miR-451 Regulates Dendritic Cell Cytokine Responses to Influenza Infection

Carrie M. Rosenberger, Rebecca L. Podyminogin, Garnet Navarro, Guo-Wei Zhao, Peter S. Askovich, Mitchell J. Weiss and Alan Aderem

J Immunol 2012; 189:5965-5975; Prepublished online 19 November 2012;
doi: 10.4049/jimmunol.1201437
http://www.jimmunol.org/content/189/12/5965

Supplementary Material http://www.jimmunol.org/content/suppl/2012/11/19/jimmunol.1201437.DC1

References This article cites 52 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/189/12/5965.full#ref-list-1

Subscription Information about subscribing to *The Journal of Immunology* is online at: http://jimmunol.org/subscription

Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
miR-451 Regulates Dendritic Cell Cytokine Responses to Influenza Infection

Carrie M. Rosenberger,* Rebecca L. Podyminogin,* Garnet Navarro,* Guo-Wei Zhao,† Peter S. Askovich,* Mitchell J. Weiss,† and Alan Aderem*¹

MicroRNAs (miRNAs) are important posttranscriptional regulators in immune cells, but how viral infection regulates miRNA expression to shape dendritic cell (DC) responses has not been well characterized. We identified 20 miRNAs that were differentially expressed in primary murine DCs in response to the dsRNA agonist polyinosinic-polycytidylic acid, a subset of which were modestly regulated by influenza infection. miR-451 was unique because it was induced more strongly in primary splenic and lung DCs by live viral infection than by purified agonists of pattern recognition receptors. We determined that miR-451 regulates a subset of proinflammatory cytokine responses. Three types of primary DCs treated with antisense RNA antagonics directed against miR-451 secreted elevated levels of IL-6, TNF, CCL5/RANTES, and CCL3/MIP1α, and these results were confirmed using miR-451−/− cells. miR-451 negatively regulates YWHAZ/14-3-3ζ protein levels in various cell types, and we measured a similar inhibition of YWHAZ levels in DCs. It is known that YWHAZ can control the activity of two negative regulators of cytokine production: FOXO3, which is an inhibitory transcription factor, and ZFP36/Tristetraprolin, which binds to AU-rich elements within 3′-untranslated regions to destabilize cytokine mRNAs. Inhibition of miR-451 expression correlated with increased YWHAZ protein expression and decreased ZFP36 expression, providing a possible mechanism for the elevated secretion of IL-6, TNF, CCL5/RANTES, and CCL3/MIP1α. miR-451 levels are themselves increased by IL-6 and type I IFN, potentially forming a regulatory loop. These data suggest that viral infection specifically induces a miRNA that directs a negative regulatory cascade to tune DC cytokine production. The Journal of Immunology, 2012, 189: 5965–5975.

Dendritic cell (DC) recognition of microbes is instrumental for instructing innate and adaptive immunity to clear pathogens and establish immunological memory. The use of purified agonists has revealed the critical role of pattern recognition receptors in orchestrating DC responses, which has important implications for vaccine adjuvant design (1, 2). Influenza is an enveloped negative-sense ssRNA virus that is thought to be detected primarily by RNA-specific pattern recognition receptors. This concept is supported by impaired cytokine responses by influenza-infected cells lacking the RNA sensors TLR3, TLR7, and MAVS and no clear demonstration of host recognition of the 11 influenza-encoded proteins (3–7). Viral entry, assembly, and budding perturb normal cell biology, but it is unclear how sentinel cells integrate these potential signals from live viral infection with foreign RNA detection.

This study identifies a microRNA (miRNA) that is induced more strongly by influenza infection than stimulation with the purified dsRNA agonist polyinosinic-polycytidylic acid [poly(I:C)], a viral mimic that is known to be detected by endosomal TLR3 and cytosolic RIG-I (8–10). miRNAs are important posttranscriptional regulators in immune cells, but their roles within DCs have not been well characterized (11). These small noncoding RNAs negatively regulate protein levels by interacting with target miRNAs by partial base pair complementarity, which blocks translation or triggers mRNA degradation (12). miRNAs can act as fine-tuners to titrate the levels of translatable mRNA as well as switches to repress protein production by maintaining mRNA levels below a threshold (13). Fine-tuning of protein levels by miRNAs has been shown to regulate developmental programs and cellular responses to infection and provide a restraint on inflammation (14–17). Expression of miRNAs and target mRNAs can be cell type–restricted, resulting in a cell lineage–specific role for this class of negative regulators in many systems (18).

The identification of negative regulatory networks is particularly relevant to understanding and manipulating DC biology. These cells rapidly secrete high levels of cytokines that orchestrate inflammatory responses aimed at controlling replicating pathogens. Cytokines drive a number of positive-feedback loops, and their production must therefore be tightly controlled to limit chronic inflammatory sequelae. Proinflammatory cytokine production can be inhibited at multiple regulatory points: signaling, transcription, RNA stability, translation, and secretion (19). The transcription factor FOXO3 negatively regulates proinflammatory cytokine gene expression, and FOXO3−/− DCs secrete increased IL-6, TNF, and CCL2/MCP-1 following viral infection (20). The protein ZFP36/Tristetraprolin posttranslationally represses the expression of numerous proinflammatory cytokines, including TNF, IL-6, CCL2/MCP-1, CCL3/MIP1α, CCL4/MIP-1β, and CXCL2/MIP-2.
by binding to AU-rich elements in their mRNA 3′-untranslated regions (UTRs) and promoting mRNA decay (21–24). Both FOXO3 and ZFP36 are inhibited by YWHAZ/14-3-3, an adaptor protein that modulates the activity of binding partners by controlling subcellular localization or kinase activity (25). YWHAZ binds FOXO3 and ZFP36 via phosphoserine-dependent interactions to inhibit the activity of these negative regulators by sequestering them from nucleic acid interactions (26–30). Regulation of YWHAZ itself is less well characterized. YWHAZ function is altered by its phosphorylation state, and its levels are stoichiometrically limiting in cells, rendering YWHAZ activity sensitive to the regulation of its expression level (25). In this study, we demonstrate that YWHAZ levels are inhibited by an miRNA specifically induced by viral infection. Reduced YWHAZ levels can relieve repression of ZFP36, resulting in negative regulation of proinflammatory cytokine expression by DCs.

Materials and Methods

Cell culture and mice

C57BL/6 mice (Charles River Laboratories) or MyD88^{−/−} mice (Institute for Systems Biology, Seattle, WA) were injected s.c. between the shoulder blades with 6 × 10⁶ B6-melanoma cells expressing FLT3L to expand the DC compartment. After 2 wk, spleens and lungs were isolated, enzymatically dissociated using Liberase Blendzyme III (Roche), and DCs isolated by AutoMACS magnetic bead purification using pan-DC beads (specific for CD11c and plasmacytoid DC Ag-1 [PDCA1]; Miltenyi Biotec). Cell purity was measured by flow cytometry of CD11c expression and was >95% in each experiment. This purification scheme yielded a mixture of conventional CD11^{hi} DCs as well as PDCA⁺ plasmacytoid cells, and the ratio of these two populations was consistent between experiments. These splenic DCs were used for all experiments, unless otherwise noted. To isolate specific DC populations, FLT3L-expanded spleens were enzymatically dissociated, RBCs removed using ACK lysis solution (Sigma-Aldrich), B cells depleted using CD19⁺ AutoMACS microbeads, stained with CD11c-PE-T7C (BD Biosciences) and PDCA1-allophycocyanin (Miltenyi Biotec), and sorted for CD11c⁺ PDCA1⁺ (plasmacytoid DC) expression using an FACSAria (BD Biosciences). After 18 h, the transfection mix was replaced with 10 ml complete media with 10 ng/ml IL-3, 20 ng/ml IL-6, and 25 ng/ml stem cell factor for 3 d. After 3 d of culture, 1 × 10⁶ bone marrow cells was transduced by centrifuging at 1800 relative centrifugal force at 32°C for 2 h with 5 ml retroviral supernatant and 4 μg/ml polybrene and then incubated for 3 more h at 37°C followed by a media change containing IL-3, IL-6, and stem cell factor. After 3 d, media was replaced with fresh media containing 100 ng/ml FLT3L and then incubated for 5 d before selection with 5 μg/ml puromycin for 3 d. An expression construct expressing murine miR-451 alone with flanking sequences 100 bp upstream and 198 bp downstream was cloned into a retroviral stem cell virus vector-GFP vector. Packaged virus was generated using Phoenix ecotropic cells, transduced onto JAWS II cells, and stably selected using 15 μg/ml puromycin. Retroviral constructs expressing short hairpin RNAs specific for Ywhaz luciferase (control) or overexpressing Ywhaz were described previously (26).

Cell stimulation

Cells were infected with H1N1 influenza A/Porto Rico/8/34 (PR8; Charles River Laboratories) (or H1N2 influenza X31 where indicated; Paul Thomas, St. Jude’s, Memphis, TN) at a multiplicity of infection (MOI) of 10 virions/DC and encephalomyocarditis virus at an MOI of 2. Cells were treated with 30 μM 2′-O-methyl (2′-OMe) oligoribonucleotide, 30 μM RNase Inhibitor (List Biological), 500 μM IFN-β (PBL InterferonSource), IL-6 (PeproTech), or 1 μg/ml SIINFEKL OVA peptide. Virus was inactivated by UV and used at an MOI equivalent to live virus. UV-inactivated virus was assessed to be noninfectious using the TC-1 mouse lung epithelial cell line and flow cytometry using an Ab specific for viral NP protein (Argene). Splenic DCs were infected with influenza or stimulated with poly(I:C), pulsed with OVA peptide, SIINFEKL, and cultured with CFSE-labeled CD8⁺ OT-1 T cells for 5 d. CFSE dilution in live (7-aminomycin D⁺) cells is shown for cultures containing DCs treated with miR-451 antagonomir or control antagonomir. DC–T cell cocultures were cultured at a ratio of 1:2, treated as described, and supernatants collected after 24 or 72 h.

Flow cytometry

Cells were blocked using 1 μg/ml anti-FcR Ab (2.4G2) in PBS containing 2% FBS and 2 mM EDTA, stained using fluorescently labeled CD11c, CD11b, CD8⁺, and CD107 (BioLegend), and stained with CFSE-labeled CD8⁺ OT-1 T cells using an FACSSCalibur (BD Biosciences). miRNA array profiling

miRNA profiling was performed using a miRNA array (Exiqon) on primary human DCs treated in vivo–expanded DCs infected with H3N2 influenza A/Puerto Rico/8/34 (PR8, Invitrogen) (or H3N2 influenza A/Puerto Rico/8/34; Paul Thomas, St. Jude’s, Memphis, TN) at a multiplicity of infection (MOI) of 10. The sensitivities of the DCs infected with virus (MOI 10) were assessed to be noninfectious using the TC-1 mouse lung epithelial cell line and flow cytometry using an Ab specific for viral NP protein. Reduced YWHAZ levels can relieve repression of ZFP36 by viral infection. Reduced YWHAZ levels can relieve repression of ZFP36 by viral infection in cells, rendering YWHAZ activity sensitive to the regulation of its expression level (25). In this study, we demonstrate that YWHAZ levels are inhibited by an miRNA specifically induced by viral infection. Reduced YWHAZ levels can relieve repression of ZFP36, resulting in negative regulation of proinflammatory cytokine expression by DCs.
using random primers or miR-specific primers, and qRT-PCR was performed using gene- or miRNA-specific primers and probes (Applied Biosystems). Expression was normalized to Ef-1 (Ef1fa) (mRNA) or sno202 (miRNA). Viral RNA was quantified by RT-PCR using primers specific for influenza M gene (forward, 5'-CAT GGA ATG GCT AAA GAC AAG ACC-3'; reverse, 5'-CCA TTA AGG GCA TTT TGG ACA-3'; probe FAM-5'-TTT GTG TTC AGC CTC ACC GTG CCC A-TAMRA-3') and normalized to the level of mouse EF-1. Western blot analysis of total protein was performed on cellular lysates prepared using RIPA buffer containing protease and phosphatase inhibitors and nuclear extracts prepared by hypotonic lysis. Equal quantities were run on 4–12% gradient SDS-PAGE gels, transferred to polyvinylidene difluoride, and serial incubations of membranes were performed with the indicated Abs (14-3-3/YWHAZ [sc-1019; Santa Cruz Biotechnology], FOXO3a [#2497; Cell Signaling Technology], phospho-FOXO3a [Ser294; #5538; Cell Signaling Technology], ZFP36/Tristetraprolin [sc458; Santa Cruz Biotechnology], LAMINBl [Invitrogen], or β-ACTIN-HRP [ab20271; Abcam]). Species-specific secondary Abs conjugated to HRP were visualized by enhanced chemiluminescent detection, and the signal was quantified by densitometry. Cytokine levels in cell supernatants were measured using a 16-32-plex Luminex panel (Millipore).

Statistical analysis
Means ± SEM for independent biological replicates are shown unless stated otherwise in the text. The p values were determined using an unpaired two-tailed Student t test, assuming equal variances on all experimental datasets.

Results
Viral infection regulates miRNA expression
To explore how viral infection modulates DC gene expression post transcriptionally, we profiled 578 miRNAs in primary murine splenic DCs infected in vitro with influenza A virus or stimulated with poly(I:C) for 8 h. Influenza is a negative-sense ssRNA virus that activates DCs through RIG-I, TLR3, and TLR7 (3, 7, 31), whereas poly(I:C) is a dsRNA agonist that stimulates cells via TLR3, MDA5, and RIG-I-dependent signaling. The expression of 246 miRNAs was detectable in at least one experimental condition, and the concentrations of the majority of these miRNAs were not altered by these stimuli. However, 21 miRNAs exhibited expression changes of ≥1.5-fold (p < 0.001) following poly(I:C) treatment or viral infection relative to mock-treated cells. Eighteen of these differentially expressed miRNAs were upregulated, and three were downregulated (Fig. 1A, 1B). Regulated expression of these miRNAs within DCs has not been described previously, except for miR-155, which is known to be induced in DCs and macrophages by inflammatory stimuli (32, 33). Poly(I:C) stimulation affected miRNA expression more potently than influenza infection for nearly all miRNAs, which is consistent with the overall weaker effect of influenza infection on global gene expression in DCs (data not shown). dsRNA, either from viruses or poly(I:C), is a well-characterized agonist of DC responses. However, it is unclear how additional aspects of viral infection, including expression of viral proteins or disruption of cellular processes by the viral life cycle, regulate host transcription. The induction of miR-451 expression by influenza infection and not poly(I:C) stimulation was therefore notable (Fig. 1A). miR-451 regulates erythroid lineage differentiation (26, 34–36) and has not been characterized within DCs.

We used qRT-PCR to confirm that miR-451 is increased following influenza infection for 8 h (Fig. 1C). We also validated the increased expression of miR-155, which is more strongly induced by poly(I:C) when compared with influenza, the decreased expression of miR-685 by poly(I:C) more than by influenza infection, and the stable expression of Let-7a, which was not altered by stimulation in the miRNA array profiling dataset (Fig. 1C). We explored the range of stimuli that increase miR-451 expression in primary DCs using doses that trigger robust transcriptional responses in DCs. There was not a requirement for live virus, as both live and UV-inactivated influenza induced miR-451 (Fig. 2A). miR-451 expression was increased most strongly by the H1N1 influenza strain PR8, the cytokines type I IFN (IFN-β) or IL-6, but not by a variety of TLR agonists [poly(I:C), LPS, R848] relative to mock-treated cells (Fig. 2A). Induction of miR-451 was partially dependent on type I IFN signaling: IFNAR null DCs, which cannot respond to the type I IFNs that are produced following influenza infection, exhibited lower miR-451 induction than wild-type cells (Fig. 2B). To test whether elevated IFN production by influenza-infected DCs could provide a possible mechanism for the high expression level of miR-451 in virally infected cells compared with cells treated with poly(I:C) or R848, we measured type I and type III IFN expression. Influenza infection did not induce significantly more IFN-α, IFN-β, or IFN-λ compared with poly(I:C) or R848 stimulation (Fig. 2C and data

FIGURE 1. Viral stimulation regulates miRNA expression in DCs. (A) The expression of 578 miRNAs was measured in splenic DCs infected with influenza or stimulated with poly(I:C) for 8 h in vitro and compared with unstimulated cells cultured in parallel (Mock). The means ± SEM for independent biological replicates were calculated, and the fold change relative to unstimulated cells is shown. The dotted line indicates where expression is equivalent to unstimulated cells. miRNAs with a ≥1.5-fold increase in expression in stimulated relative to unstimulated cells and p < 0.001 are shown; n = 3. (B) The miRNAs with a ≥1.5 mean fold decrease in expression and p < 0.001 following stimulation are shown, as described in (A); n = 3. (C) qRT-PCR was performed on miRNAs isolated from splenic DCs infected with influenza, stimulated with poly(I:C), or cultured in parallel without stimulation for 8 h. Expression of the indicated miRNAs was normalized to sno202 expression and the data are displayed as fold change in stimulated cells relative to mock; means ± SEM for n = 3–8 independent biological experiments are shown. *p < 0.05, **p < 0.01.
FIGURE 2. miR-451 expression is more strongly induced by virus, IL-6, and type I IFN compared with pattern recognition receptor agonists. (A) qRT-PCR was performed on splenic DCs stimulated with the indicated agonists for 6 h, and miR-451 expression was normalized to sno202 expression. n = 2 and is representative of ≥2 independent experiments. (B) qRT-PCR of miR-451 expression was performed as described in (A) on wild-type (WT) or IFNARnull splenic DCs stimulated with the indicated agonists for 6 h; n = 2 and is representative of ≥2 independent experiments. (C) qRT-PCR was performed on splenic DCs stimulated with the indicated agonists for 4 h. Type I IFN (IFN-β1 and IFN-α4) and type III IFN (IL-28β/IFN-λx) gene expression was normalized to Ef-1, and fold induction relative to mock-cultured cells is shown; n = 3 independent experiments. (D) MyD88null splenic DCs were cultured for 4 or 8 h with or without influenza PR8 infection and miR-451 expression was quantified by qRT-PCR as described in (A); n = 2. (E) qRT-PCR was performed as described in (A) on primary lung DCs treated with equivalent numbers of live or UV-inactivated influenza PR8 viros (MOI 10) for 8 h; means ± SEM for n = 3–6 are shown. (F) Conventional myeloid DCs (mDC; CD11c+PDCA1+) and plasmacytoid DCs (pDC; PDCA1+) were isolated by FACS and infected with influenza, stimulated with poly(I:C), or cultured in media alone for 18 h. miR-451 expression was measured by qRT-PCR and normalized to sno202 expression; means ± SEM for n = 3–6 are shown. p = 0.01. (G) miR-451 expression was measured by qRT-PCR in splenic DCs infected with influenza PR8 for 6 h and compared with Jc3 RBCs and expression plotted relative to 5S rRNA expression. *p < 0.05, **p < 0.01.

not shown). Although R848 is a well-established inducer of type I IFN expression via TLR7-MyD88-dependent signaling cascades, miR-451 is upregulated in the absence of MyD88 (Fig. 2D). miR-451 expression also increased in influenza-infected primary murine lung DCs (Fig. 2E). The DCs isolated from spleens and lungs are comprised of both myeloid and plasmacytoid DCs. To determine which type of DC upregulates miR-451 following influenza infection, we isolated myeloid (CD11c+PDCA1+) and plasmacytoid (PDCA1+) cells by FACS and observed that miR-451 was upregulated in infected myeloid DCs (Fig. 2F). DCs express ∼10-fold less miR-451 than the high levels measured in erythroid cells (Fig. 2G) (36). In erythroid cells, miR-451 and miR-144, encoded in the same bicistronic locus, are both expressed. In contrast, miR-144 expression was not detectable by microarray (Gene Expression Omnibus accession number GSE36316) or qRT-PCR (data not shown) in DCs.

Antagomir knockdown of miR-451 expression does not alter DC stimulatory activity

To determine the functional consequence of miR-451 expression by DCs infected with influenza, we introduced a locked nucleic acid–stabilized RNA oligonucleotide that is antisense to miR-451 (miR-451 antagonist) into primary splenic DCs by nucleofection and compared responses to cells identically treated with a scrambled oligonucleotide control (control antagonist). We observed uniform uptake of the FITC-conjugated antagonists (Fig. 3A) and functional inhibition of miR-451 expression following treatment with the miR-451 antagonist by qRT-PCR after 21 h (Fig. 3B). miR-451 levels were decreased by >99% based on the detection limit of the assay. miR-451 antagonist treatment did not decrease expression levels of other miRNAs compared with control antagonist treatment (data not shown) and did not decrease miR-451 levels when RNA was isolated immediately after nucleofection and before the antagonist could lead to degradation of its target (Fig. 3B). These controls confirm the specificity of the RT-PCR assay and show that the presence of the antagonist does not simply inhibit the qRT-PCR reaction. Cells responded to the process of nucleofection of RNA antagonists, in which RNA is physically delivered to the cytosol, by inducing miR-451 expression (Fig. 3C). This induction of miR-451 expression is less than that produced by influenza infection and more than that produced by poly(I:C) treatment (Fig. 1C).

Ag presentation is a principal function of DCs. We observed that wild-type DCs treated with miR-451 antagonist or control antagonist or cells derived from wild-type and miR-451null mice were similar in their ability to activate T cells. The surface expression of two molecules necessary for Ag presentation to CD4+ T cells, MHC II and the costimulatory molecule CD80, was independent of miR-451 expression (Fig. 3D). Loss of miR-451, by either antagonist treatment or genetic deletion, did not alter DC survival (data not shown). Inhibition of miR-451 expression did not alter the T cell stimulatory capacity of influenza-infected DCs, as assessed by IFN-γ production (Fig. 3E), or CFSE dilution by Ag-specific CD8+ T lymphocytes (data not shown), and similar results were obtained following poly(I:C) stimulation (data not shown).

miR-451 regulates the production of a distinct set of cytokines by influenza-infected DCs

Inhibition of miR-451 expression had a striking effect on cytokine production by primary splenic DCs following influenza infection in vitro. Levels of secreted IL-6, TNF, CCL5/RANTES, and CCL3/MIP-1β were all consistently increased in cells treated with miR-451 antagonist relative to cells treated with control antagonist (Fig. 4A). Additionally, in some experiments, secretion of CXCL2/MIP-2, CCL4/MIP-1β, CXCL1/KC, and CCL2/MCP-1 by cells treated with miR-451 antagonist was also elevated relative to control-treated cells. In contrast, there were no significant differences in the secretion of CXCL10/IP-10, IL-1β, CXCL9/MIG, GM-CSF, IL-10, CCL11/eotaxin, IL-9, IL-13, IL-7, IL-15, or G-CSF (Supplemental Fig. 1). Cytokine secretion by DCs treated with miR-451 antagonist and control antagonist was equivalent following stimulation with poly(I:C), an agonist that does not induce miR-451 expression (Fig. 4A).

miRNAs can negatively regulate protein levels by blocking translation or by targeting miRNAs for degradation. To explore the mechanism of action of miR-451, qRT-PCR was performed and increased steady-state mRNA levels of II-6, Tnf, and Ccl5/Rantes miRNA were measured in cells treated with antagonist specific for miR-451 (Fig. 4B). To establish whether miR-451 negatively
regulates expression of this group of cytokines in multiple types of DCs, we performed ELISAs on supernatants collected from murine splenic, lung, and FLT3L-derived bone marrow DCs 24 h after influenza infection and measured increased levels of IL-6, TNF, and CCL5/RANTES secreted by all three types of DCs (Fig. 4C). We also detected increased levels of IFN-β mRNA and protein secretion by miR-451 antagomir-treated DCs in response to influenza infection (Fig. 5A, 5B). We measured the expression of a panel of type I IFN–regulated genes and identified an increased type I IFN signature in miR-451 antagomir-treated cells (Fig. 5A). This did not correlate with improved antiviral capacity to limit viral transcription in miR-451 antagomir-treated cells, as viral RNA loads were equivalent to those in control cells (Fig. 5C).

The cytokine phenotype observed after miR-451 suppression by antagomir was confirmed in primary DCs by comparing cytokine production in wild-type and miR-451null DCs, although the differences observed were more subtle. When we measured a panel of 26 cytokines and chemokines (measured in Fig. 1 and Supplemental Fig. 1), we observed increased secretion of IL-6, TNF, CXCL2/MIP-2, and CXCL1/KC by miR-451null DCs following influenza infection (Fig. 6A). We measured analogous increases in Il6, Tnf, and Ifnβ at the mRNA level (Fig. 6B). To test whether antagomir treatment modulated DC cytokine production independently of the decrease in miR-451 expression, miR-451null splenic DCs were treated with miR-451 antagonist or control antagomir. IL-6 and CCL3/MIP-1α production in response to influenza infection was equivalent in miR-451null and wild-type cells treated with miR-451 antagomir. Furthermore, the increase in secretion of these two cytokines was similar in miR-451null DCs and wild-type DCs treated with miR-451 antagomir (Supplemental Fig. 2A).

Overexpression of miR-451 led to a reciprocal decrease in cytokine secretion following infection with two different influenza A viral strains. Stable lines of the JAWS II DCs overexpressing miR-451 or vector alone were generated by retroviral transduction and drug selection. miR-451 overexpression impaired the secreted levels of IL-6, CCL3/MIP-1α, and CCL5/RANTES (Fig. 6C), whereas TNF production by these cells was below the assay de-
miR-451 regulates cytokine expression by targeting Ywhaz

We and others (26, 35, 37, 38) have demonstrated that miR-451 targets the 3′-UTR of Ywhaz/14-3-3ζ mRNA in multiple cell types. In agreement with these studies, YWHAZ protein levels were significantly increased in miR-451null DCs compared with wild-type cells (Fig. 7A). Moreover, Ywhaz mRNA was increased by miR-451 antagomir treatment in DCs (Fig. 5A). Thus, expression of miR-451 correlates with suppression of Ywhaz mRNA and protein expression in DCs, similar to what we reported for erythroid cells (26). YWHAZ belongs to the 14-3-3 family of phosphoserine binding proteins that interact with functionally diverse signaling proteins to modulate their activities. YWHAZ can bind and sequester ZFP36 and FOXO3 from interacting with nucleic acids, thereby inhibiting the actions of these two negative regulators of IL-6 and TNF expression (20, 28). YWHAZ sequesters FOXO3 in the cytoplasm, preventing it from repressing transcription in the nucleus (28, 29). ZFP36 promotes mRNA destabilization by binding to AU-rich elements in the 3′-UTRs in some inflammatory cytokine mRNAs, including TNF, IL-6, and CCL3, and is negatively regulated by interactions with YWHAZ (27, 30). ZFP36 protein levels were reduced in miR-451null cells, which have increased YWHAZ expression (Fig. 7A). We measured increased phosphorylation of FOXO3 on Ser294, which targets this protein for degradation, and decreased nuclear translocation of FOXO3, both of which reflect decreased FOXO3 activity in cells with increased YWHAZ levels (Fig. 7A).

We have shown that decreased expression of miR-451 correlates with increased YWHAZ expression, decreased nuclear FOXO3, reduced ZFP36 expression, and increased levels of IL-6, TNF, CCL3/MIP1, and CCL5/RANTES. Although causal relationships between these observations have been established in other systems, YWHAZ has not been directly connected to FOXO3 or ZFP36 activities or cytokine expression in DCs. We were unable to investigate these mechanisms through YWHAZ knockdown experiments due to observed nonspecific effects of short hairpin RNAs on IL-6 secretion in DCs (Supplemental Fig. 2C). However, overexpression of Ywhaz by retroviral transduction in FLT3L-expanded bone marrow-derived DCs decreased ZFP36 protein, similar to what we observed in miR-451null cells in which Ywhaz is derepressed. In contrast, FOXO3 nuclear localization was increased in cells overexpressing YWHAZ (Fig. 7B), which is not concordant with our observation that reduced miR-451 levels correlate with increased YWHAZ expression and decreased nuclear localization of FOXO3 (Fig. 7A). Fig. 7C shows comparable regulation of Ywhaz, Zfp36, IL-6, Ccl3/Mip1, and Tnf in cells with decreased miR-451 levels using antagonists, genetic ablation, or cells exogenously overexpressing Ywhaz.

These data can be synthesized into a working model shown in Fig. 8. Influenza infection increases miR-451 expression, which...
levels of secreted IFN-γ was also noteworthy that the expression of the vast majority of cytokines and chemokines was dependent on the adaptor stimulator of IFN gene (39), providing a potential mechanism underlying our observation that live and UV-killed influenza induces miR-451 expression.

It is known that Ag presentation and cytokine production are two features of DC maturation that can be uncoupled, highlighting the existence of distinct control points of DC activation. We observed increased proinflammatory cytokine production by miR-451null cells or cells treated with miR-451 antagonomers compared with their wild-type counterparts, but saw no effect on MHC II or costimulatory molecule expression nor differences in the ability of these cells to activate Ag-specific CD8+ T cells (Fig. 3). Although the studies comparing antagonomers and miR-451 knockout cells were concordant in affecting the same subset of cytokines (Fig. 7C), the miR-451-regulated cytokine phenotype was consistently larger in the antagonist studies. This is reminiscent of the larger effect of antagonist-mediated miR-451 knockdown on erythropoiesis observed when compared with genetic knockout (40). Many miRNAs regulate developmental pathways, so DCs that develop in the absence of miR-451 may activate compensatory pathways, leading to differences in response magnitude when compared with normally differentiated wild-type DCs that have antagonist-mediated knockdown of miR-451 levels. The cytokine levels that are tuned by miR-451 play critical roles in the immune system. IL-6 and TNF drive acute inflammatory responses during sepsis as well as serve a progressive role in chronic inflammatory diseases such as rheumatoid arthritis, and TNF-blocking Abs are a standard of care for treating rheumatoid arthritis. Type I IFNs activate expression of a module of antiviral effectors during acute viral infections as well as during underlying chronic inflammatory diseases such as lupus and type 1 diabetes (41, 42). CCL5/RANTES is a potent chemoattractant for T cells along with eosinophils and basophils, and CCL3/MIP1α chemoattracts neutrophils and monocytes. miR-451 knockdown had inconsistent effects on increasing secretion of other chemokines (CCL4/MIP-1β, CXCL2/MIP2, CXCL9/MIG, and CXCL1/Keratinocyte chemoattractant), with differences reaching statistical significance in some experiments but not all. We observed specificity in the cytokines affected by miR-451 expression, which did not alter secretion of IL-10, eotaxin, and IL-1β. Together, the proinflammatory cytokines and chemokines that are more highly expressed in the absence of miR-451 activate a broad range of inflammatory cells, highlighting the importance of stringent regulatory mechanisms.

miR-451 has been shown in multiple systems to inhibit YWHAZ expression by blocking translation (32, 33), which can decrease protein levels. This relieves a brake on ZFP36 activity, which is a negative regulator of proinflammatory cytokine expression. Poly(I:C) stimulation of cells, which does not increase miR-451 levels, yields no miR-451-dependent cytokine phenotype in antagonist-treated cells. In cells with low miR-451 expression, increased YWHAZ protein and mRNA levels correlate with decreased ZFP36 levels and increased cytokine expression. Increasing YWHAZ expression by transduction resulted in an analogous decrease in ZFP36 and increase in IL-6 and TNF expression. These IL-6 and IFN-β levels can positively regulate miR-451 expression, which together serve to buffer cytokine expression.

Discussion

miRNAs provide a layer of posttranscriptional regulation of DC responses to infection. Global profiling of differential miRNA expression in primary DCs responding to live viral infection or a purified RNA agonist of the TLR and RIG-like receptor detection pathways resulted in the novel description of 16 upregulated and 3 downregulated miRNAs and confirmed the known induction of miR-155 expression (32, 33)(Fig. 1). The consequence of regulated expression of these miRNAs remains to be assessed using gain-of-function, loss-of-function, and mechanistic studies, as used in this study to characterize the relevance of miR-451 expression. It was also noteworthy that the expression of the vast majority of miRNAs was unaffected in response to these stimuli. Induction of miR-451 expression was unique to influenza-infected cells, and a transcriptional response specific to influenza infection that cannot be recapitulated by purified agonists is unusual. Although we observed that this virus-induced response was dampened in IFNARnull cells and addition of exogenous IL-6, IFN-β, or UV-inactivated virus could also induce miR-451 expression (Fig. 2), future studies are required to characterize both how DCs recognize influenza infection and the signaling leading to upregulated miR-451 expression. Interestingly, nucleofection of any short RNA or genetic ablation can be linked to increased levels of inflammatory cytokines (26, 35, 37, 38). Increased levels of YWHAZ in macrophages or genetic ablation can be linked to increased levels of inflammatory cytokine expression by two possible mechanisms. YWHAZ binds two inducible attenuators of DC activation: ZFP36 and FOXO3. These IL-6 and IFN-γ analogous decrease in ZFP36 and increase in IL-6 and TNF expression in primary DCs responding to live viral infection or a purified RNA agonist of the TLR and RIG-like receptor detection pathways resulted in the novel description of 16 upregulated and 3 downregulated miRNAs and confirmed the known induction of miR-155 expression (32, 33)(Fig. 1). The consequence of regulated expression of these miRNAs remains to be assessed using gain-of-function, loss-of-function, and mechanistic studies, as used in this study to characterize the relevance of miR-451 expression. It was also noteworthy that the expression of the vast majority of miRNAs was unaffected in response to these stimuli. Induction of miR-451 expression was unique to influenza-infected cells, and a transcriptional response specific to influenza infection that cannot be recapitulated by purified agonists is unusual. Although we observed that this virus-induced response was dampened in IFNARnull cells and addition of exogenous IL-6, IFN-β, or UV-inactivated virus could also induce miR-451 expression (Fig. 2), future studies are required to characterize both how DCs recognize influenza infection and the signaling leading to upregulated miR-451 expression. Interestingly, nucleofection of any short RNA or genetic ablation can be linked to increased levels of inflammatory cytokines (26, 35, 37, 38). Increased levels of YWHAZ in macrophages or genetic ablation can be linked to increased levels of inflammatory cytokine expression by two possible mechanisms. YWHAZ binds two inducible attenuators of DC activation: ZFP36 and FOXO3. These IL-6 and IFN-γ analogous decrease in ZFP36 and increase in IL-6 and TNF expression in primary DCs responding to live viral infection or a purified RNA agonist of the TLR and RIG-like receptor detection pathways resulted in the novel description of 16 upregulated and 3 downregulated miRNAs and confirmed the known induction of miR-155 expression (32, 33)(Fig. 1). The consequence of regulated expression of these miRNAs remains to be assessed using gain-of-function, loss-of-function, and mechanistic studies, as used in this study to characterize the relevance of miR-451 expression. It was also noteworthy that the expression of the vast majority of miRNAs was unaffected in response to these stimuli. Induction of miR-451 expression was unique to influenza-infected cells, and a transcriptional response specific to influenza infection that cannot be recapitulated by purified agonists is unusual. Although we observed that this virus-induced response was dampened in IFNARnull cells and addition of exogenous IL-6, IFN-β, or UV-inactivated virus could also induce miR-451 expression (Fig. 2), future studies are required to characterize both how DCs recognize influenza infection and the signaling leading to upregulated miR-451 expression. Interestingly, nucleofection of any short RNA or genetic ablation can be linked to increased levels of inflammatory cytokines (26, 35, 37, 38). Increased levels of YWHAZ in macrophages or genetic ablation can be linked to increased levels of inflammatory cytokine expression by two possible mechanisms. YWHAZ binds two inducible attenuators of DC activation: ZFP36 and FOXO3.
Zfp36 expression is highly induced by stimulation with TLR agonists or cytokines such as TNF or type I IFN (21). ZFP36 is an RNA binding protein that targets AU-rich mRNAs such as TNF, IL-6, and CCL3/MIP1α for degradation. YWHAZ has been shown in multiple cell types to sequester ZFP36 from binding target mRNAs. Increasing YWHAZ levels by genetic overexpression or miR-451 antagonir treatment correlated with decreased ZFP36 levels (Fig. 7). YWHAZ is also a known negative regulator of FOXO3, a transcription factor that interacts with the transcriptional machinery to negatively regulate transcription of cytokines such as IL-6 and TNF (20, 43). FOXO3 is controlled by four mechanisms: transcription, posttranslational modifications, cellu-
FIGURE 7. miR-451 negatively regulates Ywhaz expression in DCs. (A) Whole-cell lysates were prepared from splenic DCs isolated from wild-type (WT) or miR-451null (KO) mice and infected in vitro with influenza PR8 for 6 h. Western blots were performed using Abs specific for YWHAZ, ZFP36, or phosphorylated FOXO3, signals quantified using densitometry, normalized to the expression level of actin, and displayed relative to the levels in wild-type cells. Nuclear extracts were prepared from cells treated under identical conditions, probed for FOXO3 expression, normalized to the level of LaminB1, and displayed relative to the levels in WT cells. Means ± SEM are shown for two to seven samples. (B) Whole-cell lysates or nuclear extracts were prepared from splenic DCs stably expressing YWHAZ or vector alone, infected in vitro with influenza PR8 for 6 h, and Western blotting performed as described in (A). Means ± SEM; n = 2. (C) Splenic DCs were prepared from WT or miR-451null (KO) mice, and WT cells were treated with control antagonir or miR-451 antagonir or transduced to overexpress YWHAZ or vector alone. Following infection with influenza PR8 for 24 h, RNA was isolated, and qRT-PCR was performed. Gene expression was calculated relative to Ef-1, and means ± SEM are shown for two to three samples. *p < 0.05.
miR-451 is conserved between erythroid and DCs, yet the consequences, erythroid differentiation and resistance to oxidant stress and DC proinflammatory cytokite production, are distinct. The cell lineage–specific expression of YWHAZ binding partners (ZFP36 is highly expressed in activated DCs) and distinct FOXO3-dependent transcriptional programs (erythroid cells lack IL-6 and TNF expression) could explain the different phenotypic effects of miR-451 expression between cell types.

miR-451, ZFP36, and FOXO3 are all transcriptionally induced by viral stimuli, and the phenotypes of Zfp36null and Foxo3null mice show that their contribution to negative feedback is more important than providing a homeostatic restraint on inflammation (20, 22). miRNAs have modest effects on the protein levels of targets, decreasing concentrations by an average of 2-fold (48, 49). The phenotypic effects of miRNAs can be larger than their effects on steady-state protein levels when target expression is at a threshold, when they target multiple members of the same pathway, or when multiple miRNAs bind to a given mRNA target (13). Signaling molecules and transcription factors are both particularly sensitive to changes in concentration (11). miRNAs can therefore more potently inhibit cytokine transcripts by targeting the regulators of cytokine gene expression. In this study, we characterize an miRNA that targets a multifunctional protein, YWHAZ, that is present in limiting quantity (25), providing another mechanism for amplifying the effect of small modulations in protein levels.

Cells most efficiently process information using biochemical networks with high sensitivity to changes in input signals and low sensitivity to stochastic fluctuations. Regulatory circuits enable cells to buffer propagated noise while maintaining sensitivity to signals (50). Although positive regulatory circuits are instrumental in cellular differentiation programs, negative regulatory circuits generate homeostasis or oscillatory behavior. Negative feedback can serve as a buffer by attenuating noise as well as providing stability by limiting the range over which the concentrations of network components can fluctuate (51, 52). Our data add a third negative regulator in a negative-feedback cascade that buffers proinflammatory cytokine secretion by influenza-infected DCs. It will be interesting to determine whether induction of miR-451 by influenza infection and the correlating restraint on cytokine secretion offer a net benefit to the host or pathogen.

Acknowledgments

We thank A. Diercks, V. Litvak, K. Kennedy, and A. Lampano for advice and S. Fallen and R. Suen for technical assistance.

Disclosures

The authors have no financial conflicts of interest.

FIGURE 8. miR-451 regulates a negative cascade to modulate proinflammatory cytokite expression. (A) miR-451 targets the 3′-UTR of YWHAZ to decrease protein levels. YWHAZ binds ZFP36 to decrease binding to AU-rich elements in the 3′-UTR of the proinflammatory cytokines TNF, IFN-β, and IL-6 and the chemokines CCL3 and CCL5. IL-6 and IFN-β positively regulate miR-451 expression in DCs. (B) Antagomir data support the following model for the observed increased expression of IL-6, TNF, CCL3, CCL5, and IFN-β in primary DCs treated with miR-451 antagonist. Antagomir treatment increases YWHAZ protein and mRNA levels, which correlates with decreased ZFP36 levels. Increasing YWHAZ expression by transduction resulted in an analogous decrease in ZFP36 and increase in IL-6, TNF, and chemokine expression. Increased IL-6 and IFN-β levels can positively regulate miR-451 expression, whereas miR-451 expression culminates in decreased IL-6 expression, which together serves to buffer IL-6 expression.

References

