miR-451 Regulates Dendritic Cell Cytokine Responses to Influenza Infection

Carrie M. Rosenberger, Rebecca L. Podyminogin, Garnet Navarro, Guo-Wei Zhao, Peter S. Askovich, Mitchell J. Weiss and Alan Aderem

J Immunol 2012; 189:5965-5975; Prepublished online 19 November 2012; doi: 10.4049/jimmunol.1201437
http://www.jimmunol.org/content/189/12/5965

Supplementary Material
http://www.jimmunol.org/content/suppl/2012/11/19/jimmunol.1201437.DC1

References
This article cites 52 articles, 22 of which you can access for free at:
http://www.jimmunol.org/content/189/12/5965.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
miR-451 Regulates Dendritic Cell Cytokine Responses to Influenza Infection

Carrie M. Rosenberger,* Rebecca L. Podymo, Garnet Navarro,* Guo-Wei Zhao,† Peter S. Askovich,* Mitchell J. Weiss,† and Alan Aderem*©

MicroRNAs (miRNAs) are important posttranscriptional regulators in immune cells, but how viral infection regulates miRNA expression to shape dendritic cell (DC) responses has not been well characterized. We identified 20 miRNAs that were differentially expressed in primary murine DCs in response to the dsRNA agonist polyinosinic-polycytidylic acid, a subset of which were modestly regulated by influenza infection. miR-451 was unique because it was induced more strongly in primary splenic and lung DCs by live viral infection than by purified agonists of pattern recognition receptors. We determined that miR-451 regulates a subset of proinflammatory cytokine responses. Three types of primary DCs treated with antisense RNA antagomirs directed against miR-451 secreted elevated levels of IL-6, TNF, CCL5/RANTES, and CCL3/MIP1α, and these results were confirmed using miR-451null cells. miR-451 negatively regulates YWHAZ/14-3-3ζ protein levels in various cell types, and we measured a similar inhibition of YWHAZ levels in DCs. It is known that YWHAZ can control the activity of two negative regulators of cytokine production: FOXO3, which is an inhibitory transcription factor, and ZFP36/Tristetraprolin, which binds to AU-rich elements within 3′-untranslated regions to destabilize cytokine mRNAs. Inhibition of miR-451 expression correlated with increased YWHAZ protein expression and decreased ZFP36 expression, providing a possible mechanism for the elevated secretion of IL-6, TNF, CCL5/RANTES, and CCL3/MIP1α. miR-451 levels are themselves increased by IL-6 and type I IFN, potentially forming a regulatory loop. These data suggest that viral infection specifically induces miRNA that directs a negative regulatory cascade to tune DC cytokine production. The Journal of Immunology, 2012, 189: 5965–5975.

Dendritic cell (DC) recognition of microbes is instrumental for instructing innate and adaptive immunity to clear pathogens and establish immunological memory. The use of purified agonists has revealed the critical role of pattern recognition receptors in orchestrating DC responses, which has important implications for vaccine adjuvant design (1, 2). Influenza is an enveloped negative-sense ssRNA virus that is thought to be detected primarily by RNA-specific pattern recognition receptors. This concept is supported by impaired cytokine responses by influenza-infected cells lacking the RNA sensors TLR3, TLR7, and MAVS and no clear demonstration of host recognition of the 11 influenza-encoded proteins (3–7). Viral entry, assembly, and budding perturb normal cell biology, but it is unclear how sentinel cells integrate these potential signals from live viral infection with foreign RNA detection.

This study identifies a microRNA (miRNA) that is induced more strongly by influenza infection than stimulation with the purified dsRNA agonist polyinosinic-polycytidylic acid [poly(I:C)], a viral mimetic that is known to be detected by endosomal TLR3 and cytosolic RIG-I (8–10). miRNAs are important posttranscriptional regulators in immune cells, but their roles within DCs have not been well characterized (11). These small noncoding RNAs negatively regulate protein levels by interacting with target mRNAs by partial base pair complementarity, which blocks translation or triggers mRNA degradation (12). miRNAs can act as fine-tuners to titrate the levels of translatable mRNA as well as switches to repress protein production by maintaining mRNA levels below a threshold (13). Fine-tuning of protein levels by miRNAs has been shown to regulate developmental programs and cellular responses to infection and provide a restraint on inflammation (14–17). Expression of miRNAs and target mRNAs can be cell type–restricted, resulting in a cell lineage–specific role for this class of negative regulators in many systems (18).

The identification of negative regulatory networks is particularly relevant to understanding and manipulating DC biology. These cells rapidly secrete high levels of cytokines that orchestrate inflammatory responses aimed at controlling replicating pathogens. Cytokines drive a number of positive-feedback loops, and their production must therefore be tightly controlled to limit chronic inflammatory sequelae. Proinflammatory cytokine production can be inhibited at multiple regulatory points: signaling, transcription, RNA stability, translation, and secretion (19). The transcription factor FOXO3 negatively regulates proinflammatory cytokine gene expression, and FOXO3null DCs secrete increased IL-6, TNF, and CCL2/MCP-1 following viral infection (20). The protein ZFP36/Tristetraprolin posttranslationally represses the expression of numerous proinflammatory cytokines, including TNF, IL-6, CCL2/MCP-1, CCL3/MIP1α, CCL4/MIP-1β, and CXCL2/MIP-2.
by binding to AU-rich elements in their mRNA 3′-untranslated regions (UTRs) and promoting mRNA decay (21–24). Both FOXO3 and ZFP36 are inhibited by YWHAZ/14-3-3, an adaptor protein that modulates the activity of binding partners by controlling subcellular localization or kinase activity (25). YWHAZ binds FOXO3 and ZFP36 via phosphoserine-dependent interactions to inhibit the activity of these negative regulators by sequestering them from nucleic acid interactions (26–30). Regulation of YWHAZ itself is less well characterized. YWHAZ function is altered by its phosphorylation state, and its levels are stoichiometrically limiting in cells, rendering YWHAZ activity sensitive to the regulation of its expression level (25). In this study, we demonstrate that YWHAZ levels are inhibited by an miRNA specifically induced by viral infection. Reduced YWHAZ levels can relieve repression of ZFP36, resulting in negative regulation of proinflammatory cytokine expression by DCs.

Materials and Methods

Cell culture and mice

C57BL/6 mice (Charles River Laboratories) or MyD88−/− mice (Institute for Systems Biology, Seattle, WA) were injected s.c. between the shoulder blades with 6 × 106 B6-melanoma cells expressing FLT3L to expand the DC compartment. After 2 wk, spleens and lungs were isolated, enzymatically dissociated using Liberase Blendzyme III (Roche), and DCs isolated by AutoMACS magnetic bead purification using pan-DC beads (specific for CD11c and plasmacytoid DC Ag-1 [PDCA1]; Miltenyi Biotec). Cell purity was measured by flow cytometry of CD11c expression and was >95% in each experiment. This purification scheme yielded a mixture of conventional CD11c+DCs as well as PDCA1+ plasmacytoid cells, and the ratio of these two populations was consistent between experiments. These splenic DCs were used for all experiments, unless otherwise noted. To isolate specific DC populations, FLT3L-expanded spleens were enzymatically dissociated, RBCs removed using ACK lysis solution (Sigma-Aldrich), B cells depleted using CD19+ AutoMACS microbeads, stained by FACS, and sorted for CD11c+PDCA1+ (plasmacytoid DC) expression using an FACSAria (BD Biosciences). After 18 h, the transfection mix was replaced with 10 ml complete media with 10 ng/ml IL-3, 20 ng/ml IL-6, and 25 ng/ml stem cell factor cell for 3 d. After 3 d of culture, 1 × 106 bone marrow cells was transduced by centrifuging at 1800 relative centrifugal force at 32°C for 2 h with 5 ml retroviral supernatant and 4 μg/ml polybrene and then incubated for 5 days before selection with 5 μg/ml puromycin for 3 d. An expression construct expressing murine miR-451 alone with flanking sequences 100 bp upstream and 198 bp downstream was cloned into a retroviral murine stem cell virus-GFP vector. Package virus was generated using Phoenix ecotropic cells, transduced onto JAWS II cells, and stably selected using 15 μg/ml puromycin. Retroviral constructs expressing short hairpin RNAs specific for YWHAZ or luciferase (control) or overexpressing Ywhaz have been described previously (26).

Cell stimulation

Cells were infected with H1N1 influenza A/Puerto Rico/8/34 (PR8; Charles River Laboratories) or H1N2 influenza X31 where indicated; Paul Thomas, St. Jude’s, Memphis, TN) at a multiplicity of infection (MOI) of 10 virions/DC and encephalomyocarditis virus at an MOI of 2. Cells were treated with 30 μg/ml poly(I:C), 300 μg/ml poly(dI-dC) (List Biological), 500 μM IFN-β (PBL Interferon Source), IL-6 (Peprotech), or 1 μg/ml SIINFEKL OVA peptide. Virus was inactivated by UV and used at an MOI equivalent to live virus. UV-inactivated virus was assessed to be noninfectious using the TC-1 mouse lung epithelial cell line and flow cytometry using an Ab specific for viral NP protein (Argene). Splenic DCs were infected with influenza or stimulated with poly(I:C), pulsed with OVA peptide (SIINFEKL, and cultured with CFSE-labeled CD8+ OT-1 T cells for 3 d. CFSE dilution in live (7-aminoactinomycin D−) cells is shown for cultures containing DCs treated with miR-451 antagonomir or control antagonomir. DC–T cell cocultures were cultured at a ratio of 1:2, treated as described, and supernatants collected after 24 or 72 h.

Flow cytometry

Cells were blocked using 1 μg/ml anti-FcR Ab (2.4G2) in PBS containing 2% FBS and 2 mM EDTA, stained using fluorescein-labeled CD11c, CD80, MHC class II (MHC II), CD80-specific Abs (BD Biosciences), or PDCA1-specific Ab (Miltenyi Biotec), and fixed in 10% formalin. Fluorescence of Ab-stained cells or cells nucleofected with FITC-conjugated antagonomirs was measured using an FACS Calibur (BD Biosciences).

miRNA array profiling

miRNA profiling was performed using a miRNA array (Exiqon) on primary DCs from mice infected in vivo or cultured with influenza PR8 (MOI 10) and then stimulated with poly(I:C) [30 μg/ml poly(I:C)], or cultured in media alone for 8 h. The quality of the total RNA was verified by an Agilent 2100 Bioanalyzer profile (Agilent Technologies). One microgram total RNA from sample and reference were labeled with Hy3 and Hy5 fluoroscent labels, respectively, using the miRCURY LNA Array power labeling kit (Exiqon, Vedbaek, Denmark) following the procedure described by the manufacturer. The Hy3-labeled samples and an Hy5-labeled reference sample were mixed pairwise and hybridized to the miRCURY LNA array version 10.0 (Exiqon), which contains capture probes targeting all miRNAs for all species registered in the mirBASE version 11.0 at the Sanger Institute. The hybridization was performed according to the miRCURY LNA array manual using a Tecan HS4800 hybridization station (Tecan, Grödig, Austria). After hybridization, the microarray slides were scanned and stored in an environmental chamber (at 0°C) to prevent potential bleaching of the fluorescent dyes. The microarray LNA array microarray slides were scanned using the Agilent G2565BA Microarray Scanner System (Agilent Technologies), and the image analysis was carried out using the ImaGene 8.0 software (BioDiscovery). The quantified signals were normalized using the global Locally Weighted Scatterplot Smoothing regression algorithm. 30% of raw data were trimmed to be expressed if measured above the detection limit in all three independent biological replicates of at least one experimental condition. miRNAs were considered to be differentially expressed if the ratio relative to mock was ≥1.5 in either influenza-infected or poly(I:C)-treated samples, and the p value was <0.01. The Student t test was performed in stimulated cells relative to mock. The full data set has been deposited in Gene Expression Omnibus (accession GSE36316; http://www.ncbi.nlm.nih.gov/geo/).

Molecular biology

For quantitative RT-PCR (qRT-PCR) measurements, RNA was isolated using TRIzol (Invitrogen), CDNA was synthesized from DNase-treated RNA media and the virus allowed to grow for 3 d. A total of 7 to 8 × 106 bone marrow cells from C57BL/6 mice femurs was cultured in 10 ml complete media with 10 ng/ml IL-3, 20 ng/ml IL-6, and 25 ng/ml stem cell factor for 3 d. After 3 d of culture, 1 × 106 bone marrow cells was transduced by centrifuging at 1800 relative centrifugal force at 32°C for 2 h with 5 ml retroviral supernatant and 4 μg/ml polybrene and then incubated for 3 more h at 37°C followed by a media change containing IL-3, IL-6, and stem cell factor. After 3 d, media was replaced with fresh media containing 100 ng/ml FLT3L and then incubated for 5 days before selection with 5 μg/ml puromycin for 3 d. An expression construct expressing murine miR-451 alone with flanking sequences 100 bp upstream and 198 bp downstream was cloned into a retroviral murine stem cell virus-GFP vector. Packaged virus was generated using Phoenix ecotropic cells, transduced onto JAWS II cells, and stably selected using 15 μg/ml puromycin. Retroviral constructs expressing short hairpin RNAs specific for YWHAZ or luciferase (control) or overexpressing Ywhaz have been described previously (26).

Downloaded from http://www.jimmunol.org/ by guest on April 14, 2017
Viral infection regulates miRNA expression

FIGURE 1. Viral stimulation regulates miRNA expression in DCs. (A) The expression of 578 miRNAs in primary murine splenic DCs infected with influenza A virus or stimulated with poly(I:C) for 8 h in vitro and compared with unstimulated cells cultured in parallel (Mock). The means ± SEM for three independent biological replicates were calculated, and the fold change relative to unstimulated cells is shown. The dotted line indicates where expression is equivalent to unstimulated cells. miRNAs with a fold change relative to unstimulated cells is shown. $p = 0.001$ are shown; $n = 3$. (B) The miRNAs with a 1.5-fold increase in expression in stimulated relative to unstimulated cells and $p < 0.001$ following stimulation are shown, as described in (A); $n = 3$. (C) qRT-PCR was performed on miRNAs isolated from splenic DCs infected with influenza, stimulated with poly(I:C), or cultured in parallel without stimulation. Expression of the indicated miRNAs was normalized to sno202 expression, and the data are displayed as fold change relative to mock. Means ± SEM for $n = 3–8$ independent biological experiments are shown. *$p < 0.05$, **$p < 0.01$.

Results

Viral infection regulates miRNA expression

To explore how viral infection modulates DC gene expression post transcriptionally, we profiled 578 miRNAs in primary murine splenic DCs infected in vitro with influenza A virus or stimulated with poly(I:C) for 8 h. Influenza is a negative-sense ssRNA virus that activates DCs through RIG-I, TLR3, and TLR7 (3, 7, 31), whereas poly(I:C) is a dsRNA agonist that stimulates cells via TLRL3, MDMA5, and RIG-I-dependent signaling. The expression of 246 miRNAs was detectable in at least one experimental condition, and the concentrations of the majority of these miRNAs were not altered by these stimuli. However, 21 miRNAs exhibited expression changes of ≥1.5-fold ($p < 0.001$) following poly(I:C) treatment or viral infection relative to mock-treated cells. Eighteen of these differentially expressed miRNAs were upregulated, and three were downregulated (Fig. 1A, 1B). Regulated expression of these miRNAs within DCs has not been described previously, except for miR-155, which is known to be induced in DCs and macrophages by inflammatory stimuli (32, 33). Poly(I:C) stimulation affected miRNA expression more potently than influenza infection for nearly all miRNAs, which is consistent with the overall weaker effect of influenza infection on global gene expression in DCs (data not shown). dsRNA, either from viruses or poly(I:C), is a well-characterized agonist of DC responses. However, it is unclear how additional aspects of viral infection, including expression of viral proteins or disruption of cellular processes by the viral life cycle, regulate host transcription. The induction of miR-451 expression by influenza infection and not poly(I:C) stimulation was therefore notable (Fig. 1A). miR-451 regulates erythroid lineage differentiation (26, 34–36) and has not been characterized within DCs.

We used qRT-PCR to confirm that miR-451 is increased following influenza infection for 8 h (Fig. 1C). We also validated the increased expression of miR-155, which is more strongly induced by poly(I:C) when compared with influenza, the decreased expression of miR-685 by poly(I:C) more than by influenza infection, and the stable expression of Let-7a, which was not altered by stimulation in the miRNA array profiling dataset (Fig. 1C). We explored the range of stimuli that increase miR-451 expression in primary DCs using doses that trigger robust transcriptional responses in DCs. There was not a requirement for live virus, as both live and UV-inactivated influenza induced miR-451 (Fig. 2A). miR-451 expression was increased most strongly by the H1N1 influenza strain PR8, the cytokines type I IFN (IFN-β) or IL-6, but not by a variety of TLR agonists [poly(I:C), LPS, R848] relative to mock-treated cells (Fig. 2A). Induction of miR-451 was partially dependent on type I IFN signaling: IFNARmDCs, which cannot respond to the type I IFNs that are produced following influenza infection, exhibited lower miR-451 induction than wild-type cells (Fig. 2B). To test whether elevated IFN production by influenza-infected DCs could provide a possible mechanism for the high expression level of miR-451 in virally infected cells compared with cells treated with poly(I:C) or R848, we measured type I and type III IFN expression. Influenza infection did not induce significantly more IFN-α, IFN-β, or IFN-λ compared with poly(I:C) or R848 stimulation (Fig. 2C and data not shown). The Journal of Immunology
miR-451 regulates DC cytokine responses to influenza

Antagomir knockdown of miR-451 expression does not alter DC stimulatory activity

To determine the functional consequence of miR-451 expression by DCs infected with influenza, we introduced a locked nucleic acid–stabilized RNA oligonucleotide that is antisense to miR-451 (miR-451 antagonist) into primary splenic DCs by nucleofection and compared responses to cells identically treated with a scrambled oligonucleotide control (control antagonist). We observed uniform uptake of the FITC-conjugated antagonists (Fig. 3A) and functional inhibition of miR-451 expression following treatment with the miR-451 antagonist by qRT-PCR after 21 h (Fig. 3B). miR-451 levels were decreased by >99% based on the detection limit of the assay, miR-451 antagonist treatment did not decrease expression levels of other miRNAs compared with control antagonist treatment (data not shown) and did not decrease miR-451 levels when RNA was isolated immediately after nucleofection and before the antagonist could lead to degradation of its target (Fig. 3B). These controls confirm the specificity of the RT-PCR assay and show that the presence of the antagonist does not simply inhibit the qRT-PCR reaction. Cells responded to the process of nucleofection of RNA antagonists, in which RNA is physically delivered to the cytosol, by inducing miR-451 expression (Fig. 3C). This induction of miR-451 expression is less than that produced by influenza infection and more than that produced by poly(I:C) treatment (Fig. 1C).

Ag presentation is a principal function of DCs. We observed that wild-type DCs treated with miR-451 antagonist or control antagonist or cells derived from wild-type and miR-451 null mice were similar in their ability to activate T cells. The surface expression of two molecules necessary for Ag presentation to CD4+ T cells, MHC II and the costimulatory molecule CD80, was independent of the presence of the antagomir (data not shown) in DCs.
regulates expression of this group of cytokines in multiple types of DCs, we performed ELISAs on supernatants collected from murine splenic, lung, and FLT3L-derived bone marrow DCs 24 h after influenza infection and measured increased levels of IL-6, TNF, and CCL5/RANTES secreted by all three types of DCs (Fig. 4C). We also detected increased levels of IFN-β mRNA and protein secretion by miR-451 antagomir-treated DCs in response to influenza infection (Fig. 5A, 5B). We measured the expression of a panel of type I IFN–regulated genes and identified an increased type I IFN signature in miR-451 antagomir-treated cells (Fig. 5A). This did not correlate with improved antiviral capacity to limit viral transcription in miR-451 antagomir-treated cells, as viral RNA loads were equivalent to those in control cells (Fig. 5C).

The cytokine phenotype observed after miR-451 suppression by antagomir was confirmed in primary DCs by comparing cytokine production in wild-type and miR-451null DCs, although the differences observed were more subtle. When we measured a panel of 26 cytokines and chemokines (measured in Fig. 1 and Supplemental Fig. 1), we observed increased secretion of IL-6, TNF, CXCL2/MIP-2, and CXCL1/KC by miR-451null DCs following influenza infection (Fig. 6A). We measured analogous increases in Il6, Tnf, and Ifnβ at the mRNA level (Fig. 6B). To test whether antagomir treatment modulated DC cytokine production independently of the decrease in miR-451 expression, miR-451null splenic DCs were treated with miR-451 antagomir or control antagomir and compared with wild-type cells. IL-6 and CCL3/MIP-1α production by these cells was below the assay detection limit of the assay.

Overexpression of miR-451 led to a reciprocal decrease in cytokine secretion following infection with two different influenza A viral strains. Stable lines of the JAWS II DCs overexpressing miR-451 or vector alone were generated by retroviral transduction and drug selection. miR-451 overexpression impaired the secreted levels of IL-6, CCL3/MIP-1α, and CCL5/RANTES (Fig. 6C), whereas TNF production by these cells was below the assay de-

![FIGURE 3](http://www.jimmunol.org/) Antagomir knockdown of miR-451 expression does not alter DC Ag presentation. (A) FITC-labeled miRNA antagomirs were delivered to splenic DCs by nucleofection, and their uptake was assessed by flow cytometry after 24 h of culture (filled histogram) relative to mock-treated cells (unfilled histogram). Data are representative of three independent experiments. (B) miR-451 antagomir or control antagomir was delivered to splenic DCs by nucleofection. RNA was isolated immediately following nucleofection, allowing insufficient time for the antagomir to interact specifically with target miRNA to assess whether the presence of antagomirs inhibit the qRT-PCR reaction (0 h). Cells were also cultured for 21 h prior to RNA isolation, which allowed for time for specific miRNA–antagomir interactions (21 h). qRT-PCR was performed, and miR-451 expression levels are shown relative to sno202 expression levels. Data are representative of ≥3 independent experiments. (C) Cells were nuclofected with either control antagomir or antagomir specific for miR-685 or untreated and then cultured for 21 h. miR-451 expression levels were quantified by qRT-PCR as described in (B), normalized to sno202 expression levels, and shown relative to cells that did not undergo nucleofection. Means ± SEM are shown for three independent experiments. (D) Splenic DCs from wild-type (WT) or miR-451null (KO) mice or wild-type cells treated with antagomirs were infected with influenza for 24 h. Cell activation was assessed by staining for surface expression of MHC II or CD80, and overlay plots are shown for cells with normal (black line) or reduced (gray line) miR-451 expression. Data are representative of three independent experiments. (E) Splenic DCs were isolated from WT or miR-451null mice and wild-type cells treated with miR-451 antagomir or control antagomir where indicated. DCs were infected with influenza, pulsed with OVA peptide SIINFEKL, and cultured with CD8+ OT-1 T cells for 3 d. IFN-γ was measured in the supernatants of three biological replicates, and the means ± SEM are shown. *p < 0.05. ND, Not detected as below the detection limit of the assay.
tection limit. Decreased levels of CXCL2/MIP2 and CCL4/MIP1β were also measured along with normal levels of all other assayed cytokines (data not shown). These data were corroborated using bone marrow–derived DCs transduced to overexpress miR-451, which resulted in decreased levels of IL-6, CCL3/MIP-1α, CCL5/RANTES, and TNF (Fig. 6D). Although poly(I:C) does not induce miR-451 expression or result in differential cytokine production in miR-451 antagomir-treated cells (Fig. 4A), poly(I:C) stimulation of cells engineered to overexpress miR-451 results in increased cytokine secretion compared with control cells (Fig. 6D).

miR-451 regulates cytokine expression by targeting Ywhaz

We and others (26, 35, 37, 38) have demonstrated that miR-451 targets the 3′-UTR of Ywhaz/14-3-3z mRNA in multiple cell types. In agreement with these studies, YWHAZ protein levels were significantly increased in miR-451null DCs compared with wild-type cells (Fig. 7A). Moreover, Ywhaz mRNA was increased by miR-451 antagomir treatment in DCs (Fig. 5A). Thus, expression of miR-451 correlates with suppression of Ywhaz mRNA and protein expression in DCs, similar to what we reported for erythroid cells (26). YWHAZ belongs to the 14-3-3 family of phosphoserine binding proteins that interact with functionally diverse signaling proteins to modulate their activities. YWHAZ can bind and sequester ZFP36 and FOXO3 from interacting with nucleic acids, thereby inhibiting the actions of these two negative regulators of IL-6 and TNF expression (20, 28). YWHAZ sequesters FOXO3 in the cytoplasm, preventing it from repressing transcription in the nucleus (28, 29). ZFP36 promotes mRNA destabilization by binding to AU-rich elements in the 3′-UTRs of some inflammatory cytokine mRNAs, including TNF, IL-6, and CCL3, and is negatively regulated by interactions with YWHAZ (27, 30). ZFP36 protein levels were reduced in miR-451null cells, which have increased YWHAZ expression (Fig. 7A). We measured increased phosphorylation of FOXO3 on Ser294, which targets this protein for degradation, and decreased nuclear translocation of FOXO3, both of which reflect decreased FOXO3 activity in cells with increased YWHAZ levels (Fig. 7A).

We have shown that decreased expression of miR-451 correlates with increased YWHAZ expression, decreased nuclear FOXO3, and ZFP36 protein levels (Supplemental Fig. 2C). However, overexpression of Ywhaz by retroviral transduction in FLT3L-expanded bone marrow–derived DCs decreased ZFP36 protein, similar to what we observed in miR-451null cells in which Ywhaz is derepressed. In contrast, FOXO3 nuclear localization was increased in cells overexpressing YWHAZ (Fig. 7B), which is not concordant with our observation that reduced miR-451 levels correlate with increased YWHAZ expression and decreased nuclear localization of FOXO3 (Fig. 7A). Fig. 7C shows comparable regulation of Ywhaz, Zfp36, IL-6, Ccl3/Mip1α, and CCL5/RANTES. Although causal relationships between these observations have been established in other systems, YWHAZ has not been directly connected to FOXO3 or ZFP36 activities or cytokine expression in DCs. We were unable to investigate these mechanisms through YWHAZ knockdown experiments due to observed nonspecific effects of short hairpin RNAs on IL-6 secretion in DCs (Supplemental Fig. 2C). We have shown that decreased expression of miR-451 correlates with increased YWHAZ expression, decreased nuclear FOXO3, and ZFP36 protein levels. Although causal relationships between these observations have been established in other systems, YWHAZ has not been directly connected to FOXO3 or ZFP36 activities or cytokine expression in DCs. We were unable to investigate these mechanisms through YWHAZ knockdown experiments due to observed nonspecific effects of short hairpin RNAs on IL-6 secretion in DCs (Supplemental Fig. 2C). However, overexpression of Ywhez by retroviral transduction in FLT3L-expanded bone marrow–derived DCs decreased ZFP36 protein, similar to what we observed in miR-451null cells in which Ywhez is derepressed. In contrast, FOXO3 nuclear localization was increased in cells overexpressing YWHAZ (Fig. 7B), which is not concordant with our observation that reduced miR-451 levels correlate with increased YWHAZ expression and decreased nuclear localization of FOXO3 (Fig. 7A). Fig. 7C shows comparable regulation of Ywhez, Zfp36, IL-6, Ccl3/Mip1α, and Tnf in cells with increased YWHAZ expression and decreased miR-451 levels using antagonists, genetic ablation, or cells exogenously overexpressing Ywhez.

These data can be synthesized into a working model shown in Fig. 8. Influenza infection increases miR-451 expression, which
levels of secreted IFN-γ was also noteworthy that the expression of the vast majority of these miRNAs remains to be assessed using gain-of-function, loss-of-function, and mechanistic studies, as used in this study to characterize the relevance of miR-451 expression. It was also noteworthy that the expression of the vast majority of miRNAs was unaffected in response to these stimuli. Induction of miR-451 expression was unique to influenza-infected cells, and a transcriptional response specific to influenza infection that cannot be recapitulated by purified agonists is unusual. Although we observed that this virus-induced response was dampened in IFNARnull cells and addition of exogenous IL-6, IFN-β, or UV-inactivated virus could also induce miR-451 expression (Fig. 2), future studies are required to characterize both how DCs recognize influenza infection and the signaling leading to upregulated miR-451 expression. Interestingly, nucleofection of any short RNA analog or UV-killed influenza induces miR-451 expression. It is known that Ag presentation and cytokine production are two features of DC maturation that can be uncoupled, highlighting the existence of distinct control points of DC activation. We observed increased proinflammatory cytokine production by miR-451null cells or cells treated with miR-451 antagonomers compared with their wild-type counterparts, but saw no effect on MHC II or costimulatory molecule expression nor differences in the ability of these cells to activate Ag-specific CD8+ T cells (Fig. 3). Although the studies comparing antagonomers and miR-451 knockout cells were concordant in affecting the same subset of cytokines (Fig. 7C), the miR-451–regulated cytokine phenotype was consistently larger in the antagonist studies. This is reminiscent of the larger effect of antagonomer-mediated miR-451 knockdown on erythropoi- osis observed when compared with genetic knockout (40). Many miRNAs regulate developmental pathways, so DCs that develop in the absence of miR-451 may activate compensatory pathways, leading to differences in response magnitude when compared with normally differentiated wild-type DCs that have antagonomer-mediated knockdown of miR-451 levels. The cytokine levels that are tuned by miR-451 play critical roles in the immune system. IL-6 and TNF drive acute inflammatory responses during sepsis as well as serve a progressive role in chronic inflammatory diseases such as rheumatoid arthritis, and TNF-blocking Abs are a standard of care for treating rheumatoid arthritis. Type I IFNs activate expression of a module of antiviral effectors during acute viral infections as well as during underlying chronic inflammatory diseases such as lupus and type 1 diabetes (41, 42). CCL5/RANTES is a potent chemoattractant for T cells along with eosinophils and basophils, and CCL3/MIP1α chemoattracts neutrophils and monocytes. miR-451 knockdown had inconsistent effects on inactivated virus could also induce miR-451 expression (Fig. 2), providing the possibility that cells recognize and respond to live viral infection and physical delivery of RNA into the cytosol using similar mechanisms. DCs respond to fusion between viral and cellular membranes during infection by inducing expression of IFN-stimulated genes, and this fusion-dependent response was dependent on the adaptor stimulator of IFN gene (39), providing a potential mechanism underlying our observation that live and UV-killed influenza induces miR-451 expression.

miRNAs provide a layer of posttranscriptional regulation of DC responses to infection. Global profiling of differential miRNA expression in primary DCs responding to live viral infection or a purified RNA agonist of the TLR and RIG-like receptor detection pathways resulted in the novel description of 16 upregulated and 3 downregulated miRNAs and confirmed the known induction of mir-155 expression (32, 33)(Fig. 1). The consequence of regulated expression of these miRNAs remains to be assessed using gain-of-function, loss-of-function, and mechanistic studies, as used in this study to characterize the relevance of miR-451 expression. It was also noteworthy that the expression of the vast majority of
Zfp36 expression is highly induced by stimulation with TLR agonists or cytokines such as TNF or type I IFN (21). ZFP36 is an RNA binding protein that targets AU-rich mRNAs such as TNF, IL-6, and CCL3/MIP1α for degradation. YWHAZ has been shown in multiple cell types to sequester ZFP36 from binding target mRNAs. Increasing YWHAZ levels by genetic overexpression or miR-451 antagonist treatment correlated with decreased ZFP36 levels (Fig. 7). YWHAZ is also a known negative regulator of FOXO3, a transcription factor that interacts with the transcriptional machinery to negatively regulate transcription of cytokines such as IL-6 and TNF (20, 43). FOXO3 is controlled by four mechanisms: transcription, posttranslational modifications, cellu-
miR-451 negatively regulates Ywhaz expression in DCs. (A) Whole-cell lysates were prepared from splenic DCs isolated from wild-type (WT) or miR-451null (KO) mice and infected in vitro with influenza PR8 for 6 h. Western blots were performed using Abs specific for YWHAZ, ZFP36, or phosphorylated FOXO3, signals quantified using densitometry, normalized to the expression level of actin, and displayed relative to the levels in wild-type cells. Nuclear extracts were prepared from cells treated under identical conditions, probed for FOXO3 expression, normalized to the level of LaminB1, and displayed relative to the levels in WT cells. Means ± SEM are shown for two to seven samples. (B) Whole-cell lysates or nuclear extracts were prepared from splenic DCs stably expressing YWHAZ or vector alone, infected in vitro with influenza PR8 for 6 h, and Western blotting performed as described in (A). Means ± SEM; n = 2. (C) Splenic DCs were prepared from WT or miR-451null (KO) mice, and WT cells were treated with control antagonir or miR-451 antagonir or transduced to overexpress YWHAZ or vector alone. Following infection with influenza PR8 for 24 h, RNA was isolated, and qRT-PCR was performed. Gene expression was calculated relative to Ef-1, and means ± SEM are shown for two to three samples. *p < 0.05.
miR-451 plays an important role in erythroid lineage differentiation, and miR-451 expression had not previously been described in DCs. miR-144 is encoded on the same pri-miRNA transcript as miR-451, and the two mature miRNAs are coexpressed in erythroid cells; in contrast, whereas pri–miR-451 and pri–miR-144 could both be measured in DCs, mature miR-144 expression was undetectable in DCs (data not shown). miR-451 is the only miRNA that can be processed by Ago2 in the absence of Dicer (44). The overexpression of YWHAZ did not lend mechanistic support to this observed correlation. This could result from a technical limitation, due to the sensitivity of DCs to perturbation by the experimental manipulation of gene expression, or result from a unique pattern of regulation of FOXY3 by YWHAZ in DCs. Our data propose one miR-451 target that could explain the observed cytokine phenotype, but does not exclude a role for other YWHAZ binding partners or other miR-451 target mRNAs that could contribute to our observed miR-451–dependent cytokine phenotype.

miR-451 is conserved between erythroid and DCs, yet the consequences, erythroid differentiation and resistance to oxidant stress and DC proinflammatory cytokone production, are distinct. The cell lineage–specific expression of YWHAZ binding partners (ZFP36 is highly expressed in activated DCs) and distinct FOXO3-dependent transcriptional programs (erythroid cells lack IL-6 and TNF expression) could explain the different phenotypic effects of miR-451 expression between cell types.

miR-451, ZFP36, and FOXO3 are all transcriptionally induced by viral stimuli, and the phenotypes of Zfp36null and Foxo3null mice show that their contribution to negative feedback is more important than providing a homeostatic restraint on inflammation (20, 22). miRNAs have modest effects on the protein levels of targets, decreasing concentrations by an average of 2-fold (48, 49). The phenotypic effects of miRNAs can be larger than their effects on steady-state protein levels when target expression is at a threshold, when they target multiple members of the same pathway, or when multiple miRNAs bind to a given mRNA target (13). Signaling molecules and transcription factors are both particularly sensitive to changes in concentration (11). miRNAs can therefore more potently inhibit cytokine transcripts by targeting the regulators of cytokine gene expression. In this study, we characterize an miRNA that targets a multifunctional protein, YWHAZ, that is present in limiting quantity (25), providing another mechanism for amplifying the effect of small modulations in protein levels.

Cells most efficiently process information using biochemical networks with high sensitivity to changes in input signals and low sensitivity to stochastic fluctuations. Regulatory circuits enable cells to buffer propagated noise while maintaining sensitivity to signals (50). Although positive regulatory circuits are instrumental in cellular differentiation programs, negative regulatory circuits generate homeostasis or oscillatory behavior. Negative feedback can serve as a buffer by attenuating noise as well as providing stability by limiting the range over which the concentrations of network components can fluctuate (51, 52). Our data add a third negative regulator in a negative-feedback cascade that buffers proinflammatory cytokone secretion by influenza-infected DCs. It will be interesting to determine whether induction of miR-451 by influenza infection and the correlating restraint on cytokone secretion offer a net benefit to the host or pathogen.

Acknowledgments
We thank A. Diercks, V. Litvak, K. Kennedy, and A. Lampano for advice and S. Fallen and R. Suen for technical assistance.

Disclosures
The authors have no financial conflicts of interest.

References

Supplemental Figure 1. Selective effect of miR-451 knockdown on cytokine secretion.

(A) Cells were treated with miR-451 antagomir or control antagomir and infected with influenza. Supernatants were collected after 24 h and secreted cytokines quantified by ELISA. Mean ± range for 2 biological replicates are shown, and data are representative of 2-4 independent experiments for each cytokine; p>0.05.

Supplemental Figure 2. Antagomir treatment does not have off-target effects on IL-6 production but Ywhaz shRNA expression does.

(A) To determine if antagomir treatment affected dendritic cell IL-6 and CCL3/MIP-1α secretion independently of the decrease in miR-451 expression, splenic dendritic cells isolated from wild type or miR-451null mice were treated with miR-451 antagomir or control antagomir, infected with influenza for 21 h, and secreted cytokines quantified by ELISA; n=2. (B) Splenic dendritic cells were transduced to express YWHAZ-specific or control shRNAs. Whole cell lysates were prepared following infection with influenza PR8 for 6 hours. Western blots were performed using antibodies specific for YWHAZ or β-actin, signals quantified using densitometry, normalized to the expression level of β-actin, and displayed relative to the levels in wild type cells. Means ± SEM are shown; n=3. (C) Supernatants were collected from cells transduced to express YWHAZ-specific or control shRNAs and infected with influenza PR8 for 24 hours. IL-6 was measured in the supernatants by ELISA; n=2 and representative of 2 biological replicates.
Supplemental Figure 1.

A.

![Graph showing cytokine levels with Control Antagomir and miR-451 Antagomir comparisons.](image-url)
Supplemental Figure 2.

A.

IL-6

CCL3

pg/mL

pg/mL

Control Antagomi
miR-451 Antagomi
WT KO

Control Antagomi
miR-451 Antagomi
WT KO

B.

YWHAZ

YWHAZ/ACTIN

shControl shYwhaz

1

0.1

0.01

C.

IL-6

pg/mL

shLuc shYwhaz

Parent Vector

0

5000

10000

15000

20000