Tim-3 Pathway Controls Regulatory and Effector T Cell Balance during Hepatitis C Virus Infection

J Immunol 2012; 189:755-766; Prepublished online 15 June 2012;
doi: 10.4049/jimmunol.1200162
http://www.jimmunol.org/content/189/2/755

Supplementary Material http://www.jimmunol.org/content/suppl/2012/06/15/jimmunol.1200162.DC1

Why *The JI*?

- **Rapid Reviews! 30 days** from submission to initial decision
- **No Triage!** Every submission reviewed by practicing scientists
- **Speedy Publication!** 4 weeks from acceptance to publication

*average

References This article **cites 50 articles**, 12 of which you can access for free at:
http://www.jimmunol.org/content/189/2/755.full#ref-list-1

Subscription Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts

The Journal of Immunology is published twice each month by
The American Association of Immunologists, Inc.,
1451 Rockville Pike, Suite 650, Rockville, MD 20852
All rights reserved.
Print ISSN: 0022-1767 Online ISSN: 1550-6606.
Tim-3 Pathway Controls Regulatory and Effector T Cell Balance during Hepatitis C Virus Infection

Jonathan P. Moorman, Jia M. Wang, Ying Zhang, Xiao J. Ji, Cheng J. Ma, Yao, Zhan S. Jia, Ke S. Wang, and Zhi Q. Yao

Hepatitis C virus (HCV) is a global health problem characterized by persistent infection, limited therapeutic options, poor treatment responses, and no available vaccine (1). Following years of intensive research into the pathogenesis of HCV, it has become evident that this virus is able to modulate host immunity, in particular T cell responses, and by doing so facilitates chronic infection (2). The mechanisms by which HCV impairs antiviral T cell immunity include blunted T cell activation and proliferation by upregulating inhibitory pathways, skewed T cell differentiation (Th1 deficiency or Th2 dominance), T cell anergy (Ag-specific hyporesponsiveness or exhaustion), T cell deletion (cell apoptosis or death), and induction of regulatory T cells (Tregs) (2).

Tregs constitute a unique T cell lineage that suppresses the function of effector T cells (Teffs) and controls the phenomenon of infectious tolerance. Foxp3 has been identified as a marker and transcription factor programming CD4+CD25+ Treg development and function (2, 3). Accumulation of Foxp3+ Tregs is a common characteristic of most chronic viral infections, and it significantly suppresses antiviral CD4+ and CD8+ T cell responses (4, 5). The suppressive function of Foxp3+ Tregs requires TCR stimulation and additional mechanisms that include cell–cell interaction, regulatory cytokine production (TGF-β/IL-10), and IL-2 trapping (6, 7). In published studies, Foxp3 appears to induce a state of anergy in Tregs, being incapable of producing IL-2 or other survival cytokines; however, overexpression of CD25 (IL-2R α-chain) on Tregs may absorb paracrine IL-2 that, although essential for Treg proliferation, leads to depletion or apoptosis of Teffs (8–10). Thus, CD4+CD25+Foxp3+ Tregs are crucial in maintaining peripheral immune tolerance by limiting CD4+CD25+Foxp3+ Teff responses, thereby minimizing T cell-dependent injury (11). Despite intensive studies for the role of Tregs in T cell suppression and HCV pathogenesis, little is known about how Foxp3+ Tregs are fine-tuned in balancing T cell-dependent immune protection and immune injury, a balance that may determine viral persistence versus clearance (12, 13).

In addition to Tregs, the recently described programmed death-1 (PD-1) and T cell Ig and mucin domain protein-3 (Tim-3) pathways represent other mechanisms to maintain the intricate balance between positive and negative signals to ensure adequate immune protection against pathogens and yet prevent overactivation...
of lymphocytes and thus immune injury or autoimmunity (14, 15). Compelling evidence is emerging for the role of PD-1 and Tim-3 in peripheral immune tolerance, autoimmune response, and anti-tumor and antiviral immune evasion, which has raised the possibility that a therapeutic strategy targeting these inhibitory pathways might be of clinical benefit, including for those with HCV infection (16, 17). Recently, we and others have demonstrated that PD-1 negatively regulates CD4+CD25+Foxp3+ Tregs during HCV infection (18, 19). The role of Tim-3 in regulation of Foxp3+ Tregs during HCV infection remains to be determined. Tim-3 is a type I membrane protein with a structurally conserved Ig variable domain and mucin stalk that connects to an intracellular tail (15).

Initially identified as preferentially expressed on activated Th1 cells, but not Th2 cells, Tim-3 has since been found to be expressed on, and have more complex functions in, other immune cells, including Tregs (15). Tim-3’s natural ligand, galectin-9 (Gal-9), has been shown to be upregulated during chronic HCV infection, resulting in expansion of CD4+CD25+Foxp3+ Tregs, contraction of CD4+ Teffs, and apoptosis of HCV-specific CTLs (20). Thus, this inhibitory pathway may not only regulate proliferation and differentiation of naive T cells, but also control responses of Teffs, memory cells, and perhaps Tregs.

Foxp3+ Treg accumulation and PD-1– or Tim-3–mediated T cell exhaustion and/or apoptosis are characteristic of chronic HCV infection (1, 2). Although Tim-3 has been shown to play a central role in Teff dysregulation (15–17), its role in Treg development and functional regulation is poorly understood. To investigate the role of Tim-3 in regulation of the balance between Foxp3+ Tregs and Foxp3+ Teffs, and to explore its potential role in persistent HCV infection, we examined Tim-3 expression on CD4+CD25+Foxp3+ Tregs and CD4+CD25–Foxp3– Teffs and its function in their regulation. In this study, we provide pilot evidence suggesting that the Tim-3 pathway alters the numbers and ratios of Foxp3+ Tregs and Foxp3+ Teffs by regulating cell proliferation and apoptosis during HCV infection, and we discuss the potential significance of these complex interactions in the phenomenon of viral persistence.

Materials and Methods

Subjects

The study subjects were composed of two groups of populations. The first group comprised 89 chronically HCV-infected subjects. HCV genotype and viral load were performed by the Lexington Veterans Affairs Medical Center, and all subjects were virologically and serologically positive for HCV, prior to the IFN/ribavirin treatment. The second group included 29 age-matched healthy subjects who were negative for hepatitis B virus, HCV, and HIV infections. Written informed consent was obtained from all participants, and the study was approved by an Institutional Review Board of East Tennessee State University and the James H. Quillen Veterans Affairs Medical Center.

Cell isolation and culture

Human PBMCs were isolated from whole blood using Ficoll density gradient centrifugation (Atlanta Biologics, Lawrenceville, GA). Human CD4+ T cells were purified from PBMCs by magnetic beads with column purification according to the manufacturer’s instructions (Miltenyi Biotec, Auburn, CA). CD4+CD25+ T cells were purified using a CD4+CD25+ Treg isolation kit (Miltenyi Biotec). Briefly, human CD4+ T cells were negatively purified by depletion of non-CD4+ cells over a MACS column after labeling PBMCs with a mixture of biotin-conjugated mAbs and anti-biotin microbeads; then, the enriched CD4+ T cell fraction was subjected to CD25 positive selection using CD25-conjugated microbeads and separated using a MACS column. The unlabeled CD4+CD25+ T cell fraction was obtained by collecting the effluent. Isolated PBMCs, CD4+ T cells, CD4+CD25+ T cells, and CD4+CD25– T cells cultured with RPMI 1640, containing 10% FBS (Life Technologies, Gaithersburg, MD), 100 mg/ml penicillin-streptomycin (Thermo Scientific, Logan, UT), and 2 mM l-glutamine (Thermo Scientific) and other stimulators as described in the text.

Flow cytometry

PBMCs were stimulated by anti-CD3/CD28 (1 µg/ml each; InvivoGen, San Diego, CA) for 24 h, in the presence of brefeldin A (BioLegend, San Diego, CA) for the last 6 h to inhibit cytokine secretion. Cell surface staining was carried out using FITC-CD4 (Miltenyi Biotec), allophycocyanin-CD25 (Miltenyi Biotec), PE-CD3 (R&D Systems), PE-annexin V (BD Biosciences), PE-CD3, and allophycocyanin-CD28 (eBioscience), followed by intracellular staining for PerCP-Cy5.5-Foxp3 (eBioscience), PE-IL-2 (Miltenyi Biotec), and PE-Ki67 (eBioscience) in parallel wells using the same purified PBMCs from the patients. For limited subjects depending on the available of samples, CD4+ or CD4+CD25+ T cells were purified as described above for simultaneously detecting IL-2, Ki67, Tim-3, and Foxp3 expression in the same wells. The intracellular cytokine staining was carried out using an Inside Stain Kit (Miltenyi Biotec). Unstained and isotype-matched control Abs (eBioscience) were used to determine the background level of staining and fluorescence minus one controls were used to properly set the compensation and gate. The cells were analyzed on a FACSCalibur flow cytometry (BD Biosciences, Franklin Lakes, NJ) and CellQuest or FlowJo software.

Tim-3 blockade

PBMCs or purified CD4+ and CD4+CD25+ T cells from healthy and/or HCV patients were incubated with LEAF anti-human Tim-3 Ab (10 µg/ml; BioLegend) or control IgG overnight, followed by stimulation with anti-CD3/CD28 Ab (1 µg/ml each; InvivoGen) for 48 h, then subjected for flow cytometric analysis of Foxp3, Ki67, IL-2, or annexin V expressions. The cultures were carried out in the presence of recombinant human IL-2 (50 U/ml; R&D Systems) for 6 d in CFSE assays.

Western blot

The purified CD4+CD25+ cells were treated as described in the Tim-3 blocking assay and the expressions of phosphorylated and total STAT-5 were measured by Western blot. Briefly, the CD4+CD25+ T cells were lysed in 1× RIPA lysis buffer (Boston Bioproducts, Ashland, MA) supplemented with Halt Protease and Phosphatase Inhibitor Cocktail (Thermo Scientific, Rockford, IL). Cell lysates were centrifuged for 30 min at 4˚C, and the protein concentrations were measured. Protein samples were thereafter combined with 4× Laemmli sample buffer (Boston BioProducts), denatured, and separated by SDS-PAGE. Following transfer to Amersham Hybond-P membrane (GE Healthcare, Piscataway, NJ), the membrane was blocked and probed with anti-phospho-STAT-5 or total STAT-5 Ab (Cell Signaling Technology, Danvers, MA). The membrane was incubated with a HRP-conjugated secondary Ab (Millipore, Temecula, CA) and developed by Amersham ECL plus Western blotting detection reagents (GE Healthcare Biosciences, Pittsburgh, PA) on Kodak X-Omat LS x-ray film (Sigma-Aldrich, St. Louis, MO). Specific bands were quantified by densitometry.

Proliferation assays

Purified CD4+CD25+ or CD4+CD25– T cells were labeled with CFSE (2.5 µM; Invitrogen) for 10 min at 37˚C per the manufacturer’s instruction, washed with complete medium, and cultured (5 × 10^5) or cocultured with purified Tregs or T responder cells (Tregs) at a 1:1 cell ratio (the physiological ratio of Tregs to Teffs is ~1:16 in the peripheral blood of healthy subjects) in a 96-well plate in the presence or absence of different combinations of anti-CD3/CD28 Abs (1 µg/ml each; InvivoGen), recombinant human IL-2 (50 U/ml; R&D Systems), LEAF anti-human Tim-3 Ab, and control blocking Ab (10 µg/ml; BioLegend) as described in the text. After 6 d stimulation, cells were analyzed with a FACS flow cytometry (BD Biosciences).

Statistical analysis

Study results are summarized for each group and results are expressed as the means ± SD. Comparison between two groups is performed using multiple comparisons testingleast significant difference or Turkey’s procedure depending on the ANOVA F test by SPSS 18 software or Prism software (version 4; GraphPad Software) using a nonparametric Mann–Whitney U test. Bonferroni correction is applied for those samples with multiple tests. A pairwise t test is used to compare the significance of changes in Tim-3 blockade experiments. Correlations were analyzed by a Pearson correlation program. Values of *p < 0.05, **p < 0.01, and ***p < 0.001 were considered significant or very significant.
Results

Accumulation of CD4+CD25+Foxp3+ Tregs in chronic HCV infection

As an initial approach to characterize their functions following TCR activation, Tregs were identified in PBMCs isolated from individuals with chronic HCV infection and healthy subjects (HS). TCR stimulation by anti-CD3/CD28 activates T cells and upregulates expressions of Tim-3, CD25, Foxp3, Ki67, and IL-2 as well as the apoptosis marker annexin V on CD4+ T cells (Supplemental Fig. 1). Therefore, to simultaneously compare Tim-3 expression and cell differentiation and functions, resting PBMCs isolated from both HCV-infected patients and HS were TCR stimulated with anti-CD3/CD28 for all experiments described in this study. As we reported previously (18), CD4+CD25+ T cells accumulated in patients with chronic HCV compared with HS (Fig. 1A). Because CD25 is also a cell activation marker, Foxp3 was employed to distinguish this mixed population into CD4+CD25+Foxp3+ Tregs and CD4+CD25+Foxp3- Teffs. As shown in Fig. 1B, the absolute percentages of CD4+CD25+Foxp3+ Tregs were found to be significantly higher in chronically HCV-infected patients than in HS; conversely, the percentages of CD4+CD25+Foxp3- Teffs were significantly lower in HCV-infected patients versus HS. Likewise, the mean fluorescence intensities (MFIs) of Foxp3 expression were equivalent to the cell number frequencies detected (data not shown), and the relative ratios of Foxp3+/CD4+CD25+ were also markedly elevated in the peripheral blood of HCV-infected subjects compared with those of HS (Fig. 1C).

Upregulation of Tim-3 on CD4+CD25+Foxp3+ Tregs in chronic HCV infection

To determine the relationship between Tim-3 expression and Foxp3+ Treg induction, PBMCs isolated from chronically HCV-infected patients and HS were TCR stimulated as described above, followed by flow cytometric analysis of Tim-3 expression on bulk CD4+ T cells, CD4+CD25+ Foxp3+ Tregs, and CD4+CD25+Foxp3- Teffs. As shown in Fig. 2A, Tim-3 expression was significantly higher in bulk CD4+ T cells and mixed CD4+CD25+ T cells of HCV patients compared with HS. Notably, Tim-3+ cell numbers were also found to be significantly higher in CD4+CD25+Foxp3+ Tregs and CD4+CD25+Foxp3- Teffs in HCV patients when compared with HS, and this held true when MFIs of Tim-3 expression levels were examined (Fig. 2B). The specificity of Tim-3 expression on Tregs was confirmed by flow cytometric analysis using different sources of Tim-3 mAbs (R&D System/BioLegend). Importantly, Tim-3 expression on CD4+CD25+Foxp3+ Tregs was relatively higher than those CD4+CD25+Foxp3- Teffs, in terms of positive cell number and MFIs, in HCV-infected individuals; however, this phenomenon was not found in HS (Fig. 2A, 2B), suggesting that HCV upregulates Tim-3 on Foxp3+ Tregs. The relationship between Tim-3 and Foxp3 expressions in Tregs of HCV patients was determined by Pearson correlation analysis. Indeed, Tim-3 expression on Tregs was found to be closely associated and significantly correlated with Foxp3 expression in CD4+CD25+ T cells (Fig. 2C). We also analyzed Tim-3 expression on CD4- T cell (CD8) populations and found that Tim-3 markedly increased on CD4-CD25-, CD4+CD25-, and CD4-CD25+Foxp3- T cells in HCV patients compared with those of HS (data not shown).

Tim-3 expression positively correlates with Ki67 expression and proliferation of Foxp3+ Tregs

Ki67 (also known as MKI67) is a nuclear protein that is associated with ribosome RNA transcription, functioning for cell expansion and thus serving as a cell proliferation marker (21). To investigate...
FIGURE 2. Upregulation of Tim-3 on CD4+CD25+Foxp3+ Tregs in chronic HCV infection. (A) Flow cytometry analyses of PBMCs from HS and HCV-infected patients, stained with conjugated mAbs: FITC-CD4, allophycocyanin-CD25, PerCP-Cy5.5-Foxp3, and PE-Tim-3. The cells were gated on CD4+ T cells (dot plot upper column) and CD4+CD25+ subpopulations (dot plot upper right column for Foxp3+ Tcell analysis) with frequency in each quadrant indicated in the representative dot plots; summary data of Tim-3 expression on CD4+, CD4+CD25+, and CD4+CD25+Foxp3+ Tregs and CD4+CD25+Foxp3+ Teffs examined in HS and HCV-infected patients, calculated based on each specific cell populations, are shown below. Each symbol represents a single individual, and the horizontal bars represent median values. *p < 0.05, **p < 0.01. (B) Summary data (mean ± SD) of MFI of Tim-3 expression on CD4+CD25+Foxp3+ Tregs and CD4+CD25+Foxp3+ Teffs from HS versus HCV patients. *p < 0.05, **p < 0.01. (C) Correlation analysis between Foxp3 expression in CD4+CD25+ cells and Tim-3 expression on CD4+CD25+Foxp3+ Tregs in HCV-infected individuals.

whether Foxp3+ Treg accumulation in the peripheral blood of HCV-infected patients reflects an increase of cell proliferation, we assessed Ki67 expression in Foxp3+ Tregs and Foxp3+ Teffs in HCV-infected patients versus HS. As shown in Fig. 3A, representative dot plots and summary data of Ki67 expression on gated CD4+, CD4+CD25+, and CD4+CD25+Foxp3+ Tregs and CD4+CD25+ Foxp3+ Teffs from healthy versus HCV-infected subjects, Ki67 expression was found to be considerably lower in bulk CD4+ T cells, in mixed CD4+CD25+ T cells, and in CD4+CD25+Foxp3− Teffs in PBMCs from HCV patients compared with HS in response to ex vivo TCR stimulation. This is consistent with our previous reports showing that Teffs exhibit an exhausted phenotype during HCV infection (22–31). However, the opposite was observed in Tregs, in that Ki67 expression was significantly higher in CD4+CD25+Foxp3+ Tregs in chronically HCV-infected patients compared with HS. Remarkably, Foxp3+ Tregs exhibited higher Ki67 expression than Foxp3− Teffs in HCV-infected patients, whereas Foxp3+ Tregs exhibited lower Ki67 expression than Foxp3− Teffs in HS, suggesting greater expansion of CD4+CD25+ Foxp3+ Tregs in HCV infection, but greater proliferation of CD4+CD25+Foxp3− Teffs in HS, in response to TCR stimulation. Interestingly, most Ki67+ cells were Tim-3−, regardless of Foxp3 expression (data not shown), suggesting that Tim-3 is indeed involved in negatively controlling both Foxp3+ and Foxp3− T cell expansion. Moreover, Tim-3 was expressed relatively higher on Foxp3+ Tregs than on Foxp3− Teffs (Fig. 2), and Tim-3 expression positively correlated with Ki67 expression in Foxp3+ Tregs during HCV infection (Fig. 3B), indicating that HCV-mediated Tim-3 expression is associated with Foxp3+ Treg proliferation. Correspondingly, Foxp3 expression in CD4+CD25+ T cells was positively associated with Ki67 expression in Foxp3+ Tregs (Fig. 3C) and inversely correlated with Ki67 expression in Foxp3− Teffs (Fig. 3D), supporting the notion that expanded Tregs may inhibit Teff proliferation during HCV infection.

To consolidate this notion, we analyzed the inhibitory function of CD4+CD25+ T cells in our coculture system. To this end, CFSE-labeled CD4+CD25+ Tresps of HCV-infected individuals were stimulated with anti-CD3/CD28 and IL-2 (50 U/ml) alone or in coculture with purified autologous CD4+CD25+ Tresp or CD4+CD25+ Treg-containing cells (1:1 ratio) for 6 d, and CFSE dilutions in Tresps were analyzed as a means to measure T cell proliferation. As shown in Fig. 4E, representative dot plots from three HCV-infected subjects, anti-CD3/CD28 and IL-2 stimulation promoted Tresp proliferation, whereas CD4+CD25+ T cells containing Foxp3+ Tregs significantly inhibited CD4+CD25+ Foxp3− Tresp proliferation when compared with those cocultured with CD4+CD25− controls. These results were reproducible in multiple independent experiments, as summary data indicate from eight HCV-infected individuals shown on the right in Fig. 4E.

Tim-3 expression on Foxp3+ Tregs inversely correlates with IL-2 production by Foxp3− Teffs

To further address the role of Tim-3 in regulation of T cell function, we examined the relationship between Tim-3 expression and IL-2 production by Foxp3+ Tregs and Foxp3− Teffs. To this end, PBMCs isolated from both HCV-infected and HS were TCR stimulated as described above, followed by flow cytometric analysis of intracellular IL-2 production by bulk CD4+ T cells, CD4+CD25+ mixed populations, CD4+CD25+Foxp3+ Tregs, and CD4+CD25+Foxp3− Teffs. As shown in Fig. 4A, in HCV-infected
or uninfected subjects, virtually all of the IL-2–producing cells were CD4+CD25+Foxp3+ Teffs, whereas CD4+CD25+Foxp3+ Tregs produced little if any IL-2, agreeing with the notion that Foxp3+ Tregs are in an anergic state. Consistent with the inhibited phenotype of T cells in chronically infected patients, HCV patients had significantly less IL-2–producing CD4+, CD4+CD25+, and CD4+CD25+Foxp3- Teffs than did HS (Fig. 4A). In both chronically HCV-infected patients and HS, however, activated CD4+CD25+Foxp3+ Teffs produced markedly higher levels of IL-2 than did CD4+CD25+Foxp3- nonactivated Teffs following TCR stimulation (data not shown).

To elucidate the relationship between Tim-3 expression on Foxp3+ Tregs/Foxp3+ Tregs and IL-2 production, we purified CD4+ T cells from eight HS and eight HCV-infected patients and simultaneously examined IL-2, Tim-3, CD25, and Foxp3 expressions in the same cells. Again, we observed that IL-2 was primarily expressed by Foxp3+ Teffs but not Foxp3+ Tregs, as well as decreased IL-2 production by Teffs isolated from HCV-infected subjects when compared with HS (Fig. 4B, upper panel). Importantly, most IL-2–producing Teffs were Tim-3-, regardless of infection status (Fig. 4B, lower panel and summary data on the right), suggesting that Tim-3 negatively controls IL-2 expression in both HS and patients with HCV infection. Moreover, IL-2–producing Teffs were found to be inversely associated with Tim-3 expression on not only CD4+CD25+Foxp3- Teffs (Fig. 4C), but also on CD4+CD25+Foxp3+ Tregs (Fig. 4D), supporting the notion that Tim-3–associated Foxp3+ Tregs may suppress the function of Foxp3+ Teffs, as shown in Fig. 3D.
Foxp3+ Tregs are resistant and Foxp3- Teffs are sensitive to TCR activation-mediated cell apoptosis that is reversible by blocking Tim-3 signaling.

We have demonstrated that HCV infection increases Tim-3 expression (Fig. 2) that is associated with the absolute numbers of Foxp3+ Tregs (Fig. 1B), perhaps through enhanced cell proliferation by higher Ki67 expression in Foxp3+ Tregs (Fig. 3B); meanwhile, HCV infection also increases the relative ratios of Foxp3 expression in CD4+CD25+ T cell populations (Fig. 1C). To explore whether this might be due to apoptosis of type 1 IL-2–producing CD4+CD25+ T cells during HCV infection, we examined whole PBMCs gated on CD4+CD25+ T cells during HCV infection, we examined whole PBMCs gated on CD4+CD25+ T cells during HCV infection, we examined whole PBMCs gated on CD4+CD25+ T cells during HCV infection, we examined whole PBMCs gated on CD4+CD25+ T cells during HCV infection, we examined whole PBMCs gated on CD4+CD25+ T cells during HCV infection.

Intriguingly, IL-2–producing Foxp3+ Teffs were found to be more sensitive to TCR activation-induced cell apoptosis, in a dose-dependent manner, whereas non-IL-2–producing Foxp3+ Tregs were resistant to apoptosis. These data were reproducible in repeated experiments with purified CD4+CD25+ T cells in both HCV-infected and HS, but they were more prominently observed in HCV-infected subjects. To rule out that this lack of susceptibility to anti-CD3/CD28–mediated apoptosis in CD4+CD25+ Foxp3+ Tregs was simply due to a lack of TCR, we purified CD4+ T cells from five HCV-infected subjects and five HS, stimulated as described above, and then stained for Foxp3, CD25, CD3, and CD28. As shown in Supplemental Fig. 2, CD3 and CD28 are highly expressed on these cells and exhibit no expression differences in Foxp3+ Tregs versus Foxp3- Teffs.

Interestingly, annexin V expression on IL-2+Foxp3- Teffs was observed more significantly on whole PBMCs than on purified CD4+CD25+ T cells (Fig. 5A versus Fig. 5B), suggesting that other types of cells, such as dendritic cells or NK cells and/or their secreted cytokines, might be contributing to the TCR activation-induced cell apoptosis. Most importantly, blockade of Tim-3 signaling on CD4+CD25+ cells significantly reversed the TCR activation-mediated apoptosis of Foxp3- Teffs (Fig. 5C). We observed the same results in purified CD4+CD25+ T cells gated on IL-2+Foxp3+ T cells and IL-2+ Foxp3+ Tcells in that blocking Tim-3 signaling significantly rescued the apoptosis of IL-2–producing Foxp3+ Teffs (Fig. 5D).

Tim-3 REGULATES Treg DEVELOPMENT/FUNCTION IN HCV INFECTION

FIGURE 4. Upregulation of Tim-3 on CD4+CD25+Foxp3+ Tregs inversely correlates with the inhibition of IL-2–producing CD4+CD25+Foxp3- Teffs in chronic HCV infection. (A) Representative dot plots of PBMCs stained with FITC-CD4, allophycocyanin-CD25, PerCP-Cy5.5-Foxp3, and PE-IL-2. The cells were gated on CD4+CD25+ T cells (upper right column) and IL-2 expression, primarily by Foxp3+ Teffs, in HS versus HCV patients is shown. Summary data for comparison of the frequency of IL-2–expressing cells in CD4+, CD4+CD25+, and CD4+CD25+Foxp3- Teffs in HS and HCV patients is shown on the right. Each symbol represents a single individual, and the horizontal bars represent median values. *p < 0.05. (B) Representative zebra plots of purified CD4+ T cells stained with FITC-CD4, allophycocyanin-Tim-3, PerCP-Cy5.5-Foxp3, and PE-IL-2. The cells were gated on CD25+ T cells, and IL-2 expression, primarily by Foxp3+ Teffs, as shown in the upper panel, in Tim-3+ and Tim-3+ cells from HS and HCV patients is shown below. Summary data of IL-2 expression by Tim-3+ versus Tim-3+ Teffs from eight HS and eight HCV patients are shown on the right. **p < 0.01, ***p < 0.001. (C) Correlation analysis between Tim-3 and IL-2 expressions by CD4+CD25+Foxp3+ Tregs using purified CD4+ T cells from HS and HCV-infected individuals. (D) Correlation analysis between IL-2 expression by CD4+CD25+Foxp3+ Tregs and Tim-3 expression on CD4+CD25+Foxp3+ Tregs using purified CD4+ T cells from HS and HCV-infected individuals.
Blockade of Tim-3 signaling enhances CD4+CD25+ T cell proliferation by improving STAT-5 signaling

To further investigate the role of the Tim-3 pathway on T cell regulation, we examined the effect of blocking Tim-3 signaling on proliferation of CD4+CD25+ T cells. To this end, CFSE-labeled CD4+CD25+ T cells from HCV-infected patients were incubated with anti-Tim-3 blocking Ab overnight, stimulated with anti-CD3/CD28 (1 μg/ml) and IL-2 (50 μg/ml) for 6 d, followed by Foxp3 double staining and flow cytometric analysis of CFSE dilution as a means of measuring Foxp3+ Treg proliferation. As shown in Fig. 6A (left panel), anti-CD3/CD28 and IL-2 stimulation promoted CD4+CD25+Foxp3+ T cell proliferation, and this effect could be significantly enhanced by blockade of Tim-3 signaling, compared with cells treated with TCR and IL-2 stimulation in the presence of IgG control. These data were reproducible in multiple experiments using purified CD4+CD25+ T cells isolated from eight HCV-infected subjects and gated on Foxp3+ Tregs, as summarized in Fig. 6A, right panel. We have previously demonstrated that dampened STAT-1 and STAT-5 proteins are involved downstream of PD-1 or Tim-3 signaling in inhibition of monocyte IL-12 production during HCV infection (32–35). To elucidate the intracellular pathways that might be involved in Tim-3 signaling in the T cell lineage, purified CD4+CD25+ T cells treated as described above were also subjected to Western blot analysis for the phosphorylation of STAT proteins. In line with the increase in T cell proliferation, CD4+CD25+ T cells treated with Tim-3 blocking Ab exhibited enhanced phosphorylation of STAT-5, but not STAT-1, protein (data not shown), compared with cells treated with control IgG (Fig. 6B). These results suggest that the Tim-3 pathway negatively regulates CD4+CD25+ T cell proliferation through inhibiting STAT-5 signaling.

Because it appeared that Tim-3 was upregulated on Foxp3+ Tregs to a greater extent than on Foxp3− Teffs, and the susceptibility of these two distinct type of cells to TCR activation-mediated apoptosis differed following T cell activation (Figs. 2, 5), we further determined whether blocking Tim-3 signaling ex vivo might expand Foxp3+ Tregs and Foxp3− Teffs differentially and, in doing so, correct the imbalance observed during chronic infection. To this end, CFSE-labeled purified CD4+ T cells from chronically HCV-infected patients were treated as described above and then double stained for Foxp3, followed by flow cytometric analysis of CFSE dilution in Foxp3+/− cell populations. Although
blockade of Tim-3 signaling on CD4+ T cells enhanced the proliferation of both Foxp3+ Tregs and Foxp3− Teffs, this effect was observed more prominently in CD4+CD25+Foxp3+ Tregs than in CD4+CD25+Foxp3− Teffs; that is, Tregs were relatively less expanded than Teffs (Fig. 6C, left panel). This more significant expansion of Foxp3− Teffs versus Foxp3+ Tregs following Tim-3 blockade is in concurrence with their susceptibility to apoptotic rescue upon Tim-3 blockade (Fig. 5), leading to a reduction of the Foxp3+ Treg/Foxp3− Teff ratio. Cumulative experiments to confirm these data from eight HCV-infected patients, as summarized in Fig. 6C, right panel, demonstrated that the increased Foxp3+ Treg/Foxp3− Teff ratio established in vivo during HCV infection was corrected by blocking Tim-3 signaling ex vivo. We further confirmed this notion by directly examining Foxp3 frequency in CD4+CD25+ T cells isolated from chronically HCV-infected individuals as well as HS, and treated with anti–Tim-3 versus control IgG ex vivo. As shown in Fig. 6D (representative dot plots), the upregulation of Foxp3+ Tregs during HCV infection was significantly reversed by blockade of Tim-3 signaling. These data were reproducible with CD4+ T cells isolated from eight HCV patients and eight HS examined, as summarized in Fig. 6D, right panel.

We have previously reported that PD-1 modulates Tregs and suppresses T cell responses during HCV infection (18). In this study, we also found that blocking PD ligand-1 ligation on CD4+ CD25+ T cells promoted Foxp3− Teff expansion more substanti-
tially than Foxp3+ Tregs, leading to reduced frequencies of Foxp3+ Tregs in bulk CD4+ T cells from HCV-infected patients following ex vivo treatment by anti-PD ligand 1 Ab. However, we did not observe synergistic effects on promoting CD4+CD25+ T cell proliferation by dual blockade of PD-1 and Tim-3 pathways (data not shown). We also did not find synergistic effects on reversing increased Treg frequencies established during HCV infection by dual blockade of PD-1 and Tim-3 pathways (data not shown), perhaps due to the fact that these negative pathways are linked or associated in a network of intracellular signaling (28, 33, 34) such that blocking either PD-1 or Tim-3 alone could correct the imbalance of Foxp3+ Tregs to Foxp3− Teffs established during HCV infection.

Discussion

Both the Tim-3 pathway and Foxp3+ Tregs control the balance between an adequate protective immune response and suppression of T cell-dependent immunopathology that contribute to viral persistence. However, it remains unclear how Treg development and function are regulated to fine-tune this balance, allowing control of excessive T cell-mediated injuries without completely suppressing antiviral T cell responses. Whereas Tim-3/Gal-9 interactions have been shown to negatively regulate Teffs, their role in regulating Foxp3+ Tregs is poorly explored. In this study, we observed that chronic HCV infection was characterized by relatively higher numbers and ratios of CD4+CD25+Foxp3+ Tregs, with lower CD4+CD25−Foxp3+ Teffs, upon TCR activation. Intriguingly, the 1) accumulation of CD4+CD25+Foxp3+ Tregs that express the proliferation marker Ki67 but not intracellular IL-2, and 2) the contraction of CD4+CD25−Foxp3+ Tregs that are the primary IL-2–producing cells, coincided with Tim-3 expression on Tregs during chronic HCV infection. Tim-3 expression on Foxp3+ Tregs is negatively correlated with their Ki67 expression, but it was inversely associated with expansion of IL-2–producing Teffs. Moreover, most Ki67+ and IL-2− cells were Tim-3−. In addition to cell proliferation, Foxp3+ Tregs were found to be more resistant to, and Foxp3+ Teffs more sensitive to, TCR activation-induced cell apoptosis. The apoptosis of IL-2–producing Foxp3+ Teffs could be rescued by blocking Tim-3 signaling in purified CD4+CD25+ T cells, and this appeared to reverse the imbalance of Foxp3+ Tregs/Foxp3− Teffs established during HCV infection.

Given the relatively higher Tim-3 levels expressed on Foxp3+ Tregs versus Foxp3− Teffs, one would expect that blocking Tim-3 signaling could enhance proliferation of Foxp3+ Tregs to a greater extent than Foxp3− Teffs through improving STAT-5 phosphorylation. However, we observed more significant Foxp3− Teff expansion upon blocking the Tim-3 pathway, resulting in a correction of the imbalanced ratio of Foxp3+ Tregs/Foxp3− Teffs established during chronic HCV infection. It is feasible that Tim-3–mediated cell apoptosis has a more prominent effect than its inhibitory effects on cell proliferation, and it appears that the apoptotic rescue effect on Foxp3+ Teffs outweighs proliferative rescue effect on Foxp3− Tregs following Tim-3 blockade, especially given that the final result involves ratios of Foxp3+ Tregs/Foxp3− Teffs are much different from what is observed prior to Tim-3 blockade.

Based on these findings, we propose a model in which the Tim-3 pathway controls regulatory and effector T cell balance during HCV infection (Fig. 7). This model is plausible by providing an understanding of the pathogenesis of HCV persistence. The mechanisms by which HCV-mediated Tim-3 expression regulates T cell responses in vivo are likely multiple and include induction of apoptosis of pathogenic Tim-3−Foxp3− Teffs and induction and/or expansion of Tim-3+Foxp3+ Tregs, leading to decreased proinflammatory cytokine and increased anti-inflammatory cytokine secretion during chronic HCV infection. As we have shown in this study, although more IL-2–producing CD4+CD25+Foxp3+ Teffs underwent apoptosis, fewer non-IL-2–producing CD4+CD25−Foxp3+ Tregs were annexin V+ (Fig. 5). One interpretation would be that Tim-3/Gal-9 interactions led to increased sensitivity of Foxp3+ Teffs and increased resistance of Foxp3+ Tregs to apoptosis, with this differential susceptibility to cell apoptosis plus the differential ability of Tim-3–associated Foxp3+− cell proliferation resulting in an altered Treg/Teff balance in chronic infection, which perhaps accounts in part for the counterregulatory/ anti-inflammatory effect of this inhibitory pathway.

In addition to cell death through apoptosis, the Tim-3 pathway could be involved in the induction and/or expansion of Foxp3+ Tregs. Recently, Tim-3 and Gal-9 mRNA levels were shown to positively correlate with Foxp3 mRNA expression in PBMCs of rheumatoid arthritis patients and were found to be significantly higher in patients with low disease activity compared with those with moderate to high disease activity. This suggests that the Tim-3/Gal-9 pathway could exert its suppressive effect on rheumatoid arthritis disease activity by modulation of Foxp3+ Tregs (36). In HCV infection, Tim-3 had been found to be expressed by activated but not naive T cells; >50% of T cells in HCV-induced ocular lesions in mice express Tim-3, and blocking Tim-3 signaling resulted in more severe lesions (37). Importantly, Gal-9 administration could diminish the severity of ocular lesions by inhibiting Th1 cells and promoting Tregs (37). In this study, we show that in HCV infection, the Tim-3 pathway appears to control Treg/Teff development and functions. This notion is supported by a positive correlation between Tim-3 and Foxp3 (Fig. 2C) or Ki67 (Fig. 3B, 3C) expressions in Tregs, but negative association between Tim-3 and Foxp3 expressions by Tregs and Ki67 expression (Fig. 3D) or IL-2 production (Fig. 4C, 4D) by Foxp3+ Tregs, and that blocking Tim-3 signaling corrected the imbalance of Foxp3+ Tregs to Foxp3− Tregs established during HCV infection (Fig. 6). Most recently in an in vitro cell coculture system, we have also demonstrated that HCV-infected hepatocytes that express higher levels of Gal-9 and TGF-β can convert naïve CD4+ T cells into Foxp3+ Tregs (with higher levels of TGF-β/IL-10 expression) and inhibit IL-2–producing Foxp3+ Teff proliferation through the Tim-3 pathway, leading to a significant balance shift in Foxp3+ Tregs to Foxp3− Tregs (X.J. Ji, C.J. Ma, J.M. Wang, X.Y. Wu, T. Niki, M. Hirashima, J.P. Moorman, and Z.Q. Yao, submitted for publication). It is possible that this balance shift of Treg and Teff responses contributes to T cell-mediated persistent viral hepatitis or viral clearance.

Although HCV is not considered to be an immunosuppressive virus in the manner of HIV, it does cause a general as well as virus-specific immunodyregulation, as evidenced for example by the fact that individuals with chronic HCV infection respond poorly to vaccinations (38–40). Multiple mechanisms have been described for Treg-mediated immunosuppression. First, Tregs can directly kill Teffs in a cell contact-dependent manner. Recent studies report that Tregs mediate cell death or apoptosis through a Fas/Fas ligand interaction and a granzyme B-dependent, perforin-independent mechanism (41). Indeed, Fas and Fas ligand have been reported to be upregulated on HCV-infected livers and Teffs to cause liver damage (42, 43). Second, Tregs can modulate the activities of Teffs by production of immunosuppressive cytokines, such as TGF-β and IL-10, which may regulate each other during T cell responses (44). Enhanced TGF-β has been identified in HCV infection, its polymorphism is associated with natural clearance of HCV infection, and its level dramatically deceased in HCV patients who respond to antiviral therapy (45, 46). Third, Tregs overexpress CD25 (IL-2R α-chain), perhaps compensating for a lack of endogenous IL-2 production by absorbing high amounts of
paracrine IL-2 essential for Treg proliferation, while depriving Teff of survival signaling. IL-2 triggers IL-2R downstream signaling pathways, including STAT-5 phosphorylation and translocation into the nucleus to activate gene transcription and promote cell proliferation. Our data suggest that Tim-3 negatively controls both Foxp3+ Treg and Foxp3+ Teff expansion through STAT-5 signaling. From this point of view, homeostasis between Tregs and Teffs would be maintained by expression levels of Tim-3 on these cells, prohibiting exaggerated activation or suppression of Teffs. In the scenario of HCV infection, however, IL-2 mRNA transcription and translation are directly inhibited and IL-2-producing cells are prone to apoptosis; moreover, the poorly available IL-2 is also captured by IL-2-consuming Tregs via highly expressed IL-2R to be used for expansion. Therefore, IL-2-producing Teffs may be deprived of survival cytokines and die by apoptosis (9, 47), as we observed in this study (Fig. 5). Our results are consistent with recent findings that support the notion of Tregs as an IL-2 “sink,” a critical mechanism for suppression of CD4+ Teffs via an IL-2 deprivation-induced apoptosis (48).

Tim-3 signaling might thus hamper defense against potentially pathogenic Teffs by simultaneously harnessing two mechanisms of peripheral tolerance: 1) the direct inhibition of proinflammatory Teffs, and 2) the regulation of Treg development and function. Foxp3+ Tregs induced by the Tim-3/Gal-9 interactions might assist in maintaining immune homeostasis, keeping the threshold for T cell activation high enough to safeguard against autoimmunity and prevent excessive injury; meanwhile, Tim-3 signaling in differentiated Tregs temper their inhibitory function, counterregulating Tregs to allow adequate protective immune responses to limit viral infection.

On the ligand side, Gal-9 expressed on nonhematopoietic cells in the inflamed liver, as well as on hematopoietic cells in the periphery where TGF-β is present, endows Tim-3/Gal-9 interactions with the capacity to promote Treg development and regulate Treg function. Although it is clear that Tim-3 is upregulated on Tregs during HCV infection (Fig. 2), little is known about the mechanisms that control its expression. A recent study revealed that Tim-3 expression in the Th1 lineage is controlled by the transcription factor T-bet (49), whose expression is regulated at the translational level by microRNA-146a (50). Whether T-bet and microRNAs also control Tim-3 transcription in Foxp3+ Tregs is yet to be determined and is under study in our laboratory. Additionally, we have also shown that HCV-induced PD-1, SOCS-1, and Tim-3 can cross-talk with each other in inhibiting immune responses (28, 33, 34). We thus are further determining whether a slow degradation of Tim-3 protein is occurring as it clusters with other inhibitory molecules, resulting in its upregulation in Tregs during HCV infection.

There are several limitations to this study and controversies in this area that must be noted. Our work focused on CD4+CD25+ Foxp3+ T cells as true Treg populations with regulatory activity, as much of the literature has suggested. We think that this is supported by our data showing a suppressive role for this population in coculture experiments (Fig. 3E), but we acknowledge that additional markers to identify Treg populations (such as CD127 staining) might be more specific and can be pursued in future studies. Additionally, data interpretation and understanding should take into consideration the fact that our in vitro experiments required TCR stimulations that induce such molecules as Tim-3 and Foxp3, but that are necessary in such studies to create an experimental level playing field for further assays.

In summary, HCV escapes host immunity by its capacity to generate quasispecies, to exert virus-specific as well as general immunosuppression, to develop Tregs, and to induce PD-1/Tim-3–mediated Teff exhaustion or apoptosis. To our knowledge, this study represents the first efforts toward characterizing a role for
HCV-induced Tim-3 expression in controlling Foxp3+ Treg development and function. Our results indicate that the Tim-3 pathway plays an important role in negative regulation of both CD4+CD25Foxp3+ Tregs and CD4+CD25Foxp3- Teffs, since blocking Tim-3 signaling significantly corrects the imbalance of the Treg/Teff ratio established during HCV infection. Tim-3’s regulatory effects depend on its expression levels on T cells, on its way to interact with Gal-9 (trans- versus cis-association), and on the milieu of other regulatory cytokines. The cellular balance shifts by altering Foxp3+ Treg to Foxp3− Teff cell number and ratio through regulation of cell proliferation and apoptosis. Because T cell-dependent immune responses are a double-edged sword, causing harmful tissue damage while attempting to eradicate viral infection, this study is fundamental for understanding the mechanisms by which the balance of Tregs and Teffs is fine-tuned through the Tim-3 pathway during HCV/host interactions. Therefore, the complex role of the Tim-3 pathway in Treg regulation must be taken into account when targeting this inhibitory pathway for immunotherapy.

Acknowledgments

We thank Dr. Chuan F. Li (Department of Surgery) and Dr. Donald B. Hoo-ver (Department of Pharmacology), East Tennessee State University Quillen College of Medicine, for the use of laboratory equipment and technical support. We also thank the supporting staffs from the Hepatitis (HCV/HIV) Program at the James H. Quillen Veterans Affairs Medical Center.

Disclosures

The authors have no financial conflicts of interest.

References