Pulmonary CCL18 Recruits Human Regulatory T Cells

Cécile Chenivesse, Ying Chang, Imane Azzaoui, Saliha Ait Yahia, Olivier Morales, Coline Plé, Arnaud Foussat, André-Bernard Tonnel, Nadira Delhem, Hans Yssel, Han Vorng, Benoit Wallaert and Anne Tsicopoulos

J Immunol 2012; 189:128-137; Prepublished online 30 May 2012;
doi: 10.4049/jimmunol.1003616
http://www.jimmunol.org/content/189/1/128

References

This article cites 59 articles, 29 of which you can access for free at:
http://www.jimmunol.org/content/189/1/128.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
CCL18 is both a constitutively expressed and an inducible chemokine, whose role in the inflammatory reaction is poorly known. The aim of this study was to evaluate whether CCL18 has the capacity to attract human T cells with a regulatory function (regulatory T cells [Treg]). Results from chemotaxis assays performed on different types of Treg showed that CD4+CD25+CD127high cells, but neither T regulatory type 1 clones nor Treg differentiated in vitro with anti-CD3/CD46 mAbs, were recruited by CCL18 in a dose-dependent manner. CCL18-recruited memory CD4+ T cells were enriched in CD25 high, CD25 + CD127low, latency-associated peptide/TGF-β-dependent manner. CCL18-recruited memory CD4+ T cells were enriched in CD25 high, CD25 + CD127low, latency-associated peptide/TGF-β1, and CCR4-expressing T cells, whereas there was no enrichment in Foxp3+ cells as compared with controls. Stimulated CCL18-recruited memory T cells produced significantly increased amounts of the regulatory cytokines IL-10 and TGF-β1, as well as IL-4, but not IFN-γ and IL-17. Cell surface CCL18 binding was found predominantly on IL-10+ (26.3 ± 5.8%) and on a few latency-associated peptide/TGF-β1+ (18.1 ± 1.9%) and IL-4+ (14.5 ± 2.9%) memory T cells. In an in vivo model of SCID mice grafted with human skin and reconstituted with autologous PBMCs, the intradermal injection of CCL18 led to the cutaneous recruitment of CD4+, CD25+, and IL-10+ cells, but not Foxp3+ cells. Furthermore, CCL18-recruited memory T cells inhibited the proliferation of CD4+CD25+ effector T cells through an IL-10-dependent mechanism. These data suggest that CCL18 may contribute to maintaining tolerance and/or suppressing deleterious inflammation by attracting memory Tregs into tissues, particularly in the lung, where it is highly and constitutively expressed.

CD122^{low} and Foxp3⁺ Tregs that exerts its regulatory function through the production of IL-10.

Materials and Methods

Isolation of memory and naive CD4⁺ T cells and culture

Venous blood provided by the Etablissement Français du Sang was obtained from 36 healthy subjects. PBMCs were isolated from venous blood by density centrifugation over Ficoll/Hypaque (Pharmacia, Uppsala, Sweden). Human CD4⁺ and CD4⁺CD45RO⁺ T cells were isolated from PBMCs by negative selection over a MACS column using CD4⁺ and memory CD4⁺ T cell isolation kits (Miltenyi Biotec, Bergisch Gladbach, Germany) with a purity of 96–98%. In some control experiments, naive CD4⁺CD45RA⁺ T cells were purified by negative selection using naive CD4⁺ T Cell Isolation Kit II (Miltenyi Biotec) with a purity of >95%.

After purification, memory or naive CD4⁺ T cells (10⁶ cells/ml) were kept overnight in RPMI 1640 medium, supplemented with 2 mmol/L glutamine, 100 IU/ml penicillin, 100 mg/ml streptomycin, and 10% FCS.

Flow cytometry sorting of T cell subsets

CD4⁺CD45RO⁺ or CD4⁺CD45RA⁺ T cells were purified from PBMCs by magnetic separation (Miltenyi Biotec). Cells were stained with anti-CD4–FITC (BD Pharmingen) and anti-CD25–PE (BD Pharmingen) or anti-CCR4–PE (BD Pharmingen) and with CD127–allophycocyanin (BD Pharmingen) for 30 min on ice, washed in PBS/2% BSA, filtered, and then sorted by flow cytometry (FACSAria; BD Biosciences, San Jose, CA). The purity of the isolated CD4⁺CD45RO⁺ or CD4⁺CD45RA⁺ T cells was demonstrated by the inhibition of its binding on naive T cells with nonlabeled CCL18 (data not shown). As a control, we used a small m.w. protein derived from Plasmodium falciparum (a kind gift of Dr. S. Tomavo, Lille, France). The complete open-reading frame of a gene encoding the P. falciparum TAF10 homolog (28) was cloned in-frame into the pGEX-6p-3 (Amersham, Uppsala, Sweden). The GST was removed from the recombinant protein using precession protease thrombelastogenase. Next, CCL18 was labeled according to manufacturer’s instructions (Amersham). The purified P. falciparum TAF10 was subjected to SDS-PAGE followed by Coomassie blue staining and then labeled using a biotinylation kit (Sigma). For concomitant extracellular CCL18R and intracellular cytokine expression, cells were stimulated for 24 h with PMA at 50 ng/ml and ionomycin at 1 μg/ml. Brefeldin A was added the last 4 h of the culture. Cells were stained for CCL18R as described earlier, permeabilized using the Cytofix/Cytoperm BD Pharmingen kit according to the manufacturer’s recommendations, and subsequently labeled using anti-IL-4–PE and anti–IL-10–PE mAbs (BD Biosciences).

Quantification of the cytokine profile

Concentrations of IL-4, IL-10, IFN-γ (Diaclone Research, Besançon, France), IL-17, and TGF-β1 (R&D Systems) in cell culture supernatants were measured by ELISA, according to the manufacturer’s recommendations. The level of sensitivity was 1.1 pg/ml for IL-4, 12.5 pg/ml for IL-10, 0.4 pg/ml for IFN-γ, and 15.6 pg/ml for IL-17 and TGF-β1. Results were expressed as percentage of nonmigrated naive memory T cells.

Flow cytometry phenotype analysis

The phenotypes related to Treg were evaluated by flow cytometry using a standardized protocol as previously described (27). For the extracellular markers, cells were stained with anti-CD25–PE, anti-CD127–allophycocyanin (both from BD Pharmingen), anti-CD103–FITC (Beckman Coulter, Fullerton, CA), anti–CTLA-4–FITC, anti–CCR4–PE (both from R&D Systems), and biotinylated anti-LAT–PE (BD Pharmingen). Next, CCL18 was demonstrated by the inhibition of its binding on naive T cells with nonlabeled CCL18 (data not shown). As a control, we used a small m.w. protein derived from Plasmodium falciparum (a kind gift of Dr. S. Tomavo, Lille, France). The complete open-reading frame of a gene encoding the P. falciparum TAF10 homolog (28) was cloned in-frame into the pGEX-6p-3 (Amersham, Uppsala, Sweden). The GST was removed from the recombinant protein using precession protease thrombelastogenase. Next, CCL18 was labeled according to manufacturer’s instructions (Amersham). The purified P. falciparum TAF10 was subjected to SDS-PAGE followed by Coomassie blue staining and then labeled using a biotinylation kit (Sigma). For concomitant extracellular CCL18R and intracellular cytokine expression, cells were stimulated for 24 h with PMA at 50 ng/ml and ionomycin at 1 μg/ml. Brefeldin A was added the last 4 h of the culture. Cells were stained for CCL18R as described earlier, permeabilized using the Cytofix/Cytoperm BD Pharmingen kit according to the manufacturer’s recommendations, and subsequently labeled using anti-IL-4–PE and anti–IL-10–PE mAbs (BD Biosciences).

Real-time quantitative RT-PCR

After removal of the supernatants, the transmigrated memory CD4⁺ T cells were suspended in TRI Reagent (Ambion, Austin, TX), and total RNA was extracted according to the manufacturer’s procedure. Reverse transcription was performed using the high-capacity cDNA reverse transcription kit (Applied Biosystems, Foster City, CA). The cDNA was amplified in triplicate by real-time PCR using the SYBR Green PCR kit (Applied Biosystems). The amount of Foxp3 mRNA expression was normalized to β-actin and calculated according to the comparative ΔΔCt method. Primer pairs were as follows: Foxp3, 5′-GAGAGAACAGCATCTTGCGACCTGTC-3′ and 5′-ATTGGCCACGCGGATGACGAG-3′; β-actin, 5′-TCCTCACCTGGAA-GTACCCCA-3′ and 5′-AGGCCACGGACGTCACTTTG-3′.

Proliferation suppression assays

FACS-sorted CD4⁺CD25⁺ T cells (5 × 10⁶/well) were stimulated in triplicate wells with soluble anti-CD3 mAb (10 ng/ml) and anti-CD28 mAb (10 ng/ml; BD Biosciences) in 96-well round-bottom plates (Corning Costar, Corning, NY), in the absence or presence of CCL18-regenerated CD4⁺CD45RO⁺ T cells at suppressor/responder ratios of 1:4, 1:2, and 1:1. Irradiated (50 Gy) autologous PBMCs were used as APCs (5 × 10⁵/well). Purified sorted CD4⁺CD25^{high} T cells were used as positive control of T cell suppression, and medium- and CXCL12-restricted CD4⁺CD45RO⁺ T cells as negative controls of T cell suppression. Proliferation was measured in triplicate after methyl-β-Heximidine (1 μCi/well; GE Healthcare, Bucks, U.K.) incorporation for the last 18 h. Cultured cells were harvested on glass fiber filter (Printed Filtermat A; Wallac, Turku, Finland) using the Harvester (Tomtec; Wallac) and sealed in a sample bag after drying and the addition of scintillation liquid (Beckman Coulter, Fullerton, CA). Incorporated radioactivity was detected by scintillation counting using a 1450 TriLux β-counter (Wallac, Turku, Finland), and estimated in cpm. Results were expressed as percentage of proliferation ± SEM of CD4⁺CD25⁺ effector T cells alone. In some experiments, 1 μg/ml neutralizing anti-IL-10 (R&D Systems), 1 μg/ml neutralizing anti–TGF-β (R&D Systems), or 1 μg/ml anti–CXCL12 mAb was added to the cultures. To investigate a contact-dependent mechanism, we separated CD4⁺CD25⁺ T cells from CD4⁺CD45RO⁺ T cells harvested by CCL18 using a 96-well transwell plate with a 0.4-μm polycarbonate membrane (Corning).
In vivo model of SCID mouse grafted with human skin

Skin from human donors was obtained from thorax surgery in which skin was discarded. Skin was kept in sterile normal saline with added penicillin and streptomycin, and transplanted onto SCID mice within 2 h after harvesting. Blood from the same donors was collected on heparin 6 wk after surgery. The protocol was approved by the Centre Hospitalier Régional et Universitaire ethical committee (no. 96102). All donors signed an informed consent form according to the declaration of Helsinki protocols.

Inbred mice with SCID (CB-17 SCID mice) were obtained from breeding pairs originally provided by M. Lieberman (Stanford University, Stanford, CA) maintained at the Institute Pasteur de Lille in sterilized isolators. Leaky mice (displaying spontaneous IgG production after 6 wk of age) were discarded. Mice were housed under pathogen-free conditions. Animals were handled according to the ethical principles of animal experimentation established by the European Center of Tufts University.

Skin grafting was performed as described previously (29, 30). In brief, after anesthesia, 6–8-wk-old mice were prepared for grafting by shaving the hair from a 5-cm² area on each side of the lateral abdominal region. Two circular graft beds of ∼1.5 cm in diameter were prepared by removing shaved mouse skin. Full-thickness human skin grafts of the same size were placed onto wound beds. The use of two skin grafts per mouse allowed each mouse to be its own control. The transplants were held in place using shaved mouse skin. Full-thickness human skin grafts of the same size were immediately embedded in OCT compound (Labonord, Villeneuve d’Ascq, France), snap-frozen in isopentane precooled in liquid nitrogen, and stored at −80°C. The other half was fixed in 4% paraformaldehyde, washed in 15% PBS/sucrose before OCT embedding, freezing, and storage at −80°C.

Immunohistochemistry

Cryostat sections (6 μm) of PFA-fixed tissues were cut, air-dried, wrapped in aluminum foil, and stored at −20°C for immunohistochemistry. Anti-human CD45, CD25, and CD4 mAbs were purchased from BD Biosciences. Anti-human CD45RO mAb was from Dako (Glostrup, Denmark), anti-human Foxp3 mAb was from Abcam (Cambridge, U.K.), anti-human IL-4, IL-5, and IL-10 mAbs were from Pharmingen (San Diego, CA), and anti-human IFN-γ mAb was from Bt (Hyct Biotechnology, Uden, Netherlands). Fast Red (Fast Red/naphthol ASMX tablets) was from Sigma (St. Quentin Fallavier, France). For all Abs except anti-human IL-4, IL-5, and IL-10 mAbs, immunohistochemistry was performed using a modified alkaline phosphatase anti-alkaline phosphatase method, as previously described (26). In brief, PFA-fixed cryostat sections were incubated in 0.3% Triton X-100 for 20 min, washed in TBS and incubated with the primary Ab overnight at 4°C. The sections were then successively incubated 30 min with rabbit anti-mouse Ig and then monocolonal alkaline phosphatase anti-alkaline phosphatase Abs (both from Dako), diluted in 20% normal human AB⁺ serum. The coloration was developed using Fast Red, and sections were counterstained using hematoxilin. Irrelevant primary Ab of the same species was used as negative control. For IL-4, IL-5, and IL-10, immunohistochemistry was performed by using a modified avidin complex method, as previously described (31). In brief, PFA-fixed sections were incubated in 0.3% Triton X-100 for 20 min and with PBS containing 1% hydrogen peroxide. Endogenous biotin was quenched by using a Vector Laboratories kit (Peterborough, U.K.). Sections were preincubated with rabbit serum and incubated overnight with the anti-cytokine mAbs in PBS containing 0.1% saponin (Sigma). Sections were treated with the ABC Vectastain Elite kit (Vector Laboratories) and the color developed by using diaminobenzidine (Vector Laboratories) and nickel (Vector Laboratories). Substitution of the primary Ab with an irrelevant Ab of the same species was used as a negative control. Anti-human Abs displayed no cross-reactivity with murine structures, as verified by immunohistochemistry on cryostat sections from biopsies performed at the border between human and murine tissue. Slides were encoded and counted in a blinded fashion at ×250 magnification using an eyepiece graticule. For skin sections, the upper edge of the grid was placed at the epidermal junction. For each specimen, at least three sections were evaluated, from which three to six fields were counted for immunohistochemistry. Absolute numbers of positive cells were counted per square millimeter.

Statistical analysis

Statistical analysis was first performed within the subgroups by using one-way ANOVA tests and, when significant, followed by post hoc multiple-comparison tests. For normally distributed data, we used Bonferroni’s test, and for not normally distributed data, we used Dunnett’s test. For the in vivo study, differences between diluent and CCL18 injection sites were compared using the Wilcoxon matched pairs test. The p values <0.05 were considered as statistically significant. Statistical analysis was performed using the GraphPad Prism 4 software (GraphPad Software, La Jolla, CA).

Results

CCL18 attracts human CD4⁺CD25⁺CD127low Tregs, but not Tr1 clones in vitro

To investigate whether CCL18 is able to attract human Tregs, we performed chemotaxis assays using different types of human Tregs at different concentrations of CCL18 ranging from 10⁻¹¹ to 10⁻⁷ M. The constitutive expression of CD25 on CD4⁺ T cells is a marker of Treg (2), although this receptor is also transiently up-regulated on activated effector T cells. A low expression of IL-7R CD127 has been shown to discriminate between CD4⁺CD25⁺ T cells and activated effector CD4⁺CD25⁻ T cells (31). Therefore, highly purified FACS-sorted memory CD4⁺CD25⁺high and CD4⁺CD25⁺CD127low Tregs were assessed, as well as polarized Tr1 type cells, that is, in vitro anti-CD3/CD4/46 polarized IL-10-secreting Tregs (32) and IL-10–producing Tr1 clones. For FACS, purified memory CD45RO⁺ T cells were used to discard naive T cells, which are attracted by CCL18 but localize predominantly in lymphoid organs, and because most Tregs are memory cells. For CD4⁺CD25⁺high and CD4⁺CD25⁺CD127low T cells, we used CD4⁺CD25⁻ and CD4⁺CD25⁺ CD127⁺ cells as negative controls, respectively. As shown in Fig. 1A and 1B, sorted CD4⁺CD25⁺high and CD4⁺CD25⁺CD127low cells dose-dependently migrated in response to CCL18 with a maximal effect at 10⁻⁷ and 10⁻⁸ M, whereas control cells did not. The statistical analysis was performed by comparison with the lowest dose of CCL18 to demonstrate a dose-dependent effect, which is a characteristic feature of chemotaxis as opposed to chemokinesis. In contrast, in vitro differentiated Tregs were not attracted by CCL18, either at 24 or 48 h of differentiation (Fig. 1C). To assess the effect of CCL18 on in vivo differentiated Tr1 cells, T clones derived from skin and PBMCs were evaluated in chemotaxis assays. Similarly, CCL18 did not attract these cells either in a resting state or after anti-CD3/CD28 stimulation (data not shown). It has been shown that the chemokine receptors CCR4 and CCR8 are expressed on both human Th2 cells and Tregs (9–12). Given the similarity with CCL18 function, the migration of sorted memory CD4⁺CCR4⁺ cells in response to CCL18 was assessed. As shown in Fig. 1D, CD4⁺CCR4⁺ T cells were dose dependently attracted by CCL18 with a maximal effect at 10⁻⁷ M. We were unable to evaluate the attraction of CD4⁺CCR8⁺ cells by CCL18 because of the lack of specificity of all commercially available anti-CCR8 Abs, which did not allow cell sorting, at least in our hands. To check the specificity of CD4⁺CD25⁺high T cell recruitment, we incubated CCL18 with a neutralizing Ab against CCL18 before the chemotaxis assay. As shown in Fig. 1E, a complete inhibition of CD4⁺CD25⁺high T cell migration was obtained. Finally, because naive T cells are targets of CCL18 and CD25⁻ naive T cells have...
Human memory CD4+ T cells attracted by CCL18 in vitro display some phenotypic characteristics of Tregs without expression of Foxp3

To assess whether CCL18 was able to preferentially recruit Tregs in a competitive T cell environment, we performed experiments in a transwell system in response to 10−11, 10−9, and 10−7 M CCL18 or to controls (medium and CXCL12 used at 10−7 M). After 2 h 30 min, cells were harvested from the lower compartment. We obtained a moderate, but significant and dose-dependent, chemotaxis of memory CD4+ T cells by CCL18 (43.2 ± 5.7% increase at CCL18 10−7 M compared with medium, p < 0.001), which was more important for CXCL12 (226 ± 44% increase; data not shown), confirming previously described results (20). The harvested cells were allowed to recover for 24 h before phenotyping by flow cytometry. As baseline, memory T cells maintained under the same conditions, but not allowed to migrate, were used. Even though there is no clear specific cell surface marker of Treg, some markers have been shown to be preferentially expressed on human Treg, in particular, CD25high (34), CD25lowCD127low (31), LAP/TGF-β1 (35), CD103 (αEβ7 integrin) (36), and CTLA-4 (37). As shown in Fig. 2A, among memory CD4+ T cells recruited by CCL18 at 10−7 and 10−9 M as compared with baseline level before migration, there was a small but significant increased percentage of cells expressing CD25high (5.35 ± 1.1 and 4.69 ± 0.86% versus 3.91 ± 0.63%, respectively), CD25lowCD127low (6.9 ± 1.7 and 5.67 ± 0.56% versus 4.73 ± 0.9%) or LAP/TGF-β1 (6.34 ± 1.9 and 5.88 ± 1.37% versus 2.87 ± 0.45%), corresponding to ~30% enrichment for the two first populations and 100% for the latter. Memory T cells recruited either by medium or CXCL12 at 10−7 M were not enriched in these populations. In contrast, there was no differential expression of the surface markers CD103 and CTLA-4 (Fig. 2B).

Although there was no increase in the number of CD4+CCR4+ T cells (data not shown), we observed a strong upregulation of CCR4 mean fluorescence intensity (MFI) in the CCL18-recruited cell population, suggesting a preferential recruitment of T cells strongly expressing CCR4 (504.4 ± 182.3 MFI for CCL18 at 10−9 M compared with baseline; 214.1 ± 62.4 MFI, Fig. 2B). As another readout of Treg, the T cell transcription factor Foxp3 was assessed by intracellular staining. However, there was no increase in the percentage of CD4+CD25Foxp3+ cells, independently of the chemokine used in the assay (Fig. 2C). To confirm these data, we evaluated mRNA expression for Foxp3 by quantitative RT-PCR. Similar to the results at the protein level, Foxp3 mRNA was not increased in CCL18-recruited cells (data not shown). Although
the nature of the putative CCL18R is as yet unknown, we checked its expression by flow cytometry on memory CD4+CD25+ cells using a biotinylated ligand. Only a few memory CD4+CD25+ T cells bound CCL18 (4.28 ± 0.72%), whereas the percentage of CCL18-binding cells was doubled in CD4+CD25- cells (8.25 ± 1.4%; Fig. 2D). Thus, CCL18-recruited memory CD4+ T cells display some characteristics of Treg, that is, high expression of CD25, low expression of CD127, some expression of LAP/TGF-β1, but no expression of Foxp3.

Human memory CD4+ T cells attracted by CCL18 in vitro produce IL-10 and TGF-β1 upon activation

To evaluate the polarization profile of memory T cells recruited by CCL18, we examined their cytokine production. Using the same transwell system described earlier, we stimulated the recovered cells with anti-CD3/CD28 Abs for 3 d, and the supernatants were harvested and analyzed for production of IL-4, IL-10, TGF-β1, and IL-17 by ELISA. As baseline, memory T cells stimulated with PMA and ionomycin, and evaluated by flow cytometry. Double immunostaining was also performed for cell surface CCL18R and LAP/TGF-β1 on nonstimulated memory T cells. The mean percentage of CCL18R+ cells was 14.5 ± 2.9% in IL-4+ cells, 26.3 ± 5.8% in IL-10+ cells, and 18.1 ± 1.9% in LAP/TGF-β1+ cells in 5–9 subjects (data not shown). These data show that, in addition to the known chemotraction of Th2 cells (14), CCL18 also recruits cells able to produce immunosuppressive cytokines.

Human CD4+ T cells attracted by CCL18 in vivo express CD25, but not Foxp3, and produce IL-10

To confirm the phenotype of CCL18-recruited CD4+ T cells in vivo, we used a humanized model consisting in a SCID mouse model grafted with human skin and reconstituted with autologous mononuclear cells. CCL18, as well as its diluent, were injected into the skin grafts, and biopsies were performed 24 h later and analyzed by immunohistochemistry. First, the cell infiltrate generated by the injection of CCL18 was assessed as compared with the control diluent. T cells recruited by CCL18 included memory (CD45RO+, p < 0.01; Fig. 4A) and CD4+ T cells, whereas CD8+ T cells were not found (data not shown). Consistent with the in vitro findings, the CD25 marker was up-regulated in CCL18-injected graft (p < 0.02), whereas no Foxp3+ cells were evidenced (Fig. 4A). Next, we examined the cytokine profile expression of CCL18-injected grafts and found an elevated percentage of IL-10+ cells in comparison with the diluent injection site (p < 0.03; Fig. 4A). In contrast, no immunostaining was observed for IFN-γ, and a small, nonstatistically significant increase was observed for IL-4 and IL-5. Examples of immunostaining are shown in Fig. 4B. These results confirm the ability of CCL18 to recruit in vivo CD4+ T cells having a phenotype compatible with a regulatory function.
Human memory CD4+ T cells attracted by CCL18 suppress T cell proliferation through an IL-10-dependent mechanism

To definitively assess whether the cells recruited by CCL18 are bona fide regulatory cells, we performed functional assays by evaluating the ability of in vitro CCL18-recruited memory CD4+ T cells to suppress effector CD4+CD25- T cell proliferation. Highly purified CD4+CD25+ and CD4+CD25- T cells sorted by flow cytometry, as well as memory CD4+ T cells recruited in the presence of medium only, CXCL12, or CCL18 were added at increasing ratios to a fixed number of irradiated PBMCs and autologous CD4+CD25- effector cells, stimulated with soluble anti-CD3 and CD28 Abs. When evaluated alone for their baseline proliferation, medium- and CXCL12-recruited T cells proliferated to a similar extent as effector T cells, whereas CD4+CD25+ T cells and CCL18-recruited T cells showed a 3- and 2-fold decrease, respectively, in their proliferative response (data not shown). The addition of CD4+CD25- effector cells as a negative control resulted in increased T cell proliferation, whereas the addition of CD4+CD25+ Tregs (positive control) resulted in a ratio-dependent suppression of proliferation (60.25% inhibition at 1:1 ratio; Fig. 5A). Addition of memory CD4+CD25- T cells, recruited by medium or CXCL12, did not significantly suppress T cell proliferation, as compared with the negative control. In contrast, addition of CCL18-recruited memory CD4+ T cells significantly suppressed proliferation, as compared with the negative control with 42.7% inhibition at a 1:1 ratio, as well as compared with medium-recruited cells at 1:2 and 1:1 ratio (Fig. 5A). Two main mechanisms have been shown to contribute to Treg-mediated suppression, cell–cell contact, and soluble inhibitory molecules, such as IL-10 and TGF-β (38). To investigate the mechanism involved in the suppressive effect of CCL18-recruited memory CD4+CD25- T cells, we performed inhibition and cell contact experiments. The addition of a blocking anti–IL-10 mAb completely reversed the suppression of responder T cell proliferation at all ratios (Fig. 5B). The addition of a neutralizing anti–TGF-β mAb induced a small recovery of T cell proliferation, which was, however, not statistically significant (Fig. 5B). To investigate whether part of the suppressive effect was cell-contact dependent,
we separated CCL18-recruited memory CD4+ T cells from CD4+ CD25- effector cells by a 0.4-μm pore size membrane in a transwell. Under these conditions, CCL18-recruited memory CD4+ T cells were still able to inhibit the proliferation of CD4+CD25- effector cells (40.8% inhibition at a ratio of 1:1; Fig. 5B). These data indicate that CCL18 recruits Tregs that, in turn, inhibit CD4+CD25- effector cell proliferation through an IL-10–, but not a cell contact-dependent mechanism. Collectively, these findings show that CCL18 is able to recruit Tregs, which act through IL-10 production but do not express Foxp3.

Discussion
In this study, we show for the first time, to our knowledge, that CCL18 recruits a particular subset of Tregs expressing CD25 but not Foxp3, which act through the production of IL-10. Hitherto, several Treg subsets have been reported, including natural and adaptive T cells. CD4+ T cells constitutively expressing CD25 were first described as natural Tregs conferring self-tolerance. However, the IL-2Rα-chain CD25 is expressed by activated effector T cells as well. Human T cells expressing high levels of CD25, rather than cells expressing low levels of CD25, were shown to support Treg activity (34). The expression of IL-7Rα-chain CD127 is useful to help discriminating CD4+CD25+ Tregs, which downregulate CD127 (CD127low), from activated effector CD4+CD25- T cells, which upregulate CD127 (CD127high) (31). In this study, CCL18 induced a clear recruitment of both highly purified memory CD4+CD25high and CD4+ CD25lowCD127low T cells, which was, however, less prominent when total, nonselected, memory T cells were used, arguing for a competition within different responding subpopulations. Although CCL18-recruited T cells did not express Foxp3, neither at the transcriptional nor at the protein level, they were bona fide Tregs, as shown by their functional ability to inhibit T cell proliferation. Because chemotaxis in vitro (39) and cell accumulation in response to injected chemokines do not always accurately predict chemokine function in vivo, a physiological setting of human skin leukocyte recruitment was used. The particular phenotype observed in vitro was also observed in vivo in a human setting, indicating that it was not linked to an in vitro artifact. Expression of the transcription factor Foxp3 is a feature of natural Treg (1), which arises during thymic development through high-affinity recognition of self-Ags (40, 41). Therefore, these data suggest that CCL18-recruited Tregs are not natural, but rather adaptive Tregs. CCL18-recruited Tregs were demonstrated to act through IL-10. The production of IL-10 by CD4+ T cells has been associated with different subsets of Tregs including Foxp3 cells, in particular, in humans and among the peripherally induced adaptive Tregs. The best characterized of the latter subset are Tr1 cells, originally described as a progeny of naive CD4+ T cells activated ex vivo in the presence of IL-10 or by IL-10–conditioned dendritic cells (42, 43). Tr1 cells are characterized by abundant production of IL-10 and exert suppression by a cell-
contact–independent, cytokine-dependent mechanism that involves both IL-10 and TGF-β (7). These characteristics fitted the general properties of CCL18-recruited Tregs; however, CCL18 did not attract Tr1 clones or anti-CD3/CD46–differentiated T cells. Notably, the Tr1 clones that were used in this study did express Foxp3 (25), a feature that was missing in the cells recruited by CCL18. With respect to anti-CD3/CD46–differentiated T cells, they are also considered as Tr1 type cells linked to their ability to suppress T cell proliferation and produce the suppressive cytokine IL-10 (32), as well as their ability to induce granmediated cytotoxicity (44). Among other Treg populations not expressing Foxp3, a subset of CD69+CD4+ T cells has been described to suppress T cell proliferation through membrane-bound TGF-β in mice (45). However, in contrast with CCL18-recruited Tregs, the latter subpopulation does not express CD25 and does not produce IL-10, ruling out a potential similarity between them. Some CCL18-recruited T cells expressed increased levels of LAP/TGF-β1. The latent form of TGF-β1 has been previously detected on the surface of activated human and mouse Foxp3+ Tregs and shown to convert Foxp3+ T cells into Foxp3+ Tregs (46–48). Recently, this marker has been shown to characterize in humans another subset of CD4+ Tregs not expressing Foxp3 (49). In the latter study, LAP/TGF-β1–expressing cells were found mainly within the CD4+CD25high T cells, although at low levels, as compared with the CD4+CD25low and CD4+CD25low populations. This CD4+LAP/TGF-β1Foxp3+ subset produced IL-10 and TGF-β1 upon stimulation, and furthermore exhibited TGF-β1– and IL-10–dependent suppressive activity in vitro, thereby exhibiting characteristics similar to those of CCL18-recruited Tregs, and suggesting that CCL18 may recruit part of this subpopulation. We have recently shown that CCL18 is also able to generate adaptive Tregs from CD4+CD25+ Tregs (22). In contrast with these findings, 72–96 h were required to generate these cells, which expressed Foxp3 and acted through both cytokine- and cell–cell contact-dependent mechanisms. Therefore, CCL18 has a dual, immediate and delayed, activity: it rapidly recruits a particular subset of Tregs, whereas it is also able to induce the conversion of CD4+CD25+ effector cells into Tregs.

The suppression of ongoing immune responses in diverse tissues requires memory Tregs to express a diverse array of adhesion and chemokine receptors (50, 51). The appropriate localization of Tregs into distinct tissues is essential for their in vivo activity. The receptor(s) binding CCL18 remain(s) unidentified today. The differential localization of naïve, in lymph nodes, versus memory T cells, in tissues, suggests that at least two different receptors may mediate CCL18 activity. The data presented in this article suggest that some memory Tregs express CCL18 receptor(s), as they are able to bind labeled CCL18 and to migrate into tissues in response to this molecule. Of interest, the chemokine receptor CCR4 is also expressed by Tregs (9–12, 52) and also directs T cells to the lung (53). Although CCR4 is not a receptor for CCL18 (14, 19), it appears to be highly expressed on the cell surface of the cells recruited by CCL18. CCR4 expression on Tregs is functionally active in vivo. Indeed, mice with a complete loss of CCR4 in the Treg compartment experience development of severe inflammatory disease in the lungs related to a lack of Treg accumulation in this organ (54). Altogether, these data suggest that coexpression of CCL18R and CCR4 on memory Tregs may favor their localization to the lung. Moreover, CCL18 is highly expressed by healthy alveolar macrophages and by alternatively activated macrophages, which are well documented to have anti-inflammatory properties. A recent study has shown that Tregs steer monocytes toward alternatively activated monocyte/macrophages that secrete high levels of CCL18 (55). Altogether, these data suggest that CCL18 could play a crucial role in maintaining lung tolerance by attracting Tregs into the lung and by contributing to Treg–alternatively activated macrophage mutual interactions.

However, there is evidence that CCL18 is also implicated in allergic diseases. We and others have shown that CCL18 is upregulated by allergen stimulation and overexpressed in a number of allergic diseases including allergic asthma, atopic dermatitis, and vernal keratoconjunctivitis (14, 56, 57). Furthermore, CCL18 exhibits chemotactic activity toward Th2 cells that are the cornerstone of the allergic reaction (14). This ability was confirmed in this study, where, besides Treg recruitment, Th2 type cells were also attracted, as shown by the IL-4 production of the recruited cells in vitro and by the binding of CCL18 to IL-4–producing cells. Although the ability of CCL18 to attract both Th2 and Tregs might appear contradictory, a differential attraction cannot be excluded. CCL18-mediated Th2 versus Treg cell recruitment may be affected by a competitive effect linked to a different chemokine receptor, by microenvironmental factors such as endothelial integrins and glycosaminoglycans, by a differential recruitment according to the chemokine concentration, or by homodimerization or heterodimerization of CCL18 and/or its receptor. Interestingly, these two cell subsets have been proposed to derive from the same cell population because they both overexpress a number of similar gene transcripts, including the chemokine receptors CCR4 and CCR8, which might explain conserved chemokine receptor expression on the two subsets (58). Accordingly, it has recently been shown that Th2 memory cells can be converted into Tregs able to suppress allergic asthma (59). In contrast, some reports show the coexistence of these two subsets at sites of allergic inflammation (60).

The overlap of CCL18 receptor expression on Tregs and Th2 subsets may allow their colocalization in the lung to act as a regulatory feedback mechanism in allergic inflammatory conditions. Under basal conditions, as observed in our study, the global effect of CCL18-recruited cells is a suppression of T cell proliferation, exhibiting characteristics similar to those of CCL18-recruited Tregs, and suggesting that CCL18 may recruit part of this subpopulation. The results from this study suggest that CCL18 activates migration of human Tregs. In this respect, CCL18 is likely to contribute to the maintenance of tolerance and/or suppression of deleterious inflammation by attracting Tregs into tissues, acting, in particular, in the major host–environment interface of the lung, where it is highly and constitutively expressed. Therefore, CCL18 may be an attractive therapeutic target, in particular, in inflammatory pulmonary diseases.

Acknowledgments
We acknowledge Drs. Claudia Kemper and Stan Tomavo for kind gifts of anti-CD46 Ab and purified P. falciparum TAF10 protein, respectively.

Disclosures
The authors have no financial conflicts of interest.

References

