Cutting Edge: In the Absence of TGF-β Signaling in T Cells, Fewer CD103+ Regulatory T Cells Develop, but Exuberant IFN-γ Production Renders Mice More Susceptible to Helminth Infection

Lisa A. Reynolds and Rick M. Maizels

J Immunol 2012; 189:1113-1117; Prepublished online 29 June 2012; doi: 10.4049/jimmunol.1200991

http://www.jimmunol.org/content/189/3/1113
Cutting Edge: In the Absence of TGF-β Signaling in T Cells, Fewer CD103+ Regulatory T Cells Develop, but Exuberant IFN-γ Production Renders Mice More Susceptible to Helminth Infection

Lisa A. Reynolds and Rick M. Maizels

Multiple factors control susceptibility of C57BL/6 mice to infection with the helminth *Heligmosomoides polygyrus*, including TGF-β signaling, which inhibits immunity in vivo. However, mice expressing a T cell-specific dominant-negative TGF-β receptor II (TGF-βRII DN) show dampened Th2 immunity and diminished resistance to infection. Interestingly, *H. polygyrus*-infected TGF-βRII DN mice show greater frequencies of CD4+Foxp3+Helios− Tregs than infected wild-type mice, but levels of CD103 are greatly reduced on both these cells and on the CD4+Foxp3+Helios+ population. These cells, but a compensatory increase in Helios+ Tregs may maintain susceptibility on the C57BL/6 background. The Journal of Immunology, 2012, 189: 1113–1117.

Immunity to gastrointestinal helminth infection is mediated by Th2-dependent mechanisms (1, 2), which are impaired by regulatory T cells (Tregs) (3) and cross-regulated by conventional IFN-γ Th1 effector populations (4). In the case of the murine nematode parasite *Heligmosomoides polygyrus*, immunity is boosted by interference with TGF-β signaling associated with the induction and activation of Foxp3+ Tregs (3), a well-established property of this cytokine (5). *H. polygyrus* is a broadly immunomodulatory parasite that can alleviate colitis in the absence of IL-10 (6) but not when T cell responsiveness to TGF-β is abrogated (7). TGF-β also participates in generating IL-9– (8) and IL-17–producing Th17 effector responses.

In addition, TGF-β plays a central role in the induction and maintenance of Tregs, particularly in the periphery (5, 14). Because of the importance of Tregs in modulating responses to pathogens in general (15), and *H. polygyrus* in particular (3), we also investigated the balance of Treg frequencies and subsets in the presence or absence of TGF-β signaling and the consequent outcome of infection. These studies show that within the Foxp3+ Treg population of TGF-βRII DN mice, CD103 expression is low on both Helios+ and Helios− cells, but a compensatory increase in Helios+ Tregs may account for the continuing susceptibility of mice expressing the mutated receptor.

Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom

Received for publication April 5, 2012. Accepted for publication June 1, 2012.

This work was supported by funding from the Wellcome Trust (grant numbers 086629 and 090281).

Address correspondence and reprint requests to Dr. Rick M. Maizels, Institute of Immunology and Infection Research, University of Edinburgh, Ashworth Laboratories, West Mains Road, Edinburgh EH9 3JT, U.K. E-mail address: r.maizels@ed.ac.uk

Abbreviations used in this article: MLNC, mesenteric lymph node cell; TGF-βRII DN, dominant-negative TGF-β receptor II; Treg, regulatory T cell.

Copyright © 2012 by The American Association of Immunologists, Inc. 0022-1767/12/$16.00
Materials and Methods

Animals and parasites

C57BL/6, TGF-βRII DN [T cell-specific TGF-βRII DN (16)], IFN-γ−/−, and doubly transgenic mice were housed in individually ventilated cages. Both transgenic lines were on a C57BL/6 background. Mice were infected by oral gavage with 200 H. polygyrus bakeri third-stage larvae, obtained from fecal cultures (3); 14 and 28 d later, small intestinal adult worms and fecal pellet eggs were enumerated.

Restimulation, flow cytometry, and cytokine measurements

Mesenteric lymph node cells (MLNC) were stained directly ex vivo (for Foxp3 and Helios measurements) or restimulated with 0.5 μg/ml PMA and 1 μg/ml ionomycin for 3.5 h, with 10 μg/ml brefeldin A included for the final 2.5 h (for intracellular cytokine measurements). Cells were stained with Abs to surface CD4 (RM4-5; BD), CD8α (for intracellular cytokine measurements). Cells were fixed according to the manufacturer’s instructions with Cytofix/Cytoperm (BD) or Fix/Perm (for Foxp3 and Helios staining; eBioscience) and then stained with Abs to intracellular IFN-γ (XMG1.2; BioLegend), IL-9 (RM09A4; BioLegend), IL-13 (eBio 13A; eBioscience), IL-17A (TC11-18H110.1; BioLegend), Foxp3 (FJK-16b; eBioscience), and Helios (22F6; BioLegend). Cells were analyzed using FACSCanto or LSRII flow cytometers (BD) and FlowJo software (Tree Star). Serum cytokines were assayed by CBA flex set (BD) with a minimum detection limit of 2.5 pg/ml.

Histology

Transverse sections of jejunum were fixed in 4% formaldehyde and stained with H&E and toluidine blue. Mast cell counts per micrometer of villus crypt were recorded.

Statistical analysis

Statistical tests were applied according to data normality and group numbers. Normally distributed, two-way comparisons used unpaired t tests, and multiple comparisons used one-way ANOVA, followed by Tukey’s test. If normality was not achieved, Mann–Whitney (for two-way comparisons) and Kruskal–Wallis tests (for multiple comparisons, followed by Dunn’s test) were used. Data from multiple experiments were pooled only where no statistical differences existed between separate data sets.

Results and Discussion

The C57BL/6 mouse strain has a high level of susceptibility to the gastrointestinal helminth H. polygyrus (17), but immunity can be enhanced by pharmacological inhibition of TGF-β signaling (3). Because TGF-βRII DN mice have deficient TGF-β signaling in T cells, they may be expected to be more resistant to H. polygyrus than their wild-type littermates and may lack inducible Tregs to inhibit effector responses against the worm. Surprisingly, however, H. polygyrus shows heightened fecundity in TGF-βRII DN mice (Fig. 1A), and mice have similar adult worm burdens to wild-type mice (Fig. 1B), consistent with an earlier report (7). Furthermore, TGF-βRII DN mice show diminished Th2 cytokine responses, failing to generate a significant population of IL-13+CD4+ T cells in the MLNC (Fig. 1C). Although a degree of IL-4 responsiveness was maintained in TGF-βRII DN mice (data not shown), we also found that serum IL-5 responses to infection were absent in all but one gene-targeted animal (Fig. 1D). The IL-5 serum response at day 7 of infection in wild-type mice was transient and had returned to naive levels by day 14 of infection (data not shown). No IL-4 or IL-13 was detectable in the sera of either mouse strain. Reduced IL-10 production measured by Ag-specific recall responses to H. polygyrus excretory–secretory (HES) Ags in vitro was also found in TGF-βRII DN mice (data not shown), consistent with its role in promoting Th2 responsiveness in gastrointestinal helminth infections (2) and with a report that IL-10 release by lamina propria cells is inhibited in H. polygyrus-infected TGF-βRII DN mice (7). Hence, T cell-specific ablation of TGF-β signaling does not recapitulate the effects of global pharmaceutical inhibition (3), and the phenotype of the TGF-βRII DN mice does not equate to the Th2-stimulating effects of broader interference with Treg function in nematode infection (18–20).

Because TGF-β signaling promotes Treg differentiation, particularly in the periphery, we next examined Treg fre-
quencies in *H. polygyrus*-infected TGF-βRII DN mice. Surprisingly, we found a significantly higher proportion of CD4⁺Foxp3⁺ T cells in MLNC of infected TGF-βRII DN mice compared with wild-type C57BL/6 animals (Fig. 2A). The increased frequency of Foxp3⁺ cells was accounted for by a greater proportion of CD4⁺ cells expressing the transcription factor Helios (Fig. 2B), which is associated with thymic or natural Tregs (21), whereas the frequencies of Foxp3⁺Helios⁺ T cells (considered to be peripherally induced Tregs, known to be more dependent on TGF-β signaling) were not significantly different between the two genotypes (data not shown). Although the Treg compartment was not thus numerically diminished in TGF-βRII DN mice, their expression of CD103 [an activation/memory marker known to be inducible by TGF-β (22)] was substantially reduced (Fig. 2C, 2D), with low levels in both Helios⁺ and Helios⁻ subsets (data not shown).

We next addressed the question of whether a loss of TGF-β signaling impacts on other effector functions in the immune response. Because TGF-β signaling promotes differentiation of Th17 cells in the presence of IL-6 (9), and Th9 in the presence of IL-4 (8), we investigated the generation of these cell types following infection. Few Th17 cells identified by intracellular IL-17A staining develop in the MLNC in either genotype (Fig. 3A), suggesting that the conditions for optimal Th17 expansion are not generated at this site during *H. polygyrus* infection.

The frequency of CD4⁺ T cells producing IL-9 was, however, altered in TGF-βRII DN mice, with a significantly greater, rather than lower, proportion of IL-9⁺ T cells compared with wild-type mice (Fig. 3B). IL-9 is important for mast cell survival and proliferation (23), and mast cells have been suggested as an effector population for *H. polygyrus* expulsion (10, 24, 25). We therefore quantified the extent of jejunal mast cells but found their numbers increased significantly and equivalently after *H. polygyrus* infection in both C57BL/6 and TGF-βRII DN mice (Fig. 3C).

By day 14 postinfection, effector responses in wild-type mice are predominantly Th2 type (26). TGF-βRII DN mice, however, display strong Th1 IFN-γ production (Fig. 3). Notably, a high proportion of splenic CD4⁺ and CD8⁺ T cells develop into IFN-γ-producing cells in vitro (16), and constitutive IFN-γ levels in naive animals are markedly elevated (7). Infection is hence initiated in an environment intrinsically unfavorable to Th2. Following *H. polygyrus*-infection, this trend is exacerbated with TGF-βRII DN mice.
showing elevated serum levels of IFN-γ compared with
C57BL/6 mice (Fig. 3D), with an ∼5-fold higher frequency of
IFN-γ production among CD4+ T cells in the MLNC
(Fig. 3E) and a parallel increase in CD8+ IFN-γ+ T cells in the
same mice (Fig. 3F).

To investigate whether the substantial IFN-γ in TGF-βRII
DN mice inhibits Th2 cytokines required to control H. pol-
gyrus, we bred double-transgenic mice with the TGF-βRII
DN mutation together with the IFN-γ−/− genotype on the
C57BL/6 background (TGF-βRII DN IFN-γ−/− mice).

After 14 d of infection, TGF-βRII DN mice lacking IFN-γ
had a lower fecal egg burden than IFN-γ−/−sufficient TGF-
βRII DN mice (Fig. 4A) and, by day 28, lower worm counts
(Fig. 4B). However, the double-transgenic mice were not able
to fully clear infection. Thus, although overexpression of
IFN-γ is responsible for the heightened susceptibility of
TGF-βRII DN mice, IFN-γ itself is not solely responsible
for the failure of mice to expel the parasite. In this manner,
control of H. polygyrus appears to be more complex than Trichus
muris, in which neutralization of IFN-γ is sufficient to convert
a susceptible genotype to a resistant phenotype (4). Hence,
the reported greater susceptibility of TGF-βRII DN mice to
T. muris may be due to high intrinsic IFN-γ in this model
rather than lack of Th9-driven mast cell responses (8).

Serum cytokine analysis confirmed the absence of IFN-γ in
gene-targeted mice (Fig. 4C) and showed that serum IL-5 levels
were restored partially (Fig. 4D). However, intracellular staining
of MLNC showed broadly similar levels of Th2 cytokine pro-
duction by day 28 of infection in C57BL/6 and double-trans-
genic genotypes (data not shown), indicating that the suppres-
sion of Th2 responses is only partly relieved in the absence of
both IFN-γ and TGF-β signaling in T cells. HES-specific IgG1
responses were equivalent in all strains at day 28 of infection.

Analysis of Treg populations showed that the proportion
of Foxp3+CD4+ T cells are increased in TGF-βRII DN
mice, irrespective of their IFN-γ status (Fig. 4E). Moreover,
CD103 expression is reduced on both Helios− and Helios+
Foxp3+CD4+ T cells in both IFN-γ−/−deficient and −/−sufficient
TGF-βRII DN mice (Fig. 4F), confirming that CD103 ex-
pression is regulated by TGF-β signaling (27). Levels of CD103
therefore do not correspond to the susceptibility of the mouse
strain, suggesting that CD103 is not required for functional
suppression of the antihelminthic response. However, because
CD103 is important for effector T cell migration and retention
in the gut (28), and because the TGF-βRII DN Foxp3−/− effector
population also fails to express high CD103 levels (Fig. 2C, data
not shown), the susceptibility of this genotype could reflect a
diminished presence of effector cells at the site of infection.

Overall, these data argue that neither Th1 nor TGF-β−
induced adaptive Tregs are essential for repression of the
protective Th2 response to H. polygyrus. Several interesting
alternatives can now be considered. First, the greater expan-
sion of natural Tregs in TGF-βRII DN mice may account for
their continued susceptibility. The outgrowth of natural or
Helios− Tregs in vivo may result from a homeostatic com-
penstation for the paucity of CD103+ adaptive Tregs (mod-
erated by cytokines such as IL-2) and/or outgrowth to control
a greater mucosal inflammatory response in the absence of
TGF-β–inducible CD103+ adaptive Tregs (29). Second, al-
though Th2 effectors would be inured from TGF-β–medi-
ated inhibition (30), Tregs operate through other suppressive
pathways including coinhibitors such as CTLA-4 and pro-
grammed cell death-1 known to be important in other hel-
minth systems (18). Thirdly, many other regulatory subsets
are known to arise in H. polygyrus infection including DCs,
macrophages and regulatory B cells (reviewed in Ref. 2),
which may account for the susceptibility of these mice. Fi-
ally, it should noted that significant nonlymphoid pop-
ulations are responsive to TGF-β, and the efficacy of global
TGF-β inhibition (3) and the TGF-β–dependent effects in
H. polygyrus-infected RAG-deficient hosts (6), implies that
there are critical non-T cell targets of this suppressive cyto-
kine.

In conclusion, although inducible Tregs control mucosal
inflammation (29), our data support the idea that control of
protective immunity in the intestinal setting may be regulated
by natural and not inducible Tregs. This scenario has been
suggested by recent studies of the IL-6–deficient BALB/c
mouse, which are highly resistant to H. polygyrus infection
(K.A. Smith and R.M. Maizels, submitted for publication).
This intriguing and unexpected division of labor between
Treg subsets remains to be further explored.

Acknowledgments
We thank David Gray for maintaining IFN-γ−/− mice, Yvonne
Harcus for genotyping single- and double-transgenic lines, and
James Hewitson, Henry McSorley, Katie Smith, and Matt Taylor
for critical reading of the manus-

Disclosures
The authors have no financial conflicts of interest.

References
575–587.
3. Grainger, J. R., K. A. Smith, J. P. Hewitson, H. J. McSorley, Y. Harcus,
2010. Helminth secretions induce de novo T cell Foxp3 expression and regulatory
mediated regulation of chronic intestinal helminth infection. J. Exp. Med. 179: 347–
351.
5. Li, M. O., and R. A. Flavell. 2008. TGF-β: a master of all T cell trades. Cell 134:
392–404.
H. C. Reinecker, and J. V. Weinstock. 2010. Heligmosomoides polygyrus infection
can inhibit colitis through direct interaction with innate immunity. J. Immunol.
185: 3184–3189.
J. F. Urban, R. A. Flavell, and J. V. Weinstock. 2009. Role of T cell TGF-β sig-
naling in intestinal cytokine responses and helminthic immune modulation. Eur. J.
8. Veldhoen, M., C. Utzynhove, J. van Snick, H. Helmby, A. Westendorf, J. Buer,
'reprograms' the differentiation of Th 2 helper cells and activates an interleukin 9-
P. K. Goyal. 1993. Immunological relationships during primary infection with
Heligmosomoides polygyrus (Nematospiridae duodenal): downregulation of specific
cytokine secretion (IL-9 and IL-10) correlates with poor mastocytosis and chronic
E. L. Bazzonie, M. J. Stadecker, J. F. Urban, Jr., and J. V. Weinstock. 2008. Col-
onization with Heligmosomoides polygyrus suppresses mucosal IL-17 production.