Human TOLLIP Regulates TLR2 and TLR4 Signaling and Its Polymorphisms Are Associated with Susceptibility to Tuberculosis

J Immunol 2012; 189:1737-1746; Prepublished online 9 July 2012;
doi: 10.4049/jimmunol.1103541
http://www.jimmunol.org/content/189/4/1737

Supplementary Material
http://www.jimmunol.org/content/suppl/2012/07/09/jimmunol.1103541.DC1

References
This article cites 71 articles, 29 of which you can access for free at:
http://www.jimmunol.org/content/189/4/1737.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Human TOLLIP Regulates TLR2 and TLR4 Signaling and Its Polymorphisms Are Associated with Susceptibility to Tuberculosis

Javeed A. Shah,* Jay C. Vary,† Tran T. H. Chau,* Nguyễn D. Bang,‡ Nguyễn T. B. Yen,‡ Jeremy J. Farrar,* Sarah J. Dunstan,* and Thomas R. Hawn*

Tuberculosis, one of the leading causes of death worldwide, stimulates inflammatory responses with beneficial and pathologic consequences. The regulation and nature of an optimal inflammatory response to Mycobacterium tuberculosis remains poorly understood in humans. Insight into mechanisms of negative regulation of the TLR-mediated innate immune response to M. tuberculosis could provide significant breakthroughs in the design of new vaccines and drugs. We hypothesized that TOLLIP and its common variants negatively regulate TLR signaling in human monocytes and are associated with susceptibility to tuberculosis. Using short hairpin RNA knockdown of TOLLIP in peripheral blood human monocytes, we found that TOLLIP suppresses TNF and IL-6 production after stimulation with TLR2 and TLR4 ligands. In contrast, secretion of the anti-inflammatory cytokine IL-10 was induced by TOLLIP. We also discovered two common polymorphisms that are associated with either decreased levels of mRNA expression (rs3750920) or increased IL-6 production (rs5743899) in a sample of 56 healthy volunteers. Furthermore, in a case-population study in Vietnam with 760 cord blood samples and 671 TB case patients, we found that SNPs rs3750920 and rs5743899 were associated with susceptibility to tuberculosis \((p = 7.03 \times 10^{-16} \text{ and } 6.97 \times 10^{-7}) \), respectively. These data demonstrate that TOLLIP has an anti-inflammatory effect on TLR signaling in humans and that TOLLIP deficiency is associated with an increased risk of tuberculosis. To our knowledge, these data also show the first associations of TOLLIP polymorphisms with any infectious disease. These data also implicate an unexpected mechanism of negative regulation of TLR signaling in human tuberculosis pathogenesis. The Journal of Immunology, 2012, 189: 1737–1746.
conclusive (34–36). Together, these studies suggest that the role of IL-10 in the pathogenesis of TB remains unclear and further study is required.

Negative regulators have been discovered at nearly every step of the TLR signaling cascade (37–39) and include Toll-interacting protein (TOLLIP, also called IL-1RaCPiP), A20 (40), Single Ig IL-1R (SIGIRR, also called TIR8) (41), and IL-1R–associated kinase 3 (IRAK-3, also called IRAK-M) (42). TOLLIP is a 274aa protein with highly conserved C2 (amino acids 54-186, similar to that found in phosphoinositol-specific phospholipase C-dll) and C-terminal ubiquitin-associated domains. It was initially discovered as an IL-1R–interacting protein that linked IRAK to the IL-1R pathway (43), and later was implicated in suppression of the TLR2 (44) and TLR4 pathways (45). However, in vivo murine knockout models demonstrated that TOLLIP induced proinflammatory pathways, in contrast to in vitro experiments (46). To our knowledge, there are no studies examining the effects of TOLLIP on TLR signaling pathways in humans.

Several lines of evidence suggest that host genetics regulates susceptibility to TB, including twin-based, linkage, candidate gene association, and genome-wide association studies. We, along with other investigators, have identified associations between common polymorphisms in innate immunity genes and susceptibility to TB and clinical phenotypes (22, 47, 48). Much of this work has focused on pattern recognition receptors and their associated adaptor proteins, including TLR 1, 2, 4, 6, and 9. Several candidate gene association studies have shown associations between single nucleotide polymorphisms (SNPs) in TLR2 and TB, including S97CC within a Vietnamese population (8, 49). A polymorphism in TLR1 (T1805G, I602S) regulates lipopeptide-induced cytokine secretion and TLR1 surface expression, and is associated with susceptibility to TB as well as leprosy (48, 50–52). Genetic studies have also found associations of TLR4 polymorphisms with TB susceptibility (10, 24, 25). These studies suggest that genetic control of TLR1/2/4/6 signaling by negative regulators may alter susceptibility to TB. In contrast to TLRs, the functional and clinical significance of genetic variation of TOLLIP and other negative regulators of TLR signaling is poorly studied and only partially understood. In this study, we examined the function of TOLLIP in human monocytes with knockdown studies and examination of common TOLLIP variants. We also examined whether these polymorphisms were associated with susceptibility to TB in Vietnam. These studies suggest that TOLLIP is a critical regulator of the TLR pathway in humans and that this immune regulation has a critical role in the susceptibility to TB.

Materials and Methods

Materials

RPMI 1640 medium, 1-glutamine, penicillin, and streptomycin were obtained from Life Technologies (Carlsbad, CA). Ficoll gradient separation followed by positive selection using human anti-CD14 Ab associated with magnetic beads (Miltenyi Biotec, Auburn, CA). Monocytes were isolated with >95% purity, based on CD14 positivity in flow cytometric analysis and were maintained in RPMI 1640 supplemented with 10% FCS. Cells were incubated with TLR ligands PAM2, PAM3, and LPS, or with M. tuberculosis whole cell lysates for 24 h. Subsequently, supernatants were evaluated for levels of cytokine (IL-6, IL-10, TNF) via ELISA Duoset (R&D Systems, Minneapolis, MN). Each sample was assayed in duplicate or triplicate, and experiments shown were performed at least twice to ensure reproducibility.

Genotyping and linkage disequilibrium

Genotyping was performed with Sequenom’s MassARRAY technique as described previously (54). This technique uses allele-specific primer extension reactions to discriminate genotypes. We also confirmed the SNPs of interest using Taqman genotyping technology (Applied Biosystems, Carlsbad, CA). We identified haplotype-tagging SNPs from the CHB (Han Chinese in Beijing) and CEU (Utah residents with European ancestry) populations from the International HapMap Project (http://www.hapmap.org) and other public databases with the Genome Variation Server (http://www.ncbi.nlm.nih.gov/SNP/ and www.innateimmunity.net). We searched a region on chromosome 11p15.5, 10 kb upstream and downstream of TOLLIP for tagged SNPs using an R2 cutoff of 0.8 for linkage disequilibrium and a minor allele frequency cut-off of 5%. Stata/Intercooled version 11.0 software program PWLD (StataCorp, College Station, TX) was used to calculate R2 and D’ as measurements of linkage disequilibrium between the polymorphisms.

Molecular biology

TOLLIP mRNA levels were measured in monocytes from peripheral blood of healthy donors in the Seattle area. RNA was obtained after cell lysis and RNA purification (Qiagen, Valencia, CA). After synthesis of cDNA, real-time PCR was performed. TOLLIP mRNA levels were normalized with a GAPDH control using the following primer-probe sets (5'-156-FAM/CTCCGGGAATZEN/GG-3', 5'-CTCAGGGTCATCACCTTG-3', 5'-GGCGTGAGCTCCTTTAC-3'; Integrated DNA Technologies, Coralville, IA). Quantitative PCR was performed on a Taqman machine.

Gene silencing

Knockdown studies were performed using plasmids encoding three TOLLIP-specific short hairpin RNA (shRNA; Santa Cruz Biotechnology, Santa Cruz, CA) that were then packaged into a nonreplicating lentiviral particle to improve transfection efficiency using a standard protocol (UCSF Viracore Facility, San Francisco, CA). These lentiviral particles were then incubated with monocytes at a multiplicity of infection of 2 for 24 h before cells were stimulated and harvested for cytokine analysis. Knockdown was confirmed using quantitative PCR for TOLLIP mRNA transcript.

Human subjects

Approval for human study protocols was obtained from the human subjects review boards at the University of Washington School of Medicine (Seattle, WA), the Hospital for Tropical Diseases (Ho Chi Minh City, Vietnam), Pham Ngoc Thach Hospital for Tuberculosis and Lung Diseases (Ho Chi Minh City, Vietnam), Health Services of Ho Chi Minh City, Hung Vuong Hospital (Ho Chi Minh City, Vietnam), and the Oxford Tropical Research Ethics Committee (Oxford, U.K.).

Genomic DNA was purified from saliva and blood samples. The Seattle study group included 56 healthy volunteers who donated blood and saliva samples. The ethnic composition of these subjects was 70% Caucasian (39/56), 27% Asian (15/56), and 4% African American (2/56). Study subjects with tuberculous meningitis (TBM) were recruited from two centers in Ho Chi Minh City, Vietnam: Pham Ngoc Thach (PNT) Hospital for Tuberculosis and the Hospital for Tropical Diseases (HTD). These 500-bed hospitals serve the local community and act as tertiary referral centers for TB (PNT) and infectious diseases (HTD) for southern Vietnam. Individuals at least 15 y old, admitted to these centers with clinical meningitis (defined as nuchal rigidity and abnormal cerebrospinal fluid parameters), a negative HIV test result, and a positive Ziehl–Neelsen stain for acid-fast bacilli or M. tuberculosis culture, or both, from cerebrospinal fluid (“definite TBM”) were recruited for genetics studies during 2001 to 2008. In addition to definite TBM, the cohort included subjects with "probable TBM," defined as clinical meningitis plus at least one of the following: chest radiograph consistent with active TB, acid-fast bacilli found in any specimen other than cerebrospinal fluid, and clinical evidence of other extrapolmonary TB (55). From 2003 through 2004, subjects with pulmonary TB were recruited from a network of district TB control units within Ho Chi Minh City that...
statistical methods

All analyzed SNPs were tested for Hardy-Weinberg equilibrium in control subjects using a χ² goodness-of-fit test. In our primary analysis, we examined whether polymorphism genotype frequencies were associated with any type of TB in a case-population study design using Stata MP 11 and the user written package "genassoc" (58). For secondary analyses, SNPs were investigated for associations under additional genetic models (dominant, recessive, and additive) and for association with the clinical subtypes of TB (pulmonary or meningeal). In the recessive model, carriers of allele 1 (00 genotype) were compared with homozygous subjects for allele 1 (11 genotype). In the dominant model, carriers of allele 2 (01 and 11 genotypes) were compared with homozygous subjects for allele 2 (11 genotype). Measures of linkage disequilibrium were assessed in controls comparing allelic frequencies between cases and control was 1.6 (p = 0.20), suggesting that no significant population stratification was present in our study population (57).

Results

TOLLIP regulates the TLR signaling pathway in humans

In order to determine the functional role of TOLLIP in the human innate immune system, we performed shRNA knockdown experiments on peripheral blood monocytes from healthy volunteers (Fig. 1). Using a lentiviral delivery system in primary monocytes, we knocked down TOLLIP mRNA expression by more than 50% compared with monocytes alone or those treated with control lentiviral particles (Fig. 1A; p < 0.001, Student t test). We also tested and confirmed that TLR2 and TLR4 mRNA expression was not altered by TOLLIP shRNA (Fig. 1A; p = 0.78 for TLR2, p = 0.14 for TLR4; Student t test comparing control to TOLLIP shRNA viral infection). After stimulation with Pam2 (TLR2/6 ligand) and Pam3 (TLR2/1 ligand), TOLLIP-deficient monocytes produced elevated levels of IL-6 compared with either untransfected monocytes or control-lentiviral particle-transfected monocytes (p < 0.01; Fig 1B–F). Transfection with control shRNA led to a mild increase in IL-6 that we attributed to the

![Figure 1](http://www.jimmunol.org/Download.png)
innate inflammatory response to lentivirus infection and cytosolic DNA. In contrast, LPS (TLR4 ligand)-induced IL-6 levels were similar under all conditions (Fig. 1E). TOLLIP knockdown led to increased TNF production after stimulation with PAM2, PAM3, or M. tuberculosis whole cell lysate (p = 0.01; Fig. 1F–K). In a separate experiment with stimulation with M. tuberculosis H37Rv whole cell lysate, we found that TOLLIP knockdown led to increased IL-6 and TNF secretion, but not IL-10 compared with controls (p < 0.01; Fig. 1F, 1K).

These data suggest that TOLLIP regulates the innate immune response in humans via two mechanisms—by suppressing proinflammatory cytokines via TLR2 and TLR4 and by inducing IL-10 through a TLR4-specific mechanism.

Association of TOLLIP SNPs with mRNA Expression

Next, we examined whether common variants of TOLLIP regulated its function. We genotyped nine haplotype-tagging SNPs in 84 healthy volunteers and examined their association with TOLLIP mRNA expression in monocytes. For SNP rs3750920, the minor homozygote was significantly associated with increased mRNA expression compared with either heterozygotes or major homozygotes (p < 0.01 by genotypic model; CC = 26, CT = 32, TT = 16; Fig. 2D). This association was also significant in a recessive model comparing TT homozygotes with CT/CC genotypes (p < 0.01). SNP rs5743899 genotype GG was associated with decreased mRNA transcript in a recessive model (p < 0.01; AA = 49, AG = 31, GG = 4; Fig. 2A).

The other 4 TOLLIP SNPs were not significantly associated with mRNA expression (Fig. 2B, 2C, 2E, 2F). Three SNPs (rs3793964, CC = 36, CT = 24, TT = 16; rs3829223, CC = 19, CC = 32, TT = 27; and rs3168046, CC = 15, CT = 22, TT = 14) showed a trend toward an association with mRNA expression (Fig. 2C, 2E, 2F; p = 0.26, 0.22, and 0.14, respectively). These SNPs were in linkage disequilibrium with SNP rs3750920 (Supplemental Fig. 1A; R² = 0.43, 0.55, 0.73 for pairwise comparisons of three SNPs with rs3750920). These results suggest that at least one TOLLIP polymorphism is associated with mRNA expression and is a genetic marker of human TOLLIP deficiency.

Association of TOLLIP SNP rs5743899 with cytokine responses to TLR ligands

We next examined whether polymorphisms rs5743899 and rs3750920 were associated with cytokine responses in monocytes. We stimulated PBMCs with TLR ligands (PAM2, PAM3, and LPS) as well as M. tuberculosis whole cell lysate, and measured secreted IL-6 and IL-10 in the culture supernatants (Fig. 3A, 3B). Minor homozygotes (GG) of polymorphism rs5743899 were associated with significantly higher levels of IL-6 compared with heterozygotes or major homozygotes (Fig 3C, 3D, 3E; AA individuals = 35, AG = 21, GG = 7; p < 0.01, ANOVA with Mann–Whitney U test) after stimulation with PAM2 (TLR2/TLR6) or PAM3 (TLR2/TLR1), but not LPS (TLR4). Furthermore, IL-6 levels were significantly increased after stimulation with M. tuberculosis whole cell lysate (Fig. 3F). In addition, IL-10 levels were significantly decreased in a recessive pattern for GG individuals after LPS stimulation (p = 0.03; Fig 3G).

There were not any significant changes in IL-10 production after PAM2 or PAM3 stimulation. By way of contrast, minor homo-
zygotes from rs3750920 were not associated with IL-6 levels when compared with heterozygotes or major homozygotes (Fig. 4A–D; CC = 18 individuals, CT = 24, TT = 12). Furthermore, no associations were noted in IL-10 production (Fig 4E–H). These data demonstrate that the minor homozygote of rs5743899 is associated with increased levels of IL-6 after PAM2, PAM3, or M. tuberculosis whole cell lysate stimulation, as well as decreased IL-10 after LPS stimulation.

Association of TOLLIP SNPs with susceptibility to TB

To assess the role of TOLLIP deficiency in human disease, we performed a candidate gene case-population association study to

![Figure 3](http://www.jimmunol.org/)

FIGURE 3. TOLLIP SNP rs5743899 and cytokine responses after TLR and M. tuberculosis stimulation of PBMCs. PBMCs were isolated from 64 healthy volunteers in Seattle and stimulated with media or TLR ligands (LPS at 10 ng/ml, PAM2 at 250 ng/ml, PAM3 at 250 ng/ml, M. tuberculosis whole cell lysate at 1 µg/ml) for 24 h. Secreted IL-6 (A) and IL-10 (B) levels were measured in supernatants via ELISA. (C–F) IL-6 responses after TLR stimulation, stratified by rs5743899 genotype. AA individuals = 35, AG = 21, GG = 7. (G–J) IL-10 responses after TLR stimulation, stratified by rs5743899 genotype. *p < 0.01; **p = 0.03 by Mann–Whitney U test in a recessive model.

![Figure 4](http://www.jimmunol.org/)

FIGURE 4. TOLLIP polymorphism rs3750920 and cytokine responses after TLR and MTb stimulation of PBMCs. Identical experimental details as Figure 3, except that data were stratified by genotype rs3750920; CC = 18 individuals, CT = 24, TT = 12. IL-6 (A–D) responses and IL-10 (E–H) responses after stimulation with media or TLR ligands (LPS at 10 ng/ml, PAM2 at 250 ng/ml, PAM3 at 250 ng/ml, M. tuberculosis whole cell lysate at 1 µg/ml) for 24 h.
examine associations between TOLLIP polymorphisms and susceptibility to TB. We examined 671 cases (394 pulmonary TB [PTB] and 277 TBM) and 760 cord blood controls in our cohort. We first analyzed polymorphisms rs3750920 and rs5743899 because of their association with functional phenotypes. TOLLIP polymorphisms had similar linkage disequilibrium patterns in Seattle and Vietnam, as well as the Northern European (CEU) and Han Chinese (CHB) HapMap populations (Fig. 5, Supplemental Figs. 1 and 2). Polymorphisms rs3750920 and rs5743899 were associated with susceptibility to TB using a genotypic model (Table I; rs3750920, \(p = 7.03 \times 10^{-16} \); and rs5743899, \(p = 6.97 \times 10^{-7} \)). Three other SNPs (rs3793964, rs3829223, and rs3168046) were associated with TB, and these SNPs were in a high degree of linkage disequilibrium with SNP rs3750920 in the Vietnamese population (Supplemental Table I). All these SNPs were associated with TB after a conservative Bonferroni correction for multiple comparisons. One SNP (rs5743942) was associated with TB in an unadjusted analysis, but not after a Bonferroni correction.

Secondary analysis of rs3750920 and rs5743899

For the two significant polymorphisms, we examined these associations further under different genetic models and clinical phenotypes. Testing the association with TB under different genetic models for rs3750920, we found that the strongest association was consistent with a dominant model (Table II; odds ratio [OR], 0.453; \(p = 6.28 \times 10^{-12} \)). In contrast, SNP rs5743899 was most strongly statistically associated with all forms of TB in a recessive model (OR, 1.641; \(p = 0.0004 \)). We also examined the associations with different clinical forms of TB (e.g., PTB) and TBM. Both SNPs were associated with PTB and TBM to a similar degree (Table II). Finally, we evaluated whether these two SNPs were associated with death or disability from TB, as well as with CSF and serum cytokine responses at the time of presentation (for subjects with TBM). We did not find any significant associations with these outcomes (data not shown). These data suggest that two TOLLIP polymorphisms are associated with susceptibility to TB as well as TOLLIP expression levels or regulation of TLR-mediated cytokine secretion.

Discussion

Our study shows that TOLLIP regulates human TLR signaling pathways in monocytes by suppressing proinflammatory cytokines (IL-6 and TNF) and inducing anti-inflammatory cytokine (IL-10) secretion in peripheral blood monocytes. In addition, we found two common genetic variants of TOLLIP that are associated with TOLLIP mRNA expression or TLR-mediated cytokine release, or both. Finally, these genetic markers of TOLLIP deficiency were associated with an increased risk for developing TB in a case-population study in Vietnam.

Our data from knockdown of TOLLIP in peripheral blood monocytes indicates that TOLLIP is a negative regulator of TNF and IL-6 after PAM2, PAM3, and LPS stimulation. Although these data demonstrate that TOLLIP regulates human TLR2 and TLR4 function, the findings appear to be in contrast to murine models, where \(^{-/-} \) bone marrow-derived macrophages and dendritic cells had decreased LPS-induced IL-6 and TNF in comparison with wild type cells (46). The reasons for this discrepancy are uncertain. It is possible that the unique gene splicing profile of murine TOLLIP led to the proinflammatory profile in the knockout (59) or that cell type or assay conditions were different be-

FIGURE 5. Chromosomal map and linkage disequilibrium plots of TOLLIP polymorphisms in a Vietnamese cohort. (A) Chromosomal map shows genomic location of polymorphisms. Boxes show exons within gene on chromosome 11. rs3168046 was located on the 3’ UTR for the TOLLIP gene. (B, C) Linkage disequilibrium plots with \(R^2 \) and \(D’ \) values for controls in Vietnam. White boxes on top of plot show frequency of polymorphisms. Degree of shading is proportionate to \(D’ \) or \(R^2 \) value.
Tollip differentially regulates cytokines is not clear, this finding of transcription factors (65). Although the mechanism by which nucleus via sumoylation, suggesting a role for Tollip regulation binding domain and likely plays a role in cellular trafficking and inflammatory and anti-inflammatory cytokine production. For example, IL-10 and downregulate IL-12. (64) Several possible mechanisms of the IL-10 induction pathway diverting from the IL-6 or TNF induction pathway. For example, IL-10 is induced through the TLR2/TLR4 pathway (61) and modified by Card9 as well as induction pathway. For example, IL-10 is induced through the TLR2/TLR4 pathway (61) and modified by Card9 as well as Kumar et al. (62) In addition, Card9^{−/−} mice are unable to control M. tuberculosis infection and do not produce significant IL-10, despite IL-6 and TNF production. (63) Furthermore, differential regulation of proinflammatory and anti-inflammatory signaling has been observed in HIV-infected macrophages that upregulate IL-10 and downregulate IL-12. (64) Several possible mechanisms could explain how Tollip could differentially regulate proinflammatory and anti-inflammatory cytokine production. For example, the C-terminal domain of Tollip contains a Tom-1 binding domain and likely plays a role in cellular trafficking and ubiquitination of proteins that could affect TLR signal transduction. In addition, Tollip can traffic from the cytosol to the cell nucleus via sumoylation, suggesting a role for Tollip regulation of transcription factors (65). Although the mechanism by which Tollip differentially regulates cytokines is not clear, this finding may help to elucidate the signaling pathway of IL-10.

To our knowledge, this report is the first description of Tollip knockdown in peripheral blood monocytes. To our knowledge, Tollip is the only signal transduction molecule to downregulate IL-6 and TNF while upregulating IL-10. LPS upregulates IL-10, TNF, and IL-6 in monocytes, presumably by activation of similar transcription factors such as NF-kB (60). However, there are several examples of the IL-10 induction pathway diverting from the IL-6 or TNF induction pathway. For example, IL-10 is induced through the TLR2/TLR4 pathway (61) and modified by Card9 as well as IFN-β. (62) In addition, Card9^{−/−} mice are unable to control M. tuberculosis infection and do not produce significant IL-10, despite IL-6 and TNF production. (63) Furthermore, differential regulation of proinflammatory and anti-inflammatory signaling has been observed in HIV-infected macrophages that upregulate IL-10 and downregulate IL-12. (64) Several possible mechanisms could explain how Tollip could differentially regulate proinflammatory and anti-inflammatory cytokine production. For example, the C-terminal domain of Tollip contains a Tom-1 binding domain and likely plays a role in cellular trafficking and ubiquitination of proteins that could affect TLR signal transduction. In addition, Tollip can traffic from the cytosol to the cell nucleus via sumoylation, suggesting a role for Tollip regulation of transcription factors (65). Although the mechanism by which Tollip differentially regulates cytokines is not clear, this finding may help to elucidate the signaling pathway of IL-10.

Table I. TOLLIP gene region single nucleotide polymorphisms and genotype frequencies in the control and tuberculosis groups

<table>
<thead>
<tr>
<th>SNP<sup>a</sup></th>
<th>Group</th>
<th>Genotype</th>
<th>Genotype Analysis</th>
<th>χ²</th>
<th>p</th>
<th>H-W</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs3750920</td>
<td>Control</td>
<td>00</td>
<td>308 (0.415)</td>
<td>355 (0.479)</td>
<td>78 (0.105)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>TB</td>
<td>01</td>
<td>328 (0.610)</td>
<td>134 (0.253)</td>
<td>75 (0.129)</td>
<td>69.8</td>
</tr>
<tr>
<td>rs5743899</td>
<td>Control</td>
<td>01</td>
<td>252 (0.334)</td>
<td>391 (0.520)</td>
<td>110 (0.145)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>TB</td>
<td>11</td>
<td>261 (0.397)</td>
<td>252 (0.383)</td>
<td>144 (0.220)</td>
<td>28.4</td>
</tr>
</tbody>
</table>

^aSNPs are arranged in the order that they are located on the chromosome. SNPs are listed by reference SNP ID. 0, Common allele; 1, allele with minor frequency. Hardy-Weinberg (H-W) equilibrium was calculated from control subjects only.

Table II. Associations of rs3750920 and rs5743899 with TB meningitis and pulmonary tuberculosis

<table>
<thead>
<tr>
<th>SNP<sup>b</sup></th>
<th>Group<sup>c</sup></th>
<th>Genotype</th>
<th>Dominant Analysis<sup>d</sup></th>
<th>Recessive Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>00</td>
<td>01</td>
<td>11</td>
</tr>
<tr>
<td>Rs3750920</td>
<td>Control</td>
<td>308 (0.415)</td>
<td>355 (0.479)</td>
<td>78 (0.105)</td>
</tr>
<tr>
<td></td>
<td>PTB</td>
<td>144 (0.415)</td>
<td>60 (0.255)</td>
<td>35 (0.134)</td>
</tr>
<tr>
<td></td>
<td>PTB</td>
<td>184 (0.617)</td>
<td>74 (0.248)</td>
<td>40 (0.134)</td>
</tr>
<tr>
<td></td>
<td>TB all</td>
<td>328 (0.610)</td>
<td>134 (0.253)</td>
<td>75 (0.129)</td>
</tr>
<tr>
<td>Rs5743899</td>
<td>Control</td>
<td>252 (0.334)</td>
<td>391 (0.520)</td>
<td>110 (0.145)</td>
</tr>
<tr>
<td></td>
<td>PTB</td>
<td>119 (0.422)</td>
<td>107 (0.379)</td>
<td>56 (0.199)</td>
</tr>
<tr>
<td></td>
<td>PTB</td>
<td>118 (0.372)</td>
<td>123 (0.388)</td>
<td>76 (0.240)</td>
</tr>
<tr>
<td></td>
<td>TB all</td>
<td>261 (0.397)</td>
<td>252 (0.383)</td>
<td>144 (0.220)</td>
</tr>
</tbody>
</table>

^bSNPs are arranged in the order that they are located on the chromosome. SNPs are listed by reference SNP ID.

^c“All TB” includes both PTB and TBM.

^dDominant and recessive allelic analysis was performed.

^eFor calculations of ORs, each group was compared with the control group. 0, common allele; 1, allele with minor frequency. CI, Confidence interval.
higher quantities in macrophages (67) and dendritic cells. Third, SNP rs3750920 may regulate protein trafficking and functions such as endocytosis and phagocytosis. TOLLIP is known to bind to ubiquitinated proteins and localize with the protein Toml to the early endosome, and it may be important in bacterial entry (68–70). Finally, TOLLIP polymorphisms may regulate effector mechanisms that lead to bacterial killing (such as NO production). Studies are ongoing to examine these possibilities and to determine the causative SNP in linkage disequilibrium with rs3750920. The genetic and mRNA data from these two SNPs likely represent two independent effects with distinct mechanisms.

Interestingly, our genetic data suggests that a hypofunctional TOLLIP genotype (rs7543899 GG) is associated with an increased risk of TB, as well as increased levels of proinflammatory cytokines. There is a long history of observations in the TB field of the potentially deleterious effects of too much inflammation. Steroid treatment of patients with TBM and pericarditis is used to dampen the immunopathologic consequences of inflammation (55, 71). In this regard, TNF has been shown to have protective and deleterious effects in different models of TB. For example, although knockout of TNF in murine models is deleterious with increased M. tuberculosis replication, evidence also suggests that a hyperinflammatory state can lead to increased TB replication and worsened disease (72–74). Furthermore, studies of leukotriene A4 hydrolyase, an enzyme that regulates eicosanoid and TNF production in zebra fish and humans, suggest that optimal control of M. tuberculosis requires balanced signaling with deleterious outcomes associated with insufficient or excessive TNF secretion (73). TOLLIP regulation of the anti-inflammatory cytokine IL-10 provides an additional mechanism to inhibit inflammatory pathways (61). Card9-deficient mice do not produce any IL-10 and are unable to control M. tuberculosis infection (63). In addition, IL-10–producing T cells promote anergy to PPD in TB patients and may alter the T cell response and overall control of latent tuberculosis infection (33). These data suggest that inhibition of inflammation is partially beneficial for clinical TB outcomes. However, the nuances of how and when to inhibit inflammation during clinical treatment of TB remain poorly understood.

Our study has several potential limitations. The association findings from the case-control study might not be due to polymorphisms within TOLLIP, but this seems unlikely. TOLLIP is fairly isolated on chromosome 11 in humans and is flanked by the morphisms within TOLLIP, but this seems unlikely. TOLLIP is during clinical treatment of TB remain poorly understood.

We thank the clinical staff from the Hospital of Tropical Diseases and Pham Ngoc Thach Hospital who initially diagnosed and studied the patients with TBM and PTB; Dr. Nguyen Thi Hieu from Hung Vuong Obstetric Hospital Vietnam; Dr. Tran Tinh Hien from the Hospital for Tropical Diseases Vietnam; Dr. Guy Thwaites from Imperial College London; all Vietnamese individuals who participated in this study; Dr. Alan Ademere and Dr. Marta Janer from the Institute for Systems Biology for advice and Sarah Li for technical assistance; and Glenna Peterson, Rick Wells, Dr. William Berrington, Dr. Ann Misch, Dr. Dave Horne, and Dr. Chetan Seshadri from the University of Washington for assistance.

Disclosures

The authors have no financial conflicts of interest.

References

