The Bone Marrow Functions as the Central Site of Proliferation for Long-Lived NK Cells

Mary J. G. van Helden, Natascha de Graaf, Claire J. P. Boog, David J. Topham, Dietmar M. W. Zaiss and Alice J. A. M. Sijts

J Immunol 2012; 189:2333-2337; Prepublished online 20 July 2012;
doi: 10.4049/jimmunol.1200008
http://www.jimmunol.org/content/189/5/2333

Supplementary Material
http://www.jimmunol.org/content/suppl/2012/07/20/jimmunol.1200008.DC1

References
This article cites 39 articles, 18 of which you can access for free at:
http://www.jimmunol.org/content/189/5/2333.full#ref-list-1

Subscription
Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts

Punch up your research!

Knockout cells for studying immune signaling pathways
The Bone Marrow Functions as the Central Site of Proliferation for Long-Lived NK Cells

Mary J. G. van Helden,* Natascha de Graaf,† Claire J. P. Boog,‡ David J. Topham,‡ Dietmar M. W. Zaiss,* and Alice J. A. M. Sijts*

NK cells play an important role in the early defense against invading pathogens. Although it is well established that infection leads to a substantial, local increase in NK cell numbers, little is known about the mechanisms that trigger their proliferation and migration. In this study, we investigated the dynamics of NK cell responses after intranasal respiratory virus infection. We show that NK cell numbers increased in the airways after influenza virus infection but find no evidence of proliferation either at the site of infection or in the draining lymph nodes. Instead, we find that the bone marrow (BM) is the primary site of proliferation of both immature and mature NK cells during infection. Using an adoptive transfer model, we demonstrate that peripheral, long-lived and phenotypically mature NK cells migrate back to the BM and proliferate there, both homeostatically and in response to infection. Thus, the BM is not only a site of NK cell development but also an important site for proliferation of long-lived mature NK cells. The Journal of Immunology, 2012, 189: 2333–2337.

Natural killer cells are innate lymphocytes that provide early protection against viral infection and tumor growth. Their activation is based on the ratio of activating and inhibitory ligands expressed on the target cell surface that are recognized by NK cell receptors (1). Upon activation, NK cells can kill target cells and produce cytokines that tune the immune response (2). Although viral infections often lead to enhanced NK cell numbers at the site of infection, it is not always clear whether this is the result of increased migration, proliferation, or a combination of the two (3). For example, during infection with murine cytomegalovirus (MCMV), NK cells migrate to the liver (4, 5) and there undergo vigorous proliferation (6). In contrast, in vaccinia virus-infected mice, NK cell numbers increase in the peritoneum mainly due to migration, but no major proliferation takes place at this site (7). NK cell proliferation not only leads to increased cell numbers but also can affect NK cell quality. Selective proliferation of certain NK cell subsets takes place, such as during MCMV infection (6). Remarkably, although being part of the innate immune system, recent studies indicate that at least a proportion of NK cells is long-lived (8) and acquires a memory-like phenotype (9–13). Thus, Ly49H+ cells that expand during MCMV infection subsequently gain adaptive traits and are able to respond during recall infection (10). It is currently unknown how these long-lived NK cells are maintained.

NK cells are present both in lymphoid and nonlymphoid organs. In mice, especially the lungs contain high proportions of NK cells (14), and several studies have addressed their role during respiratory virus infections (15–19). For example, the group of Mandelboim (20) showed that influenza virus-encoded hemagglutinin was recognized by the NK cell activating receptor Nkp46 leading to killing of influenza virus-infected cells. The mechanisms of NK cell migration and/or proliferation in response to respiratory virus infections, however, remain unknown. In this study, we have determined the kinetics of respiratory virus-induced NK cell expansion, contraction, and NK cell survival. Surprisingly, we found that not the lung or draining lymphoid tissues but the bone marrow (BM) was the primary site of NK cell proliferation during infection. Using an adoptive transfer model, we demonstrated that the BM contained not only immature NK cells but also mature, long-lived NK cells that migrated back from the periphery to undergo both homeostatic and infection-induced proliferation.

Materials and Methods

Mice, viruses, and infection

C57BL/6 (B6) mice were purchased from Charles River. B6.SJL (CD45.1) and CD45.1.2 (F1 of B6 × B6.SJL) mice were bred in house under standard conditions. Respiratory syncytial virus (RSV) A2 (a kind gift of A. Easton, University of Warwick, Coventry, U.K.) was expanded on BSC-1 cells; influenza virus (A/HK/x31; H3N2) was expanded on embryonated eggs. Infections were performed using 7- to 17-wk-old mice that were anesthetized with isoflurane and then infected intranasally (i.n.) with 5 × 10⁵ PFU RSV A2 or 1 × 10⁵ PFU influenza virus H3N2. All animal experiments were approved by the Committee on Animal Experiments of the University of Utrecht.

BrdU incorporation

To measure in vivo proliferation, a BrdU pulse was given to uninfected, infected, or recipient mice by administration of BrdU i.p. (0.8 mg in 200 μl PBS) and i.n. (0.8 mg in 50 μl PBS) after isoflurane anesthesia. The mice were sacrificed 1 h later, and organs were harvested.

Sample collection and tissue preparation

Mice were sacrificed by injection of sodium pentobarbital i.p., and spleens, livers, lungs, BM, and bronchoalveolar lavage (BAL) were collected for
lymphocyte purification. BAL was collected by lavage three times with 1 ml PBS containing 10 μl EDTA and incubated for 1 h at 37˚C on a culture dish to remove adherent cells. BM cells were obtained by flushing the femurs and tibiae. Lungs and liver were perfused with PBS before excision. Lungs were minced and incubated in PBS containing collagenase (2.4 mg/ml; Roche Applied Science) and DNase (1 mg/ml; Roche Applied Science) for 30 min at 37˚C. Single-cell suspensions were prepared for passage through cell strainers, and lymphocytes were isolated using LympoLyte-M (Cederlane) according to the manufacturer’s instructions. Differences in frequencies of CD11b- and CD27-expressing lung NK cells between DNAse- and collagenase-treated and untreated samples were <10% of cells within a specific subset, which is in the range of variation between samples, indicating that this treatment did not lead to a significant loss of CD11b+ or CD27 expression. Liver lymphocytes were prepared as described (22) with the exception that LympoLyte-M (Cederlane) was used for density separation. Single-cell suspensions of spleens were prepared by passage through cell strainers. RBCs were removed from the spleen and BM by ammonium chloride lysis.

Abs and flow cytometry

Cell surface staining with mAbs was performed in the presence of Fc-block (2.4G2) in PBS supplemented with 2% FCS and 0.02% NaN₃ for 20–30 min on ice. For intracellular staining of BrdU, cells were fixed with 2% paraformaldehyde for 20 min at room temperature, permeabilized overnight in 0.5% saponin at 4˚C, and then stained for 1 h on ice. Fluorochrome-conjugated Abs were purchased from eBioscience (CD49b (DX5), CD11b (M1/70), CD27 (LG.7F9), NKp46 (29A1.4), CD45.2 (104), CD45.1 (A20)], BioLegend [TCRβ (H57-597), NK1.1 (PK136)], and Molecular Probes [anti-BrdU (PRB1)]. Samples were measured on a FACS Calibur or FACS CantoII (BD Biosciences) and analyzed with FlowJo software (Tree Star).

NK cell isolation, cell labeling, and adoptive transfer

NK cells were enriched from peripheral organs (lung, liver, spleen) and BM of naive mice or mice that had been infected with influenza virus 2–4 wk earlier using an NK cell isolation kit (Miltenyi Biotec). For adoptive transfer, 0.3 × 10⁸ to 0.7 × 10⁹ purified cells were injected i.v. into congenic mice. In some experiments, prior to transfer, cells were labeled by incubation with 5 μM CFSE (Invitrogen) in PBS for 10 min at room temperature. CFSE was quenched with FCS, and cells were washed twice with PBS before injection.

Results

Influenza virus infection induces NK cell influx into the airways

To determine the kinetics and phenotype of NK cell responses to respiratory virus infection, we infected B6 mice i.n. with the mouse-adapted influenza virus strain A/HK/x31 (H3N2). Infection induced influx of NK cells into the airways (Fig. 1A–C). Relative proportions of NK cells peaked between days 3 and 5 and then declined (Fig. 1C), and absolute numbers peaked around day 5 (Fig. 1D). From these data, we infer that influenza virus infection induced influx of mostly CD11b+CD27+ NK cells (Fig. 1D). The presence and phenotype of NK cells (TCRβ+DX5+NK1.1+) in the BAL was determined by flow cytometry at the indicated days postinfection. (A) Representative FACS plots showing NK cells as percentages of TCRβ+ lymphocytes. (B) Absolute numbers and (C) percentages of NK cells of total lymphocytes in the BAL. (D) CD27 and CD11b expression on NK cells (TCRβ+DX5+NKp46+) isolated from the indicated organs 2.5 d after influenza virus infection. Results are shown as mean ± SEM with six mice per group.

Influenza virus-infected and control mice received BrdU i.p. and i.n. for 1 h and then were sacrificed. Strikingly, 3 d postinfection, hardly any BrdU incorporation was detected in NK cells recovered from the lungs and the BAL, whereas a considerable percentage of NK cells in the BM and a smaller percentage of NK cells in the spleen were BrdU+ (Fig. 2A). Similar results were obtained when measuring expression levels of the proliferation marker Ki-67 (data not shown). The lack of BrdU incorporation in NK cells in the respiratory tissues was unlikely to be due to a lack of recovery of proliferating NK cells or inaccessibility of the cells to BrdU, as T cells in these organs had readily incorporated BrdU in their DNA (data not shown). To examine the maturation status of dividing cells, we measured CD27 and CD11b expression on proliferating NK cells in the BM and spleen. NK cells in all maturation stages had incorporated BrdU with the distribution of BrdU+ NK cells resembling the distribution of all NK cells over the different CD11b/CD27 defined subsets (Fig. 2B). Thus, not only immature but also mature NK cells had proliferated.

Taken together, our data indicate that respiratory virus infection induces the proliferation of both mature and immature NK cells, primarily in the BM and to a much smaller extent (Fig. 2A) also in the spleen.

Transferred, long-lived NK cells proliferate homeostatically in the BM

The BM is a well-known place for NK cell development; however, our data so far suggested that also NK cells with a mature phenotype proliferate in the BM. To determine further where mature NK cells proliferate, we transferred NK cells purified from the mouse periphery (lung, liver, spleen) into naive congenic mice. These NK cells were readily recovered from recipient mice in all organs analyzed (lung, liver, spleen, and BM) between the 4th and 5th week after transfer, indicating that some of these cells were long-lived (Fig. 3A). Although NK cells preferentially homed back to their site of origin (Fig. 3B and data not shown), part of the transferred peripheral NK cells migrated to the BM (Fig. 3B).
A higher proportion of recovered transferred NK cells than endogenous NK cells were CD11b⁺CD27⁻ in all organs analyzed, indicating that the population of transferred cells was more mature than the population of endogenous NK cells present in these organs (Fig. 3C, 3D).

To assess whether transferred NK cells underwent homeostatic proliferation, we transferred CFSE-labeled peripheral NK cells from the liver, spleen, and lungs into congenic recipient mice. Analysis of their CFSE contents 4-5 wk after transfer showed that only a small percentage of NK cells recovered from the peripheral organs of the acceptor mice (i.e., lung, liver, and spleen) had undergone division (Fig. 4A, 4B), and of those that had divided, most had undergone not more than one division. In contrast, most of the transferred NK cells recovered from the BM had undergone multiple divisions (Fig. 4A). To confirm that long-lived NK cells proliferate in the BM and not only preferentially home back there after division, we transferred peripheral NK cells into congenic recipients that received a 1-h BrdU pulse 3 wk later. When comparing BrdU incorporation in transferred NK cells in different organs, we exclusively detected BrdU⁺ NK cells in the BM (Fig. 4C) indicating that long-lived NK cells proliferate homeostatically in the BM. To verify further that mature peripheral NK cells can migrate to the BM to proliferate, we adoptively transferred

FIGURE 2. Respiratory virus infection induces NK cell proliferation in the BM. (A) C57BL/6 mice were infected i.n. with influenza virus, and BrdU was administered i.n. and i.p. 1 h before being sacrificed at the indicated days postinfection. Shown are the percentages of BrdU⁺ NK cells (TCR^{β_B} NK1.1⁺) in the indicated organs. (B) Graphs show the percentage of total NK cells or BrdU⁺ NK cells in the four indicated subsets in the BM (left plot) and spleen (right plot) isolated from influenza virus-infected mice 4.5 d postinfection. BrdU was administered as in (A). Results are shown as mean ± SEM with two to five mice per group, and BrdU staining was performed at least three times showing similar results.

FIGURE 3. A proportion of NK cells is long-lived. CD45 congenic mice were infected with influenza virus, and 2-3 wk later, NK cells purified from the periphery (lung, liver, and spleen) were transferred into naive CD45 congenic mice. (A) FACS plots show examples of NK cell gating (TCR^{β_B} NK1.1⁺; upper plot) and donor NK cell gating (CD45.2⁺; lower plot) in recipient lung cells 3 wk after transfer. (B) Peripheral (peri) or BM donor CD45.2 NK cells were transferred, and recipients were sacrificed 3 wk later. Shown are percentages of CD45.2 donor cells of total NK cells recovered from the lungs and BM of recipient mice. (C and D) CD27 and CD11b expression on transferred or endogenous NK cells (TCR^{β_B} NK1.1⁺) isolated from the spleen or BM of recipient mice. (C) Representative FACS plots of splenocytes gated on NK cells and (D) graphs showing the percentage of NK cells in the four indicated subsets in the spleen (left plot) or BM (right plot). Results are shown as mean ± SEM and are representative for at least two independent experiments with five mice per group. Statistical analysis was performed using a Mann–Whitney U test. **p < 0.01.

Discussion

Although it is well established that NK cells play an important role in immune protection to viral infection, relatively little is known about the kinetics of NK cell responses to most viral pathogens. In the current study, we investigated the response of NK cells to respiratory viral infections. We found that upon infection, frequencies of NK cells increased in the airways; however, NK cells did not detectably proliferate there. Instead, proliferation occurred preferentially in the BM. We furthermore used an adoptive transfer model to generate mature long-lived NK cells from respiratory virus-infected donor mice and found that a proportion of long-lived NK cells migrated to the BM and there underwent both homeostatic and respiratory virus infection-induced proliferation. Thus, although the BM harbors high amounts of immature, developing NK

FIGURE 4. A proportion of transferred NK cells is long-lived. (A) C57BL/6 mice were infected i.n. with influenza virus, and 2-3 wk later, NK cells purified from the periphery (lung, liver, and spleen) were transferred into naive CD45 congenic mice. (A) FACS plots show examples of NK cell gating (TCR^{β_B} NK1.1⁺; upper plot) and donor NK cell gating (CD45.2⁺; lower plot) in recipient lung cells 3 wk after transfer. (B) Peripheral (peri) or BM donor CD45.2 NK cells were transferred, and recipients were sacrificed 3 wk later. Shown are percentages of CD45.2 donor cells of total NK cells recovered from the lungs and BM of recipient mice. (C and D) CD27 and CD11b expression on transferred or endogenous NK cells (TCR^{β_B} NK1.1⁺) isolated from the spleen or BM of recipient mice. (C) Representative FACS plots of splenocytes gated on NK cells and (D) graphs showing the percentage of NK cells in the four indicated subsets in the spleen (left plot) or BM (right plot). Results are shown as mean ± SEM and are representative for at least two independent experiments with five mice per group. Statistical analysis was performed using a Mann–Whitney U test. **p < 0.01.
cells, our data indicate that it is also the central site of proliferation for long-lived NK cells.

Previous studies on interactions between NK cells and influenza virus-infected cells by the group of Mandelboim (20) showed that NK cells recognized influenza virus hemagglutinin through the activating receptor Nkp46, which led to target cell killing. Mice that lacked Nkp46 died more readily of influenza virus infection than wild-type mice, despite similar increases in NK cell numbers in the lungs (16). These data suggested that Nkp46 ligation leads to activation but not proliferation. Our finding that NK cells barely proliferated in the lungs upon intranasal influenza virus infection further confirms this proposition. In contrast, stimulation of the activating receptor Ly49H through MCMV m157 led to selective activation of Ly49H+ NK cells postinfection (6). These differences in the signal pathways used by Ly49H and Nkp46, which signal through the adapter protein DAP12 (25) and the Fcε receptor, respectively, might have resulted from differences in the outcome of receptor ligation.

As our results showed that upon influenza virus infection, NK cells proliferated mostly in the BM and not at the site of infection, we conclude that the increased NK cell numbers in the airways (Fig. 1B), at least in part, were the result of migration. A similar situation is seen during respiratory virus infection as NK cells were seen during respiratory virus infection (Fig. 1B), at least in part, were the result of migration. A similar situation is seen during respiratory virus infection (Fig. 1B), at least in part, were the result of migration.

We conclude that the increased NK cell numbers in the airways after influenza virus infection were not the result of proliferation, but rather the result of migration from the BM to the site of infection.

Recent reports have shown that NK cells can mount recall responses up to several months after sensitization (9, 10, 12, 13). This adaptive trait requires the preservation of Ag-specific NK cells for a long period of time. In the current study, we did not directly address the role of specific cytokines involved in the maintenance of mature NK cells in the BM; however, NK cell homeostatic proliferation has been assessed on NK cells isolated from RAG−/− mice that were adoptively transferred to RAG−/− mice back-crossed on an IL-7−/− or IL-15−/− background (29). In addition to having a role in survival of naive NK cells (30), IL-15 played a dominant role in survival of transferred NK cells (29). Notably, when transferred into RAG−/− mice back-crossed on an IL-7−/− or IL-15−/− background, NK cell proliferation was reduced 3-fold (29). Thus, both IL-15 and IL-7 might play an important role in the maintenance of long-lived NK cells.

Our finding that mature NK cells undergo homeostatic proliferation in the BM dovetails well with the maintenance of immunological memory that has extensively been studied for T cells (31). The BM is known to play a key role in the maintenance of immunological memory by being a niche for memory T cells and plasma cells (32–34) and by producing the cytokines needed for survival (33). Memory CD4+ T cells have shown to be in close contact with IL-7−expressing stroma cells, where they are maintained in a low proliferative state and receive IL-7 to survive (33). Memory CD8+ T cells rely both on IL-7 and IL-15 for homeostatic proliferation (30, 35–38). Thus, like other “classic” cells of the adaptive im-
nune system, we show in this study that a proportion of NK cells behaves in a similar way by migrating back to the BM to undergo homeostatic proliferation.

In addition to the cytokines necessary for homeostatic proliferation, a recent study showed that IL-12 is indispensable for the generation of memory NK cells. Compared to their cotransferred wild-type counterparts, adoptively transferred IL-12 receptor-deficient NK cells could not be recovered 2 wk after MCMV infection (39). It is currently unknown which cells provide IL-12 for NK cell survival and at what locations.

Taken together, on the basis of our data we propose that after virus entry and infection in the lungs, NK cells migrate from remote storage sites to the site of infection while the remaining NK cells proliferate at these sites probably to effect their replenishment. After becoming activated, NK cells in the airways produce cytokines and participate in viral clearance. A proportion of NK cells becomes long-lived and can migrate back to the BM where they undergo homeostatic proliferation and rapidly proliferate after re-infection.

Acknowledgments

We thank Andrew Easton of the University of Warwick (Coventry, U.K.) for providing the RSV-A2 strain.

Disclosures

The authors have no financial conflicts of interest.

References