T Cell Costimulation by TNFR Superfamily (TNFRSF)4 and TNFRSF25 in the Context of Vaccination

Taylor H. Schreiber, Dietlinde Wolf, Maria Bodero, Louis Gonzalez and Eckhard R. Podack

J Immunol 2012; 189:3311-3318; Prepublished online 5 September 2012;
doi: 10.4049/jimmunol.1200597
http://www.jimmunol.org/content/189/7/3311

Supplementary Material
http://www.jimmunol.org/content/suppl/2012/09/05/jimmunol.1200597.DC1

References
This article cites 26 articles, 11 of which you can access for free at:
http://www.jimmunol.org/content/189/7/3311.full#ref-list-1

Subscription
Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
T cell-mediated immune responses are initiated by presentation of cognate Ag (signal 1) in the context of appropriate costimulatory molecules (signal 2), typically of the B7 family. Additional signals delivered via soluble cytokines or TNF superfamily (TNFSF) ligands may also influence the duration, magnitude, and quality of T cell-mediated immune responses, either in addition to or instead of traditional B7 family members. The diversity of TNFSF members suggests that this family evolved to fine-tune adaptive immune responses by modulating specific phases of immunity for distinct cell types. Owing to the activity of TNFSF members as Ag-dependent T cell costimulators, therapeutic stimulation of several receptors, including TNFR superfamily (TNFRSF)4 (CD134, OX40) and TNFRSF25, is a potential method to augment the activity of vaccines. TNFRSF4 and TNFRSF25 are neighbors on chromosome 4 in mice and are proposed to signal upon ligation to their homotrimerized ligands, TNFSF4 (OX40L) and TNFSF15 (TL1A), respectively (1, 2). Each has a highly similar pattern of expression that is specific to lymphocytes, and in particular on activated CD4+ and CD8+ T cells (3). Signaling by TNFRSF4 or TNFRSF25 contributes to activation of CD4+ and CD8+ effector T cells in various murine autoimmune and tumor models, and selective blockade and stimulation of these receptors are under investigation for the inhibition of autoimmunity or stimulation of antitumor immunity, respectively (3–5). Additionally, both receptors are also constitutively expressed on Tregs and potent costimulators of CD4+ Tconv proliferation, but they only weakly costimulated Treg proliferation and IgG2a production, whereas TNFRSF25 agonists were strong costimulators of Treg proliferation, producers of IgG1, IgG2a, and IgG2b, and weak costimulators of CD4+ Tconv proliferation. Interestingly, Ag-specific cellular and humoral responses were uncoupled upon secondary immunization, which was dramatically affected by the presence of TNFRSF4 or TNFRSF25 costimulation. These studies highlight the overlapping but nonredundant activities of TNFRSF4 and TNFRSF25 in T cell immunity, which may guide the application of receptor agonistic agents as vaccine adjuvants for infectious disease and tumor immunity. The Journal of Immunology, 2012, 189: 3311–3318.

Taylor H. Schreiber, Dietlinde Wolf, Maria Bodero, Louis Gonzalez, and Eckhard R. Podack

TNFR superfamily (TNFRSF)4 (OX40, CD134) and TNFRSF25 are costimulatory receptors that influence CD4+ and CD8+ T cell responses to cognate Ag. Independently, these receptors have been described to stimulate overlapping functions, including enhanced proliferation and activation for both regulatory T cells (CD4+Foxp3+; Tregs) and conventional T cells (CD4+Foxp3− or CD8+Foxp3−; Tconv). To determine the relative functionality of TNFRSF4 and TNFRSF25 in T cell immunity, the activity of TNFRSF4 and TNFRSF25 agonistic Abs was compared in the context of both traditional protein/adjuvant (OVA/aluminum hydroxide) and CD8+–specific heat shock protein-based (gp96-Ig) vaccine approaches. These studies demonstrate that both TNFRSF4 and TNFRSF25 independently and additively costimulate vaccine-induced CD8+ T cell proliferation following both primary and secondary Ag challenge. In contrast, the activities of TNFRSF4 and TNFRSF25 were observed to be divergent in the costimulation of CD4+ T cell immunity. TNFRSF4 agonists were potent costimulators of OVA/aluminum hydroxide-induced CD4+ Tconv proliferation, but they only weakly costimulated Treg proliferation and IgG2a production, whereas TNFRSF25 agonists were strong costimulators of Treg proliferation, producers of IgG1, IgG2a, and IgG2b, and weak costimulators of CD4+ Tconv proliferation. These studies demonstrate that TNFRSF4 and TNFRSF25 have overlapping and additive activity as costimulators of CD8+ T cell proliferation but diverge in stimulating proliferation of Tregs and CD4+Foxp3+ conventional T cells upon both primary and secondary immunization. Interestingly, there was also divergence in the Ag-specific cellular and humoral immune response to secondary immunization, which was dramatically influenced by TNFRSF4 and TNFRSF25 stimulation. These studies support the concept that therapeutic targeting of TNFSF members, including TNFRSF4 and TNFRSF25, can be used to enhance the activity of vaccine-primed immunity by targeting specific subsets of T cell-mediated immunity.
Materials and Methods

Mice and cell lines

Wild-type C57BL/6 mice were purchased from Charles River Laboratories (Wilmington, MA). Foxp3+RFP+ reporter mice on a B6 background (provided by Dr. Richard Flavell) (9) and OT-II and OT-I mice were bred in our animal facility. Mice were used at 6–12 wk age and were maintained in pathogen-free conditions at the University of Miami Animal Facilities. All animal use procedures were approved by the University of Miami Animal Care and Use Committee. 3T3-OVA-gp96-Ig vaccine cells were maintained and used as previously described (10, 11).

Reagents, Abs, and flow cytometry

Commercial Abs for use in flow cytometry, ELISA, and in vivo studies were purchased from BD PharMingen, eBioscience, or BioLegend. The Armenian hamster IgG isotype control was bought from eBioscience. Armenian hamster hybridomas producing Abs to mouse TNFRSF25 (4C12, agonistic) were generated as described previously (12). Briefly, 4C12 and OX86 were produced in hollow-fiber bioreactors (Fibercell Systems, Frederick, MD) and purified from serum-free supernatants on a protein G column (GE Healthcare, Little Chalfont, U.K.). For flow cytometry analysis, single-cell suspensions were prepared from spleen and lymph nodes. Cells (10^6) were preblocked with anti-mouse CD16/CD32 and stained with different Ab combinations. Intracellular staining was performed according to standard procedures. Flow cytometric analysis was performed on a Becton Dickinson Fortessa instrument and DIVA or FlowJo software. Suspensions of OVA (crystallized chicken egg OVA grade V; Sigma-Aldrich, St. Louis, MO) and aluminum sulfate (Sigma-Aldrich) were prepared as previously described (12) and administered (66 mg/mouse unless otherwise indicated) by i.p. injection. Serum Ig ELISAs were performed using 96-well plates coated with 100 μg/ml OVA in pH 7.7 bicarbonate buffer (Sigma-Aldrich) and biotin-conjugated anti-mouse IgM, IgG1, IgG2a, or IgG2b isotype Abs for detection.

Adoptive transfer model

OT-I cells were isolated from total splenocytes of OT-I TCR transgenic mice using a CD8+ T cell isolation kit (Miltenyi Biotec) according to the manufacturer’s instructions. OT-II cells were isolated from total splenocytes of OT-II TCR transgenic mice using a CD4+ T cell isolation kit (Miltenyi Biotec) according to the manufacturer’s instructions. Cell enrichment purity was determined by flow cytometry (≥90% purity). OT-I (5 × 10^6) and OT-II (10^6) cells were then mixed and injected in a total volume of 100 μl HBSS per mouse by i.v. injection.

Statistical analysis

All graphing and statistical analyses were performed using the Applied Biosystems Prism program. Paired analysis was performed using the Student t test. Analysis of conditions with more than two conditions was performed using one-way ANOVA with a Tukey post hoc test. A p value of <0.05 was considered statistically significant.

Results

T cell activation by adjuvanted versus cross-presented Ag

Aluminum salts (alum) are well-known adjuvants that have been used in vaccine preparations for decades with, until very recently, limited understanding of how they contributed to enhanced immune

![FIGURE 1](http://www.jimmunol.org/...)

FIGURE 1. Comparative stimulation of OT-I and OT-II by adjuvanted versus cross-presented Ag. C57BL/6 mice expressing a Foxp3-RFP transgene (FIR mice) were adoptively transferred with a mixture of OT-I and OT-II cells 2 d prior to immunization with either OVA/alum or 3T3-OVA-gp96-Ig. (A) Immunization with OVA/alum stimulated proliferation of both OT-I (left panel) and OT-II (right panel) cells as detected in the peripheral blood, peaking at 8 and 4 d after immunization, respectively. (B) Immunization with 3T3 cells expressing OVA and gp96-Ig (3T3-OVA-gp96-Ig) stimulated proliferation of OT-I cells (left panel), but did not stimulate proliferation of OT-II cells (right panel). OT-I proliferation by 3T3-OVA-gp96-Ig immunization peaked at 4 d after immunization. Data indicate means ± SEM for five or more mice in each of two or more independent experiments.

![FIGURE 2](http://www.jimmunol.org/...)

FIGURE 2. Comparative cosstimulation of OT-I proliferation by TNFRSF4 and TNFRSF25 agonistic Abs. Adoptive transfer of OT-I and OT-II cells was performed as described in Fig. 1, followed by immunization with either 3T3-OVA-gp96-Ig (A) or OVA/alum (B) together with either IgG control Ab (100 μg, filled circles), TNFRSF25 agonistic Abs (clone 4C12, 20 μg, filled squares), TNFRSF4 agonistic Abs (clone OX86, 100 μg, filled triangles), or both 4C12 and OX86 Abs combined (filled inverted triangles). OT-I proliferation in the peripheral blood was measured by flow cytometry on the indicated days, and representative plots of V^+RFP+ cells (pregated on CD3^+CD8+ cells) are illustrated in (C) on day 5 for each condition. Data indicate means ± SEM for five or more mice in each of two or more independent experiments.
cross-presentation, which is distinct from activation of both OT-I and OT-II cells by OVA/alum.

Costimulation of vaccine-primed OT-I by TNFRSF4 and TNFRSF25

Both TNFRSF4 and TNFRSF25 have been independently described as T cell costimulators in the context of vaccination, but a systematic comparison of these receptors has not been performed (23, 24). Vaccinations were performed as described in Fig. 1 with coadministration of the receptor agonistic Ab OX86 (100 μg) for TNFRSF4 or 4C12 (20 μg) for TNFRSF25 at the time of vaccination (day 0).

Administration of OX86 or 4C12 together with 3T3-OVA-gp96-Ig vaccination increased the proliferation of OT-I cells from 9.68 ± 1.4% to 23.33 ± 4.1% and 17.78 ± 3.5%, respectively, of all CD8+ T cells in the peripheral blood. Furthermore, combined administration of OX86 and 4C12 stimulated additional increases in OT-I proliferation that extended through day 6, with OT-I cells peaking at 26.87 ± 5.3% of CD8+ cells (p = 0.015 versus 4C12 alone) in the peripheral blood. No significant differences were observed in the expression of CD44, CD62L, orCCR7 between the treatment groups (data not shown).

The kinetics of expansion by OX86 and 4C12 costimulation for OVA/alum-primed OT-I cells differed dramatically from that observed with OVA/alum vaccination alone (Fig. 2B). Both OX86 and 4C12 administration functioned independently to enhance OT-I proliferation at all time points, peaking in the peripheral blood at 5–6 d after vaccination with OT-I cells representing 24.8 ± 6.67% (OX86) and 23.8 ± 4.0% (4C12) of CD8+ cells. Additionally, combined administration of OX86 and 4C12 led to a strong enhancement of OT-I proliferation, peaking at 7 d after vaccination with OT-I cells representing nearly half (46.79 ± 7.8%, p = 0.03) of the total peripheral CD8+ T cell population. Representative flow cytometry plots for each group on day 5 after immunization are illustrated (Fig. 2C). Similar to 3T3-OVA-gp96-Ig, no differences were observed in expression of CD44, CD62L, or CCR7 between groups (data not shown).

FIGURE 3. Tissue distribution and response of OT-I cells to secondary immunization. The indicated groups were treated as shown in Fig. 2, and the absolute numbers (left columns) and frequencies (right columns) of OT-I cells in the (A) spleen, (B) lymph nodes, or (C) peritoneal cavity determined on day 5 following primary immunization are shown. Certain groups treated as indicated in (A)–(C) were monitored until day 52 following the primary immunization, at which time they were treated with a secondary immunization with (D) 3T3-OVA-gp96-Ig or (E) OVA/alum together with the indicated Abs. Representative flow cytometry plots of splenocytes analyzed on day 57 and pregated on CD3+ CD8+ cells are shown. The percentage of TCR Vα2+ Vβ5+ double-positive cells are overlaid on each plot. Data indicate means ± SEM for two independent experiments.
Analyses of spleen, lymph nodes, and peritoneal cavity-infiltrating cells indicate that the observed effects of TNFRSF4 and TNFRSF25 costimulation on peripheral blood OT-I cells are systemic (Fig. 3). Both total numbers (left columns) and frequencies (right columns) of OT-I cells were determined in the spleen (Fig. 3A), pooled mesenteric and inguinal lymph nodes (Fig. 3B), and peritoneal cavity-infiltrating cells (Fig. 3C) 5 d after immunization with the indicated vaccine combination. This time point precedes the “peak” of OT-I expansion following immunization with OVA/alum but is at the time of peak expansion following immunization with 3T3-OVA-gp96. Analysis of peritoneal cells indicates that in mice immunized with 3T3-OVA-gp96, the observed enhancement of OT-I expansion by OX86 and 4C12 is already declining by day 5 at the site of immunization. In contrast, because the peak of OT-I expansion in the peripheral blood has not yet occurred for animals immunized with OVA/alum, it is not surprising that the costimulatory effect of OX86 and 4C12 is magnified in the peritoneal cavity on day 5. Taken together, these tissue analyses provide a consistent picture of OT-I costimulation across several tissues, which appears to originate at the site of immunization (peritoneal cavity), as previously shown by Oizumi et al. (10), and subsequently distributes systemically with slightly delayed kinetics and can be observed in the lymph nodes, spleen, and peripheral blood.

To determine the influence of TNFRSF4 and TNFRSF25 costimulation at the time of priming on the magnitude of the memory response, the frequencies of OT-I cells were followed in the peripheral blood of primed animals from day 38 to day 52. These data demonstrate that the “set point” for OT-I cells following contraction from the primary immunization is equal between all groups immunized with 3T3-OVA-gp96-Ig (∼2% of total CD8+ cells; Supplemental Fig. 2A). In contrast, mice immunized with OVA/alum exhibited dramatic differences in the resting frequencies of OT-I cells depending on whether they were additionally costimulated with 4C12 (5.17 ± 0.58% of total CD8+ cells), OX86 (8.16 ± 1.5% of total CD8+ cells), or the combination of 4C12 and OX86 (13.0 ± 2.7% of total CD8+ cells) as compared with IgG controls (1.56 ± 0.09% of total CD8+ cells; Supplemental Fig. 2A).

On day 52, primed mice received a secondary immunization with the vaccine/costimulator combination administered to each mouse at the time of priming. These data indicate that for animals immunized with 3T3-OVA-gp96-Ig, the OT-I proliferative response is weaker in the spleen on day 5 following the secondary immunization than observed on day 5 following the primary immunization (Fig. 3D). The addition of either 4C12 Ab or 4C12 in addition to OX86 Ab significantly improved the magnitude of OT-I proliferation at the time of the recall response. Similarly, secondary immunization with OVA/alum exhibited less pronounced differences among all groups immunized with OVA/alum (data not shown). Also similar to OT-I cells, the systemic distribution pattern of OT-II cells was observed to reflect observations made in the peripheral blood, lymph nodes, spleen, and peripheral blood.

FIGURE 4. Comparative costimulation of OT-II proliferation by TNFRSF4 and TNFRSF25 agonistic Abs. Adoptive transfer of OT-I and OT-II cells was performed as described in Fig. 1, following by immunization with either 3T3-OVA-gp96-Ig (A) or OVA/alum (B) together with the indicated Abs as described in Fig. 2. OT-II proliferation in the peripheral blood was measured by flow cytometry on the indicated days, and representative plots of OVA2′Vβ5′ cells (pregated on CD5′CD4′ cells) are illustrated in (C) on day 5 for OVA/alum-immunized mice. Data indicate means ± SEM for five or more mice in each of two or more independent experiments.

Vaccination with OVA/alum stimulated efficient proliferation of OT-II cells, which was further costimulated by administration OX40 agonistic Abs (Fig. 4B). Specifically, stimulation of TNFRSF4 by OX86 significantly increased the rate, amplitude, and duration of OT-II cell proliferation in vivo. In contrast, administration of TNFRSF25 agonistic Abs did not stimulate a significant increase in OT-II cell proliferation as compared with administration of IgG control Abs. Administration of 4C12 Abs reduced the costimulatory effect of OX86 Abs to OT-II cell proliferation and is in stark contrast to the additive costimulatory effect of combined administration of OX86 and 4C12 to vaccine-primed OT-I cells. These data indicate that TNFRSF4 and TNFRSF25 differentially costimulate OVA/alum-primed OT-II effector T cells. Representative flow cytometry plots from day 5 after immunization are illustrated for each group (Fig. 4C). Similar to OT-I cells, no differences were observed in the expression pattern of CD44, CD62L, or CCR7 at 5 wk after immunization for any of the groups (data not shown). Also similar to OT-I cells, the systemic distribution pattern of OT-II cells was observed to reflect observations made in the peripheral blood when analyzed in the spleen (Fig. 5A), inguinal lymph nodes (Fig. 5B), and peritoneal cavity (Fig. 5C). As predicted by analysis of peripheral blood cells, OX86 appeared to provide the strongest costimulatory signal to OT-II cells systemically. Costimulation of OT-II cells in the peritoneal cavity

Costimulation of vaccine-primed OT-II cells by TNFRSF4 and TNFRSF25

Because these experiments were performed in animals adoptively transferred with both OT-I and OT-II cells, the activation of each subset was monitored simultaneously within individual mice. In all animals vaccinated with 3T3-OVA-gp96-Ig, regardless of the addition of OX86 and/or 4C12 Abs, there was absolutely no increase in the frequency of OT-II cells out of total CD4+ cells at any of the time points analyzed (Fig. 4A). These findings are in agreement with previous reports demonstrating that the vaccine activity of gp96 functions as a powerful and exclusive Agdelivery system to the MHC I cross-presentation machinery of APCs and can function in the absence of CD4+ cells (8, 10, 11, 25).
was greatest by treatment with OX86 alone on day 5, but was already on the decline when combined with 4C12 (Fig. 5C). Similar to OT-I cells, these observations suggest that OT-II proliferation originates at the site of vaccination (within the peritoneal cavity) and that peak proliferation at this tissue site precedes the peak of expansion observed in the peripheral blood, which does not peak until day 8 in OX86-treated animals but which has already peaked in the peripheral blood when used in combination with 4C12 (compare Fig. 4B to Fig. 5C).

The frequency of OT-II cells was monitored in the peripheral blood following contraction from the primary immunization from day 38 to day 52. Interestingly, these data indicate that, similar to OT-I cells, there were no differences in the set point of memory OT-II cells for any mice immunized with 3T3-OVA-gp96-Ig (Supplemental Fig. 2B). In mice immunized with with OVA/alum, there were also no differences in the set point of peripheral blood OT-II cells except for mice that received OX86 at the time of immunization (3.36 ± 0.69% of total CD4+ cells) as compared with IgG controls (0.43 ± 0.09% of total CD4+ cells). In mice boosted with 3T3-OVA-gp96-Ig, there was no primary proliferative response to immunization and there was also no proliferative response to secondary immunization (Fig. 5D). Interestingly, in mice that received the secondary immunization with OVA/alum, there was also no secondary proliferative response to immunization unless the immunization was combined with 4C12 Ab (1.5% of total CD4+ cells) or with OX86 Ab (6.8% of total CD4+ cells). In contrast to the synergistic effect of combined administration of 4C12 and OX86 Abs on the proliferative response of OT-I cells (Fig. 3D, 3E), no synergy was observed between 4C12 and OX86 on the proliferative response of OT-II cells upon secondary immunization (Fig. 5E).

Ag-specific serum Ig analysis

Serum was isolated from whole blood samples collected by cardiac puncture on day 5 following the primary (experimental day 5) or secondary (experimental day 57) immunization with the indicated treatment. The serum titer of OVA-specific IgM, IgG1, IgG2a, and IgG2b Abs was determined using ELISA assays. Following primary immunization with 3T3-OVA-gp96, OVA-specific Abs of all subtypes were below the limit of detection (data not shown). Low levels of IgG1, IgG2a, and IgG2b were detectable in mice immunized with OVA/alum, and levels of each of these Ig subtypes was increased by concurrent treatment with OX86 Ab (EC50 = 0.005, 0.035, and 0.021, respectively; Fig. 6, left column). TNFRSF25 stimulation with 4C12 Ab also increased the serum titer of OVA-specific IgG2b following primary immunization with OVA/alum (EC50 = 0.072). As predicted, the titers of OVA-specific IgM Ab were significantly higher than any of the IgG subtypes following primary immunization with either OVA/alum or 3T3-OVA-gp96 (Supplemental Fig. 3).

Secondary immunization with OVA/alum or 3T3-OVA-gp96 stimulated significantly higher serum titers of OVA-specific IgM, IgG1, IgG2a, and IgG2b than those observed following primary immunization, as expected. In OVA/alum-immunized mice, the costimulatory effect of TNFRSF4 and TNFRSF25 stimulation was statistically equivalent for all IgG subtypes examined (IgG1 EC50 = 361,674; IgG2a EC50 = 7,308; IgG2b EC50 = 11,167) and significantly increased the serum titer of IgG1 as compared with IgG Ab-treated controls (EC50 = 361,674 versus 35,933, p = 0.0039; Fig. 6, middle column). In 3T3-OVA-gp96-Ig–immunized mice, costimulation of TNFRSF25 led to a significant increase in the titer of IgG1 (EC50 = 7665 versus 100.5; p = 0.001) and a moderate increase in IgG2a (EC50 = 849.8) and IgG2b isotypes when compared with IgG Ab-treated controls (EC50 = 1806; Fig. 6, right column). Addition of OX86 did not further increase IgG1 or IgG2b concentrations following 3T3-OVA-gp96-Ig immunization with 4C12 Ab, but it did lead to an additive increase in the concentration of IgG2a Ab (EC50 = 5856 versus 849.8, p = 0.003).

Differential costimulation of Tregs by TNFRSF4 and TNFRSF25

Because both TNFRSF4 and TNFRSF25 have been described to costimulate Foxp3+ Tregs, the response of this CD4+ T cell subset was also analyzed. As previously reported, administration of 4C12 Abs stimulated the proliferation of CD4+ Tregs to 3- to 4-fold above

![FIGURE 5.](http://www.jimmunol.org/) Tissue distribution and response of OT-II cells to secondary immunization. The indicated groups were treated as shown in Fig. 4, and the absolute numbers (left columns) and frequencies (right columns) of OT-II cells in the (A) spleen, (B) lymph nodes, or (C) peritoneal cavity determined on day 5 following primary immunization are shown. Certain groups treated as indicated in (A)-(C) were monitored until day 52 following the primary immunization, at which time they were treated with a secondary immunization with (D) 3T3-OVA-gp96-Ig or (E) OVA/alum together with the indicated Abs. Representative flow cytometry plots of splenocytes analyzed on day 57 and pregated on CD3+CD4+ cells are shown. The percentage of TCR Vα2+Vβ5+ double-positive cells are overlaid on each plot. Data indicate means ± SEM for two independent experiments.
their resting frequency (Fig. 7) (7). The kinetics of expansion were slightly delayed in both vaccination groups as compared with naive mice, peaking on day 6 in the 3T3-OVA-gp96–immunized group at 30.72 ± 6.8% of all CD4+ cells (Fig. 7A) and on day 5 in the OVA/alum-immunized group at 30.55 ± 5.0% of all CD4+ cells (Fig. 7B). This proliferation occurred concurrently with the proliferation of OT-I cells in the context of 3T3-OVA-gp96-Ig vaccination (Figs. 2A, 7A) and together with proliferation of both OT-I and OT-II cells in OVA/alum-vaccinated mice (Figs. 2B, 4B, 7B). Administration of OX86 Abs led to minor proliferation of Tregs (3T3-OVA-gp96 immunization = 11.52 ± 1.1% of total CD4+ cells, OVA/alum immunization = 14.6 ± 3.0% of total CD4+ cells), which occurred regardless of the vaccination method and is similar to the response to OX86 without immunization (7). When OX86 and 4C12 were combined, increased proliferation to roughly additive levels was observed for Tregs: 37.35 ± 4.7% of all CD4+ cells and peaking on day 4 in the 3T3-OVA-gp96–immunized group (Fig. 7A) and to 44.47 ± 4.4% of all CD4+ cells and peaking on day 5 in the OVA/alum-immunized group (Fig. 7B). In the setting of OVA/alum vaccination, the combined influence of TNFRSF4 and TNFRSF25 stimulation led to Treg levels that peaked at nearly half of all CD4+ T cells (Fig. 7B), at a time when ∼20% of the CD4+ T cells were also OT-II cells (compare Fig. 7B to Fig. 4B). Proliferation of Tregs to these levels concurrent with costimulation of Ag-specific OT-I and OT-II cells in the context of vaccination clearly indicates that absolute increases in Tregs are not predictive of immune suppression.

Table I. Summary of TNFRSF4 and TNFRSF25 adjuvant effects

<table>
<thead>
<tr>
<th>Vaccination Method</th>
<th>CD4+ Response</th>
<th>CD8+ Response</th>
<th>Treg Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVA/alum</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>OVA/alum + OX86</td>
<td>++</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>OVA/alum + 4C12</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>OVA/alum + OX86 + 4C12</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>3T3-OVA-gp96-Ig</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>3T3-OVA-gp96-Ig + OX86</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>3T3-OVA-gp96-Ig + 4C12</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>3T3-OVA-gp96-Ig + OX86 + 4C12</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
</tbody>
</table>

Summary of OT-I, OT-II, and Treg responses to immunization with adjuvanted (alum) versus cross-presented (gp96-Ig) OVA with and without costimulation by agonistic Abs to TNFRSF4 (OX86) and TNFRSF25 (4C12). Effects are arbitrarily scored as: −, no effect; +, mild effect; ++, moderate effect; and ++++, strong effect as compared to nonvaccinated controls following primary immunization.
OVA/alum vaccination leads to the proliferation of both CD4+ and CD8+ T cells, and that the Ag threshold for CD4+ cell activation is lower than that for CD8+ T cells. This finding confirms that Ag presentation of OVA-derived peptides occurs on both MHC I and MHC II. In contrast, vaccination with allogeneic cells expressing OVA and secreting gp96-Ig, which chaperones OVA-derived peptides, stimulated the exclusive proliferation of OT-I cells, indicating that Ag presentation was selective and exclusive to MHC I, likely via the Ag cross-presentation pathway. Additionally, an ~600-fold larger dose of aluminum salt-adjuvanted Ag was required to stimulate an equivalent OT-I response to gp96-Ig-chaperoned Ag assuming that 100% of OVA was chaperoned by gp96-Ig. If instead we assume that OVA competes equally for gp96-Ig binding with the estimated 10,000 other proteins actively produced by 3T3 cells and presented by MHC I, it is estimated that gp96-Ig–chaperoned peptides in the subpicogram range have equivalent CD8+ T cell-stimulating activity to alun-adjuvanted peptide in the microgram range. The two vaccine strategies are therefore distinct both in their efficiency of Ag presentation to MHC I (with gp96-Ig being far superior) and to MHC II (with OVA/alum being far superior).

Next, we compared the relative activity of TNFRSF4 and TNFRSF25 as costimulators of vaccine-prime effector T cells based on their published similarities in activity. These studies demonstrate that TNFRSF4 and TNFRSF25 are similar and additive in their ability to costimulate CD8+ T cells regardless of the vaccine approach used following primary immunization. However, the two receptors differ significantly in their capacity to costimulate effector and regulatory subsets of CD4+ T cells. TNFRSF25 is, as reported, an excellent stimulator of Treg proliferation (7), but it was not observed to alter the proliferation of OT-II cells primed by OVA/alum following either primary or secondary immunization. In contrast, TNFRSF4 was a weak stimulator of Treg proliferation but, as reported, a powerful costimulator of OT-II proliferation (26). The activity of TNFRSF4 and TNFRSF25 was not complementary in the case of effector OT-II cells, but addition of TNFRSF4 agonists further increased the proliferation of CD8+ OT-I cells and CD4+ Tregs stimulated by TNFRSF25 agonistic Abs. The unique activities of TNFRSF4 and TNFRSF25 agonists in T cell function support the conclusion that the downstream signaling pathways from these receptors are also distinct.

One of the most striking observations from these studies is that the Ag-specific cellular responses differ so dramatically from the Ag-specific Ab responses at both the primary and secondary immunization. As is widely known and included in immunology textbooks, the Ag-specific Ab response is dominated by IgM class Abs following primary immunization and class switches to predominantly IgG subtypes found at much higher titers in the serum following secondary immunization. Primary immunization with OVA/alum programs Ag-specific Ab responses that do not appear to be further augmented by costimulation of TNFRSF4 or TNFRSF25. In contrast, despite the lack of OT-II proliferation at either the primary or secondary immunization with 3T3-OVA-gp96-Ig, this strategy also led to high-titer Ab responses following secondary immunization that were preferentially class-switched to IgG1 and IgG2b, and to a lesser extent IgG2a, isotypes by addition of TNFRSF25 costimulation. In contrast to the increased Ab titer following secondary immunization, the proliferative OT-I and OT-II responses were diminished following secondary immunization unless combined with TNFRSF4 costimulation (increased OT-II proliferation) or TNFRSF25 costimulation (increased OT-I proliferation). These data indicate that the humoral and cellular Ag-specific immune responses are fundamentally uncoupled from one another at the time of secondary immunization. The side-by-side comparison of TNFRSF4 and TNFRSF25 agonists together with distinct vaccine approaches highlights the tremendous potential of combination vaccine strategies to selectively guide the activation and amplitude of specific T cell subsets and the dramatic influence these costimulators exert on memory T cell proliferation subsequent to secondary Ag challenge. The parallel observation that at a given point in time, the peripheral blood of an individual animal can simultaneously consist of 50% OT-I in the CD8+ subset as well as 50% Tregs and 20% OT-II in the CD4+ T cell subset challenges the idea that Tregs are immunosuppressive in an absolute sense, and it implies that proliferative and effector responses for each of these cell types can be differentially modulated by both Ag and costimulatory receptors at the time of priming and boosting.

Disclosures

The authors have no financial conflicts of interest.

References

