neutrophils (3). However, basal and PMA-inducible intracellular ROS production were reduced in the AR40.DR4 cells compared with cells expressing WT p40phox (Fig. 3B), thus suggesting a defect in the ability of the oxidase in the patient B cells to produce intracellular ROS similar to p40phox-deficient neutrophils (3).

Whether the absence of functional p40phox in AR40.DR4 B-LCLs influenced the expression of molecules in the MHC II Ag presentation pathway was tested. A slight reduction in the levels of total HLA-DRα, HLA-DRβ, and Ii was observed in AR40.DR4.p40phox WT and AR40.DR4.p40phox R105Q compared with AR40.DR4 (Fig. 3C). Maturation of Ii was not impaired in AR40.DR4 as detected by the presence of mature glycosylated forms of Ii (Fig. 3C, asterisk) in the p40phox-deficient and reconstituted B-LCLs. Changes in HLA-DM and HLA-DO can alter Ag presentation without perturbing T cell responses to synthetic peptides (25–27). AR40.DR4, AR40.DR4.p40phox WT, and AR40.DR4.p40phox R105Q expressed equivalent levels of HLA-DM and HLA-DO (Fig. 3D). Taken together, these results suggest that the absence of functional p40phox in AR40.DR4 did not substantially alter the levels of HLA-DR, HLA-DM, HLA-DO, and Ii.

Reconstitution of p40phox-deficient B-LCLs partially restored MHC II exogenous Ag presentation

Naturally occurring mutations in p40phox impacted the ability of B-LCLs to efficiently present Ag to MHC II-restricted T cells (Fig. 4). Reconstitution of the patient-derived AR40.
DR4 cells with WT p40_{box}, but not the mutant p40_{box}R105Q allele, enhanced exogenous HSA Ag presentation (Fig. 4A). AR40.DR4 cells were unable to present either Igκ or κI epitopes to T cells (Fig. 4B, 4C). Reconstitution of AR40.DR4 cells with p40_{box} WT restored κI epitope presentation to a greater extent than with p40_{box}R105Q expression (Fig. 4B). Only reconstitution of AR40.DR4 with p40_{box} WT facilitated presentation of the κI epitope from exogenous human IgG (Fig. 4C). Although AR40.DR4 cells were able to present exogenously added synthetic peptides to T cells (Fig. 4), the level of κI peptide presentation was reduced compared with either AR40.DR4.p40_{box} WT or AR40.DR4.p40_{box}R105Q (Fig. 4B). Surface expression of HLA-DR4 was equivalent in each cell line (Supplemental Fig. 2B). Exogenous tetanus toxoid Ag presentation was reduced not only in AR40.DR4 but in B cells deficient in another oxidase subunit, gp91^{phox} (Supplemental Fig. 2C), consistent with perturbations in oxidase function modulating MHC II Ag presentation. Reconstitution of AR40.DR4 with WT p40_{box} restored tetanus presentation (Supplemental Fig. 2C). Addition of an extracellular source of ROS failed to reconstitute tetanus presentation by B cells deficient in p40_{box} or gp91^{phox} (Supplemental Fig. 2D). The ability of AR40.DR4 to endocytose a model exogenous Ag, FITC-albumin, was equivalent for p40_{box}-deficient or reconstituted B-LCLs (Supplemental Fig. 2E). In data not shown, we observed a similar persistence of the FITC-albumin at longer time points (6–18 h) in each cell line. These results suggest that p40_{box} deficiency does not substantially affect the internalization or initial degradation of a model exogenous protein.

The presence of assembled HLA-DRβ dimers on the surface of AR40.DR4 suggested that these MHC II may acquire peptides from a source other than exogenous Ag. The ability of these cells to present antigenic peptides derived from an endogenous transmembrane protein was evaluated using an HLA-DR4–restricted T cell recognizing an epitope from MHC class I HLA-A. AR40.DR4 cells activated the HLA-A–specific T cells whereas reconstitution with either the p40_{box} WT or R105Q mutant allele did not enhance this Ag presentation (Fig. 4D). Total MHC class I expression in each of the AR40.DR4-derived cells was equivalent (data not shown). These results suggest that although MHC II–restricted exogenous Ag presentation was impaired in the p40_{box}-deficient cells, the presentation of an endogenous transmembrane protein in the context of MHC II could be readily detected.

In conclusion, the microbicidal role of phagocyte NADPH oxidase in neutrophils and macrophages during the innate immune response to pathogenic infections is well established, but the role of the oxidase in APCs during the adaptive immune response is less clear. In this study, functional p40_{box} was shown to be required for the efficient presentation of cytoplasmic GAD and multiple exogenous Ags by MHC II in B cells. Additionally, studies suggest that functional gp91^{phox} is important for MHC II presentation of exogenous Ags. In phagocytes, cytoplasmic p40_{box} binds to membrane phosphatidylinositol 3-phosphate (PI3P) and promotes assembly of the NADPH oxidase complex on phagosomes (19). Association of p40_{box} and the oxidase with PI3P found in endosomal/lysosomal membranes (3) could influence MHC II Ag processing and presentation within these organelles. The cytosolic localization of the mutant p40_{box}R105Q and lack of PI3P binding (3) may explain its inability to completely restore exogenous Ag presentation in p40_{box}-deficient B cells. In B cells, the oxidase may regulate BCR signaling (28) and, as revealed in this study, MHC II Ag presentation. Constitutive and inducible intracellular ROS production was higher in B cells expressing functional p40_{box}, supporting a direct role for p40_{box} in regulating B cell intracellular ROS generation. Interestingly, p40_{box}-deficient B cells were capable of presenting epitopes derived from endogenous membrane-resident proteins, suggesting that p40_{box} may modulate the peptide repertoire displayed by MHC II on B cells and, subsequently, CD4⁺ T cell activation. Alterations in the function of the oxidase in B cells may therefore contribute to genetic predisposition to autoimmunity in some CGD patients. Increased incidences of rheumatoid arthritis, inflammatory bowel disease, as well as discoid lupus have been associated with oxidase subunit mutations and CGD (29).

Disclosures

The authors have no financial conflicts of interest.

References

Supplemental Data

FIGURE 1. Characterization of wild-type B-LCL transduced with either p40\(^{phox}\) or h\(\beta\)2M shRNA lentivirus.

A and *B*, Cell lysates from PriessGAD or PriessGAD + p40\(^{phox}\) shRNA cells were immunoblotted to detect p40\(^{phox}\) and \(\beta\)-actin (*A*) or GAD and GAPDH (*B*). Data in *A* and *B* representative of at least 3 independent experiments. In data not shown, a similar loss of p40\(^{phox}\) expression was observed in a second clone of PriessGAD + p40\(^{phox}\) shRNA cells, and these cells also displayed diminished GAD-specific T cell activation as in Fig. 1*A*.

C, PriessGAD or PriessGAD + h\(\beta\)2M shRNA cells were fixed, permeabilized, and incubated with a mAb specific for h\(\beta\)2M (BioLegend) followed by incubation with the PE-conjugated F(ab’)_2 fragment of rabbit anti-mouse IgG (Dako) to detect total h\(\beta\)2M.

D, PriessGAD, PriessGAD + h\(\beta\)2M shRNA, or PriessGAD + p40\(^{phox}\) shRNA cells were left untreated (UT) or treated with 20 \(\mu\)M chloroquine (Sigma) at 37°C overnight to inhibit acidic proteases. Samples were lysed and immunoblotted to detect LC3-II expression using an anti-LC3 Ab (MBL) or GAPDH. Data representative of 2 independent experiments.

E and *F*, PriessGAD, PriessGAD + p40\(^{phox}\) shRNA, and PriessGAD + h\(\beta\)2M shRNA cells were fixed and incubated with the HLA-DR4-specific Ab 3.5.9-13F10 followed by incubation with the Cy2-conjugated F(ab’)_2 fragment of donkey anti-rat IgG (Jackson Laboratories).

G, Cell lysates from Frev or Frev + p40\(^{phox}\) shRNA were immunoblotted to detect p40\(^{phox}\) and GAPDH.

H, Frev or Frev + h\(\beta\)2M shRNA cells were fixed, permeabilized, and stained as above for total h\(\beta\)2M.

I and *J*, Frev, Frev + p40\(^{phox}\) shRNA, and Frev + h\(\beta\)2M shRNA cells were fixed and stained for surface HLA-DR4 as above in *E* and *F*. Data in *D*-*J* representative of at least 3 independent experiments.
FIGURE 2. Extracellular ROS production, Ag uptake and presentation by B cells with NADPH-oxidase deficiencies. A, Extracellular ROS production was monitored using PMA stimulated B-LCL from a healthy individual (normal), a patient with a deficiency in gp91phox (XR-CGD), AR40.DR4, and AR40.DR4.p40phox WT. B-LCL were incubated with 75 μM cytochrome c (Sigma) + 100 ng/mL PMA (Sigma) at 37°C to detect superoxide-dependent cytochrome c reduction at 550 nm. In data not shown, superoxide production was undetectable in cells left untreated or stimulated with PMA in the presence of superoxide dismutase (Sigma). B, Wild-type Frev B cells and the p40phox-deficient and reconstituted B cells were fixed and stained for surface HLA-DR4 as above in Fig. 1. C, AR40.DR4, AR40.DR4.p40phox WT, and B-LCL from two CGD patients deficient in gp91phox transduced to express DRβ1*0401 (gp91phox-/-.DR4 #1 and #2) were incubated +/- 0.1 μM tetanus toxoid Ag (Wyeth-Ayerst Laboratories) for 18 hr at 37°C and then cultured with tetanus toxoid-specific T cells to measure MHCII presentation. The gp91phox-deficient cells were a gift from Dr. William Nauseef (University of Iowa). In data not shown, Western blot analysis confirmed the absence of gp91phox expression in each gp91phox-deficient cell line, and extracellular ROS production as measured by cytochrome c reduction was also impaired in these B cells. D, Extracellular ROS production failed to restore Ag presentation in oxidase-deficient B-LCL. Wild-type Frev, p40phox-deficient AR40.DR4 or gp91phox-deficient B cell lines gp91phox-/-.DR4 #1 and #2 were left untreated (UT) or treated with 0.4 units/mL glucose oxidase in RPMI 1640 + 10% FCS + 0.5% glucose (30) and tetanus toxoid as in panel C. T cell activation was reduced upon incubation of wild-type B-LCL with glucose oxidase and several Ag (data
not shown). Similar results were obtained at a range of glucose oxidase concentrations.

E, p40^{pox}-deficient and reconstituted B cells were incubated with FITC-albumin for 0, 60, or 120 min at 37°C and fixed prior to measuring internalization by flow cytometry. Data in A-E representative of 3 independent experiments. (**p\leq0.01, ***p\leq0.001, ****p\leq0.0001)