The Mammalian Actin-Binding Protein 1 Is Critical for Spreading and Intraluminal Crawling of Neutrophils under Flow Conditions

Ingrid Hepper, Jürgen Schymeinsky, Ludwig T. Weckbach, Sascha M. Jakob, David Frommhold, Michael Sixt, Melanie Laschinger, Markus Sperandio and Barbara Walzog

J Immunol 2012; 188:4590-4601; Prepublished online 26 March 2012; doi: 10.4049/jimmunol.1100878
http://www.jimmunol.org/content/188/9/4590

Supplementary Material
http://www.jimmunol.org/content/suppl/2012/03/26/jimmunol.1100878.DC2

References
This article cites 66 articles, 30 of which you can access for free at:
http://www.jimmunol.org/content/188/9/4590.full#ref-list-1

Subscription
Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
The Mammalian Actin-Binding Protein 1 Is Critical for Spreading and Intraluminal Crawling of Neutrophils under Flow Conditions

Ingrid Hepper,* Jürgen Schymeinsky,* Ludwig T. Weckbach,* Sascha M. Jakob,* David Frommhold,† Michael Sixt,‡ Melanie Laschinger,§ Markus Sperandio,* and Barbara Walzog*

Recently, the mammalian actin-binding protein 1 (mAbp1; Hip-55, SH3P7, debrin-like protein) was identified as a novel component of the β₂ integrin-mediated signaling cascade during complement-mediated phagocytosis and firm adhesion of polymorphonuclear neutrophils (PMN) under physiological shear stress conditions. In this study, we found that the genetic ablation of mAbp1 severely compromised not only the induction of adhesion, but also subsequent spreading of leukocytes to the endothelium as assessed by intravital microscopy of inflamed vessels of the cremaster muscle of mice. In vitro studies using murine PMN confirmed that mAbp1 was required for β₂ integrin-mediated spreading under shear stress conditions, whereas mAbp1 was dispensable for spreading under static conditions. Upon β₂ integrin-mediated adhesion and chemotactic migration of human neutrophil-like differentiated HL-60 cells, mAbp1 was enriched at the leading edge of the polarized cell. Total internal reflection fluorescence microscopy revealed that mAbp1 formed propagating waves toward the front of the lamellipodium, which are characteristic for dynamic reorganization of the cytoskeleton. Accordingly, binding of mAbp1 to actin was increased upon β₂ integrin-mediated adhesion, as shown by coimmunoprecipitation experiments. However, chemotactic migration under static conditions was unaffected in the absence of mAbp1. In contrast, the downregulation of mAbp1 by RNA interference technique in neutrophil-like differentiated HL-60 cells or the genetic ablation of mAbp1 in leukocytes led to defective migration under flow conditions in vitro and in inflamed cremaster muscle venules in the situation in vivo. In conclusion, mAbp1 is of fundamental importance for spreading and migration under shear stress conditions, which are critical prerequisites for efficient PMN extravasation during inflammation. The Journal of Immunology, 2012, 188: 4590–4601.

Recruitment of polymorphonuclear neutrophils (PMN) to the site of inflammation follows a well-defined multistep adhesion cascade. It includes leukocyte capturing and rolling along the activated endothelium, firm adhesion, adhesion strengthening, spreading, and intraluminal crawling to the emigration sites where PMN eventually extravasate. Whereas selectins are the key molecules that allow PMN capture and rolling, adhesion is mainly dependent on adhesion molecules of the β₂ integrin family (CD11/CD18) (1, 2). During rolling of PMN, chemokines presented by the endothelium as well as selectin-ligand interactions can activate the β₂ integrins (inside-out signaling) by a shift of the conformation of the β₂ integrin (3, 4). The β₂ integrins exist in three different conformations, the low-affinity conformation that is mainly expressed on nonactivated PMN, as well as the intermediate-affinity and the high-affinity state that can be primarily found upon cellular activation (5).

Activation of β₂ integrins is indispensable for different steps of the recruitment cascade. Whereas β₂ integrins in the intermediate-affinity state contribute to slow rolling of PMN (4), firm adhesion under flow conditions requires the high-affinity conformation of the β₂ integrins enabling PMN to remain adherent and withstand shear forces (1, 6). In addition, there is increasing evidence for different molecular functions of the β₂ integrins LFA-1 (CD11a/CD18, αLβ₂) and Mac-1 (CD11b/CD18, αMβ₂) in the recruitment process. In vivo studies by Phillipson et al. (7–9) on adhesion and crawling of PMN in venules of the inflamed cremaster muscle in mice revealed that initial LFA-1–mediated adhesion was followed by crawling via Mac-1. In this study, crawling of the PMN to endothelial junctions was almost exclusively dependent on interaction between Mac-1 and endothelial ICAM-1 that eventually allowed efficient emigration out of the blood vessel.

Ligand binding of β₂ integrins leads to integrin clustering and subsequent outside-in signaling, which contributes to adhesion strengthening and cell motility by controlling cytoskeletal rearrangements and cell polarization (10–13). Similar to classical immunoreceptor signaling, for example, via the TCR or the BCR, β₂ integrin-mediated outside-in signaling causes phosphorylation...
of ITAMs in the adaptor proteins DAP12 and Fc receptor γ-chain by Src family kinases (14, 15). The phosphorylation of ITAMs allows binding and activation of the nonreceptor tyrosine kinase Syk (16, 17). Previous studies have demonstrated a crucial role of Syk for different β2 integrin-mediated PMN functions, including slow leukocyte rolling and firm adhesion during inflammation in vivo, as well as the respiratory burst, cell spreading, migration, and phagocytosis (4, 16, 18–24). Signaling downstream of Syk involves several molecules, including phospholipase C-γ, the guanine nucleotide exchange factor Vav, the Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa, the adaptor protein Cbl, and the regulatory subunit p85 of the PI3K class Iα (18, 22, 25–30). In addition, the mammalian actin-binding protein 1 (mAbp1; HIP-55, SH3P7, debrin-like protein) has been shown to become phosphorylated by Src and Syk family kinases in fibroblasts and in lymphocytes (31–33).

The 55-kDa intracellular adaptor protein mAbp1 binds to actin via its N-terminal–located evolutionary conserved actin-depolymerizing factor homology domain and the neighboring helical domain (32, 34–36). At its C terminus, mAbp1 contains a Src homology 3 domain, as well as a proline-rich domain, which mediate protein-protein interactions (37, 38). In lymphocytes, mAbp1 has been shown to be critical for TCR-mediated signaling and Ag internalization, processing, and presentation in B cells (39, 40). Recently, we were able to demonstrate that mAbp1 was indispensable for Mac-1–mediated phagocytosis in PMN (21). Moreover, the genetic absence of mAbp1 caused a severe defect of PMN adhesion in TNF-α–stimulated cremaster muscle venules and in a microflow chamber under physiologic shear stress conditions in vitro, whereas adhesion was not affected under static conditions (21). The analysis of the underlying molecular mechanism revealed that mAbp1 was required for stabilization of CD18 clusters in the high-affinity conformation under flow conditions. Thus, mAbp1 seems to be involved in the reinforcement of the high-affinity conformation of the β2 integrins under shear stress conditions, thereby allowing adhesion strengthening, which is critical to withstand shear forces during adhesion (21).

As the high-affinity conformation of β2 integrins is known to be critical not only for the reinforcement of adhesion, that is, adhesion strengthening, but also plays an important role for other steps of the recruitment cascade (3), we studied whether mAbp1 has a functional impact on the induction of firm adhesion, spreading, and intraluminal crawling. We found that enhanced GFP (EGFP)-tagged mAbp1 (mAbp1-EGFP) was translocated to the lamellipodium of polarized neutrophil-like differentiated HL-60 (dHL-60) cells during β2 integrin-mediated adhesion and migration. In this study, mAbp1-EGFP formed wavelike structures that are known to be characteristic for actin reorganization. Accordingly, β2 integrin binding specifically increased the interaction of mAbp1 with actin. However, chemotactic migration and spreading of murine PMN under static conditions were not affected by the genetic absence of mAbp1. This was in sharp contrast to physiological shear stress conditions in which the induction of firm adhesion, spreading, and intraluminal crawling of leukocytes was significantly impaired in mAbp1−/−/mice in vivo compared with mAbp1+/+ control mice. Mechanotactic crawling on immobilized ICAM-1 was found to depend on Mac-1, as the crawling ability of isolated mAbp1+/+ PMN was significantly reduced on truncated ICAM-1, which lacked the binding site for Mac-1. In summary, our data provide evidence that mAbp1 was critical for the induction of adhesion, spreading, and intraluminal crawling of PMN under flow conditions.

Materials and Methods

Mice

Mice carrying the Dbalα1-deficiency allele (mAbp1fl/fl) and wild-type control mice maintained on the BALB/c background were provided by J. Wienands (Göttingen, Germany) (41). LFA-1−/− mice and wild-type control mice were maintained on the C57BL/6 background. LFA-1−/− mice were provided by N. Hogg (London, U.K.) (42). Animal experiments were institutionally approved.

Reagents and Abs

BSA, diisopropylfluorophosphate, DMSO, DTT, fibrinogen from human or mouse plasma, IMLP, HEPES, Percoll, piceatannol, PMF, p-nitrophenyl phosphate, protease inhibitor mixture, sodium chloride, sodium deoxycholate, sodium metavanadate, sodium orthovanadate, Triton X-100, trypsin inhibitor, and Tween 20 were obtained from Sigma-Aldrich (Deisenhofen, Germany). Sodium fluoride and Trit were delivered by AppliChem (Darmstadt, Germany). RPMI 1640 medium, FCS, HBSS, penicillin/streptomycin, poly(I–lysine) (PLL), and PBS were purchased from Biochrom (Berlin, Germany). GFP-Trap-A beads were delivered by Chromotek (Munich, Germany). Human and murine ICAM-1 and murine P-selectin were obtained from R&D Systems (Minneapolis, MN). Keratinocyte-derived chemokine (KC; CXCL1) was purchased from PeproTech (Hamburg, Germany). Murine TNF-α was obtained from Cell Signaling Technology (Danvers, MA). The mouse anti-Syk mAb (IgG2a, clone 4D10, sc1240), the mouse anti-Wiskott–Alrdich syndrome protein (WASP) mAb (IgG2a, clone B-9, sc13139), the goat anti-actin Ab (I-9, sc-1616), and the rabbit anti–WASP-interacting protein (WIP) Ab (H-224, sc-25533) were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). The goat anti-mAbp1 Ab (ab2836) was obtained from Abcam (Cambridge, U.K.). The mouse anti-mAbp1 mAb (IG1, 612614) was purchased from BD Biosciences (Heidelberg, Germany). The HRP-conjugated goat anti-mouse IgG L chain Ab was obtained from Jackson ImmunoResearch Laboratories (West Grove, PA). The function-blocking mouse anti-CD18 mAb (IgG2a, clone IB-4) and the HRP-conjugated rabbit anti-goat IgG Ab were purchased from Calbiochem (Darmstadt, Germany). Alexa 488-conjugated goat anti-mouse IgG, Alexa 546-conjugated donkey anti-goat IgG, Alexa 488-conjugated donkey anti-rabbit IgG Ab, and Alexa 555-conjugated phalloidin were ordered from Invitrogen (Karlsruhe, Germany).

Isolation of bone marrow PMN and cell culture

Murine PMN were isolated, as described previously (28). The human myeloid HL-60 cells (ACC 3) and the murine WEHI-3B cells (ACC 26) were obtained from the German Resource Centre for Biological Material (Braunschweig, Germany). Differentiation of neutrophil-like HL-60 cells was induced in culture using RPMI 1640 medium supplemented with 1.3% DMSO for 6 d. For pharmacological inhibition of Syk, cells were treated with 30 μM piceatannol for 30 min at 37˚C or vehicle (DMSO) for control.

Stable transduction of HL-60 cells

The mAbp1-EGFP expression vector was a gift of M. Deckert (INSERM, Université de Nice-Sophia-Antipolis, Nice, France). For viral transduction, the coding region of mAbp1-EGFP was subcloned into the FuVal lentiviral vector (Fu-mAbp1-EGFP). To generate virus-containing supernatant, HEK 293T cells (American Type Culture Collection; CRL-11268) were plated on 6-well tissue culture plates in RPMI 1640 medium (supplemented with 10% FCS and 25 mM HEPES) and transfected with the transducing vector Fu-mAbp1-EGFP, the packaging vector pCMVΔR8.9, and the envelope vector pSV-G (43) using Lipofectamine 2000 (Invitrogen, Karlsruhe, Germany), according to the manufacturer’s instructions. Subsequently, HL-60 cells were incubated overnight in RPMI 1640 medium supplemented with 3% virus-containing supernatant. After 2 wk, transduced cells were sorted for fluorescence intensity using a FACS/Aria system (BD Biosciences, Heidelberg, Germany) and subcloned. Fluorescence intensity of the mAbp1-EGFP expressing HL-60 cell clones was measured using a FACSscan flow cytometer (BD Biosciences). The expression of the 85-kDa mAbp1-EGFP fusion protein was detected by Western blot technique (data not shown).

For the generation of the cell line that stably expressed a short hairpin (sh) RNA to downregulate mAbp1 by the RNA interference (RNAi) technique, we cloned the specific DNA oligonucleotide (5′-TCG AAA GTC CCC GAC CGA CTG GCC TTT CAA GAG AAG CCC AGT CGG TCG GGG 9-TCG AAA GTC CCC that was complementary to the shRNA vector pSuppressorRetro
mAbp1 IS CRITICAL FOR INTRALUMINAL CRAWLING

Transient transfection of HL-60 cells
To generate dHL-60 cells transiently expressing mAbp1-EGFP, a 400-μl aliquot of dHL-60 cells (2 × 10⁷ cells/ml) in RPMI 1640 medium was transferred to a Gene Pulser cuvette with an 0.4-cm electrode (BioRad, Hercules, CA) and mixed with 30 μg endotoxin-free mAbp1-EGFP expression vector. Samples were subjected to an electroporation pulse of 290 V and 1050 μF (EasyJet T+ electroporator; Equibio, Kent, U.K.).

Expression of ICAM-1(D1-2)-Fc fusion protein
The coding region of domains D1-D2 of ICAM-1 derived from cDNA of murine spleen was cloned into the expression vector pcDNA3.1 IgG (44). HEK 293T cells (American Type Culture Collection; CRL-11268) were transfected with the expression vector, and the fusion protein ICAM-1(D1-2)-Fc containing the human Fcγ1 fragment was purified from supernatant (compare Fig. 5C).

Scanning confocal microscopy and total internal reflection fluorescence microscopy
Scanning confocal microscopy of cells fixed with 3.7% formaldehyde was conducted with a Zeiss LSM 410/Axiovert 135 microscope using a Zeiss 63×/1.2 water or a Zeiss 63×/1.4 oil objective (Zeiss, Göttingen, Germany). The quantitative analysis of the subcellular distribution of mAbp1 was performed off-line by two different investigators in a blinded manner using confocal images.

For total internal reflection fluorescence (TIRF) microscopy, dHL-60 cells expressing mAbp1-EGFP (1–2 × 10⁶) were suspended in PBS supplemented with 0.25% BSA, 1 mM Ca²⁺, 1 mM Mg²⁺, and 0.1% glucose, plated onto fibrinogen (250 μg/ml)-coated coverslips (Saur, Reutlingen, Germany), and incubated for 5 min at 37°C. Subsequently, cells were stimulated with 100 nM IMLP and analyzed at 37°C using an Axiovert 200 (Zeiss) microscope with a TIRF 488/561-nm laser system (VisiRon Systems), Cool-Snap-HQ camera (Roper Scientific), and Meta-morph software (Molecular Devices).

Spreading and migration under flow conditions
To analyze spreading of isolated murine PMN, IBIDI μ-slides VI 0.4 (IBIDI GmbH, Martinsried, Germany) were coated overnight with murine fibrinogen (50 μg/ml) or murine ICAM-1 (12.5 μg/ml). After rinsing with PBS, the chambers were filled with 3 × 10⁶ murine PMN/sample. After incubation of PMN for 30 min at 37°C with IMLP (1 μM) in adhesion medium (HBSS; Biochrom, Berlin, Germany) supplemented with 20 mM HEPES (pH 7.2), 0.25% (w/v) BSA, 0.1% (w/v) glucose, 1.2 mM Ca²⁺, and 1.0 mM Mg²⁺, shear stress (1 dyne/cm²) was applied for 10 min using a high-precision syringe pump (model KDS-232; KD Scientific, Holliston, MA). Samples were fixed with 3.7% formaldehyde, and microscopy was performed with a Zeiss LSM 510 META (500 ng per mouse) was injected intrascrotally 2–4 h prior to intravital microscopy. Leukocyte crawling was defined as displacement of the cell by at least one cell diameter within the observation period of 10 min, and was analyzed offline using Image J software plugin Manual Tracking and the Chemotaxis and Migration tool (48). Percentage of cells migrating in the direction of blood flow was defined as the number of leukocytes migrating within an angle of 60° in the direction of blood flow in the venule compared with the number of all migrating leukocytes in the given vessel segment.

Intravital microscopy
Intravital microscopy and recording of the cremaster muscle were conducted, as reported previously, using an upright microscope (model 512815/20; Leitz, Wetzlar, Germany) with a saline immersion objective (SW 40/0.75 NA) (19). Microvascular parameters were measured using a digital image processing system (46). For assessment of induction of adhesion and spreading of leukocytes, the cremaster muscle was superfused with 1 μM IMLP in bicarbonate-buffered Tyrode’s solution (19). The number of adherent leukocytes in inflamed cremaster muscle venules was assessed, as described (47). Leukocytes were considered to be adherent when they were attached at the same position for >30 s. Rolling leukocyte flux fraction was defined as the percentage of rolling leukocytes to all leukocytes passing the same vessel in 1 min (47). Spreading of adherent leukocytes against the vessel wall was measured as a decrease in perpendicular diameter (19). To study intraluminal leukocyte crawling, murine TNF-α (500 ng per mouse) was injected intrascrotally 2–4 h prior to intravital microscopy. Leukocyte crawling was defined as displacement of the cell by at least one cell diameter within the observation period of 10 min, and was analyzed offline using Image J software plugin Manual Tracking and the Chemotaxis and Migration tool (48). Percentage of cells migrating in the direction of blood flow was defined as the number of leukocytes migrating within an angle of 60° in the direction of blood flow in the venule compared with the number of all migrating leukocytes in the given vessel segment.

Complementmediated adhesion
For complementmediated adhesion, cells were treated with a function-blocking Ab against CD18 (clone IB4, 50 μg/ml) for 20 min at room temperature prior to the onset of the experiment. Adhesion of cells was induced by addition of 1 mM Mn²⁺. After 15 min, cells were lysed using a modified radioimmunoprecipitation assay (RIPA) buffer without SDS (25 mM Tris [pH 7.5], 150 mM NaCl, 1% [v/v] Triton X-100, 1% [w/v] sodium deoxycholate, 1 mM EDTA, 1 mM dithiothreitol, 100 μM sodium orthovanadate, 100 μM NaF, 1 mM PMSF, 0.25 mM sodium metavanadate, protease inhibitor mixture [Sigma-Aldrich; 1:1000], 50 μg/ml trypsin inhibitor, 10 μM P-nitrophenyl phosphate) for 30 min at 4°C. GFP-Trap beads (Chromotek, Munich, Germany) were added and immunoprecipitation was performed, according to manufacturer’s protocol. Finally, beads were resuspended in SDS sample buffer and boiled for 10 min at 95°C. Western blot was performed using the mouse anti-mAbp1 mAb (BD Biosciences, Heidelberg, Germany) or the goat anti-activin Ab (sc-1616; Santa Cruz Biotechnology) and secondary HRP-conjugated goat anti-mouse IgG L chain (Jackson ImmunoResearch Laboratories) or rabbit anti-goat IgG (Calbiochem, Darmstadt, Germany) Abs, respectively.

Statistical analysis
Data shown represent means ± SD or means ± SEM, respectively. Statistical significance was determined using Student t test, the Mann-Whitney rank sum test, or Kruskal–Wallis ANOVA test, respectively. A p value < 0.05 was considered statistically significant.

Results
Localization of mAbp1 during leukocyte adhesion and migration
During β₂ integrin-mediated phagocytosis of complement-opsinized Escherichia coli, mAbp1 has been shown to be dynamically enriched at the phagocytic cup of dHL-60 cells and primary murine PMN. This localization of mAbp1 at the phago-
Cytic cup depended on active Syk (21). In this work, we studied the subcellular localization of mAbp1 during β2 integrin-mediated adhesion and migration. By means of confocal microscopy, we found that upon induction of adhesion to immobilized fibrinogen by the bacteria-derived tripeptide fMLP (100 nM), EGFP-tagged mAbp1 (mAbp1-EGFP) was markedly enriched at the leading edge of polarized dHL-60 cells and colocalized with F-actin at the lamellipodium (Fig. 1A). The enrichment of mAbp1 at the leading edge was compromised when Syk was pharmacologically inhibited by piceatannol (Fig. 1B). The quantitative analysis revealed that the percentage of polarized cells with a localization of mAbp1 at the cell front was significantly reduced from 65.7% of control.

FIGURE 1. Localization of mAbp1, WASP, and WIP at the leading edge was dependent on active Syk. (A) Confocal microscopy image of adherent and polarized dHL-60 cells transiently transfected with mAbp1-EGFP (mAbp1-EGFP) and stimulated with fMLP (100 nM). F-actin was stained with Alexa 555-conjugated phalloidin (red). mAbp1-EGFP (green) was enriched at the leading edge (arrows) and colocalized with F-actin (yellow, merged image). (B, D, and E) Confocal microscopy images of dHL-60 cells incubated with 30 μM piceatannol (PIC) or vehicle for control (control). Adhesion and polarization of dHL-60 cells on immobilized fibrinogen were induced by fMLP (100 nM) for 30 min. Upon stimulation, Syk and mAbp1 were enriched at the leading edge (arrows) of polarized dHL-60 cells. The merged images demonstrate colocalization (yellow). Piceatannol treatment induced the formation of multiple lamellipodia (arrowheads), and proper localization of WASP and WIP at the lamellipodia was diminished. Images are representative for four independent experiments. Scale bar, 10 μm. (C) Quantitative analysis of subcellular mAbp1 distribution. Polarized cells that formed at least one lamellipodium upon fMLP stimulation were counted according to the subcellular distribution of mAbp1. n = 239 (control); n = 275 (PIC) in three independent experiments. Means ± SD; hom = homogeneous; *p < 0.05. (D and E) Indirect fluorescence staining of WASP was performed using a mouse anti-WASP mAb and a secondary Alexa 488-conjugated anti-mouse IgG Ab (green). mAbp1 was assessed using a goat anti-mAbp1 Ab and a secondary Alexa 546-conjugated anti-goat IgG Ab (red). Upon stimulation, Syk and mAbp1 were enriched at the leading edge (arrows) of polarized dHL-60 cells. The merged images demonstrate colocalization (yellow). Piceatannol treatment induced the formation of multiple lamellipodia (arrowheads), and proper localization of WASP and WIP at the lamellipodia was diminished. Images are representative for four independent experiments. Scale bar, 10 μm. (F) Box-whisker plot of Pearson’s correlation coefficient of F-actin and WASP or F-actin and WIP, respectively. Median numbers are indicated. n = 73 (WASP; control), n = 78 (WASP; PIC) of four independent experiments. n = 108 (WIP; control), n = 135 (WIP; PIC) of four independent experiments. *p < 0.05.
cells to 36.7% of cells treated with piceatannol (Fig. 1C), suggesting that active Syk was required for the proper localization of mAbp1. Similarly, the inhibition of Syk interfered with the proper localization of two additional cytoskeleton-associated proteins, namely the WASP and WIP at the lamellipodium of polarized dHL-60 cells (Fig. 1D, 1E). WASP is known to activate the integrin-related protein 2 and 3 (Arp2/3) complex, which is indispensable for generation and reorganization of actin. Activity and stability of WASP are regulated by WIP (49–52). Quantitative analysis of the colocalization between WASP and WIP with F-actin by calculating the Pearson’s correlation coefficient revealed that inhibition of Syk resulted in a diminished colocalization of these proteins with F-actin (Fig. 1F). Thus, the three proteins, WASP, WIP, and mAbp1, seem to represent cytoskeleton-associated components of the β2 integrin-mediated signaling complex downstream of Syk.

To study the subcellular dynamics of mAbp1 during migration in detail, we performed time-lapse video microscopy of live dHL-60 cells expressing EGFP-tagged mAbp1 (mAbp1-EGFP). We found that mAbp1-EGFP was enriched at the leading edge of cells migrating toward a gradient of the chemotactractant fMLP (10 nM) on immobilized fibrinogen (Fig. 2A). For further analysis, we used a lentivirally transduced dHL-60 cell clone that stably expressed mAbp1-EGFP comparable to the endogenous mAbp1 level (21). Using TIRF microscopy of polarized mAbp1-EGFP expressing dHL-60 cells, we investigated the mAbp1 dynamics at the plasma membrane with high resolution. Using this approach, we identified wavelike structures formed by dynamic accumulation of mAbp1 toward the leading edge of the cell (Fig. 2B, Supplemental Video 1). Such propagating waves have been described previously for actin and other actin-associated proteins such as myosin-II, the Arp2/3 complex, and coronin in Dictyostelium, and for hematopoietic protein 1 (Hem-1) in dHL-60 cells (53–56). Therefore, we studied whether mAbp1 may link the β2 integrin function to the actin cytoskeleton. dHL-60 cells expressing mAbp1-EGFP were left unstimulated in suspension for control or were seeded on immobilized fibrinogen or ICAM-1. Adhesion was induced by addition of Mn2+ (1 mM), which is known to stabilize the high-affinity conformation of β2 integrins (57). Immunoprecipitation technique revealed that the mAbp1-actin interaction was markedly induced upon β2 integrin-mediated adhesion on fibrinogen or ICAM-1 compared with cells in suspension or cells exposed to PLL for control (Fig. 2C). An induction of the mAbp1-actin interaction was also observed in cells adherent to truncated ICAM-1 (ICAM-1 D1-2), which lacked the binding domains of the β2 integrin Mac-1 (44). In this study, adhesion was mediated by an interaction of the β2 integrin LFA-1 and ICAM-1 (D1-2). The mAbp1-actin interaction was markedly decreased when the cells were exposed to ICAM-1 in the presence of a functionally.

FIGURE 2. Subcellular dynamics of mAbp1. (A) Time-lapse microscopy of live dHL-60 cells transiently transfected with mAbp1-EGFP (mAbp1-EGFP). Migration on immobilized fibrinogen in response to a gradient of 10 nM fMLP is shown (>). (1)–(5) were recorded at intervals of 30 s. mAbp1-EGFP was enriched at the leading edge (arrows, upper panel) of the migrating cell during the observed time period. The lamellipodium of the corresponding cells (arrows, lower panel) is shown in transmission. Images are representative for three independent experiments. Scale bar, 10 μm. (B) TIRF microscopy image of an adherent and polarized dHL-60 cell stably expressing mAbp1-EGFP (mAbp1-EGFP) taken from a time-lapse recording. For better visualization, mAbp1-EGFP fluorescence intensity was displayed in pseudocolors. mAbp1-EGFP was translocated to the lamellipodium in a wavelike manner. Waves are depicted in the schematic. Scale bar, 10 μm. (C) Western blot of coimmunoprecipitates of mAbp1-EGFP by GFP-Trap beads in mAbp1-EGFP expressing dHL-60 cells (mAbp1-EGFP) after stimulation with Mn2+ on immobilized PLL, human fibrinogen (Fbg; 250 μg/ml), human ICAM-1 (12.5 μg/ml), or truncated ICAM-1 lacking domains 3–5 (ICAM-1 D1-2; 12.5 μg/ml), or left unstimulated in suspension. β2 integrins were functionally blocked by the mouse anti-CD18 mAb (clone IB4; α-CD18), mAbp1-EGFP was detected by the mouse anti-mAbp1 mAb; actin was detected by the goat anti-actin Ab. (D) Semiquantitative analysis of protein levels of coimmunoprecipitated actin. Protein levels of actin were normalized to amount of precipitated mAbp1-EGFP. Amount of actin interacting with mAbp1 in unstimulated mAbp1-EGFP expressing dHL-60 cells in suspension or in cells adherent to fibrinogen, ICAM-1, and ICAM-1 D1-2 is shown relative to levels of coimmunoprecipitated actin on the nonintegrin ligand PLL. The level of coimmunoprecipitated actin was specifically increased after induction of β2 integrin-mediated cell adhesion. n = 4, mean ± SD, *p < 0.05.
blocking anti-CD18 mAb (Fig. 2C). Semiquantitative analysis showed a significant 1.8-fold increase of the interaction between mAbp1 and actin upon induction of adhesion on β2 integrin substrates fibrinogen, ICAM-1, and ICAM-1 (D1-2) compared with control cells exposed to PLL in the presence of 1 mM Mn²⁺ (Fig. 2D). Functional blockade of CD18 abrogated the effect, indicating that β2 integrin engagement was specifically required to induce the interaction between mAbp1 and actin. Of note, both β2 integrins, Mac-1 (via binding to fibrinogen) as well as LFA-1 (via binding to ICAM-1 D1-2), seemed to be able to induce interaction between mAbp1 and actin.

Role of mAbp1 for leukocyte adhesion and spreading in vitro and in vivo

Cytoskeletal rearrangements are indispensable for leukocyte recruitment, allowing firm adhesion, spreading, and migration on the endothelium under flow conditions (58). To elucidate the functional relevance of our findings for leukocyte recruitment, we studied leukocyte rolling, adhesion, and spreading in unstimulated and fMLP-stimulated cremaster muscle venules in mAbp1−/− and mAbp1+/+ mice using intravital microscopy. Microvascular parameters are presented in Table I and were comparable between mAbp1−/− and mAbp1+/+ mice in diameter of the venules, centerline velocity of the blood flow, and wall shear rate. Systemic leukocyte counts per microliter as assessed in whole blood samples were significantly higher in mAbp1−/− mice compared with mAbp1+/+ mice. In unstimulated cremaster muscle venules, rolling flux fraction observed within the first 30 min after cremaster muscle exteriorization was similar between the two groups (Fig. 3A, 0.32 ± 0.02 in mAbp1+/+ mice and 0.33 ± 0.03 in mAbp1−/− mice), suggesting that mAbp1 was dispensable for leukocyte rolling at least in this setting, where rolling was induced by surgical trauma and dependent on P-selectin (48). Next, we analyzed leukocyte adhesion in unstimulated cremaster muscle venules (pre) and found no significant difference in the number of adherent leukocytes between mAbp1+/+ mice (200 ± 24/mm²) and mAbp1−/− mice (236 ± 28/mm²) (Fig. 3C, pre). Because leukocyte adhesion greatly depends on systemic leukocyte counts, we calculated the adhesion efficiency (adherent leukocytes per mm²/systemic leukocyte count per μl), which nevertheless was not affected in mAbp1−/− mice (0.032 ± 0.004) compared with mAbp1+/+ mice (0.039 ± 0.005) (Fig. 3B). However, upon local stimulation of the cremaster muscle by fMLP (1 μM) superfusion, the number of adherent leukocytes increased in mAbp1+/+ mice within 15 min (Fig. 3C, 476 ± 62/ mm²) accompanied by a concomitant decrease in rolling flux fraction (Fig. 3D, −15.8 ± 2.1%). This response was almost completely absent in mAbp1−/− mice (251 ± 44 adherent leukocytes/mm² and −7.1 ± 2.3% rolling flux fraction after 15 min), suggesting that fMLP-induced leukocyte adhesion was dependent on mAbp1. Next, we studied leukocyte spreading measured as cell flattening against the vessel wall in vivo, that is, the decrease of the perpendicular leukocyte diameter (Fig. 4A). During fMLP stimulation, the cell diameter of adherent leukocytes in mAbp1+/+ mice continuously decreased from 6.44 ± 0.13 μm to 5.15 ± 0.11 μm after 15 min, representing cell spreading, as expected. In contrast, there was no spreading detectable in response to fMLP in mAbp1−/− mice from 6.41 ± 0.10 μm to 6.53 ± 0.13 μm after 15 min. These findings clearly indicated a crucial role for mAbp1 in PMN recruitment, namely induction of adhesion and spreading in vivo.

To further characterize the impact of mAbp1 on spreading, we performed in vitro flow chamber assays using bone marrow-derived PMN from mAbp1−/− mice and mAbp1+/+ mice (Fig. 4B). In this setting, an increase of the cell area indicates cell spreading on the substrate. Compared with mAbp1+/+ PMN, the cell area of mAbp1−/− PMN adherent to immobilized fibrinogen or ICAM-1 was significantly lower, confirming the spreading defect under physiological shear stress conditions (1 dyne/cm²) in response to

<table>
<thead>
<tr>
<th>Mice (n)</th>
<th>Venules (n)</th>
<th>Diameter (μm)</th>
<th>Centerline Velocity (μm/s)</th>
<th>Wall Shear Rate (s⁻¹)</th>
<th>Systemic Leukocyte Counts (μl⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mAbp1+/+</td>
<td>7</td>
<td>26</td>
<td>29 ± 1</td>
<td>1750 ± 120</td>
<td>1500 ± 90</td>
</tr>
<tr>
<td>mAbp1−/−</td>
<td>6</td>
<td>19</td>
<td>31 ± 1</td>
<td>1700 ± 120</td>
<td>1400 ± 100</td>
</tr>
</tbody>
</table>

All values are means ± SEM.

Table I. Hemodynamic parameters in fMLP-stimulated cremaster muscle venules

FIGURE 3. Leukocyte rolling and adhesion in unstimulated and fMLP-stimulated cremaster muscle venules in vivo. Initial rolling flux fraction (A) and adhesion efficiency (B) of leukocytes before local superfusion of cremaster muscle. Adhesion (C) and rolling flux fraction (D) of leukocytes before (pre) and during local stimulation of cremaster muscle venules of mAbp1−/− and mAbp1+/+ mice with fMLP (1 μM). Initial rolling flux fraction (A) and adhesion efficiency (B) of leukocytes were not altered in the genetic absence of mAbp1 compared with mAbp1+/+ mice. (C) Induction of leukocyte adhesion upon stimulation with fMLP was impaired in mAbp1−/− mice, resulting in a (D) decreased change of rolling flux fraction. (A–D) n = 7 mAbp1+/+ mice, n = 6 mAbp1−/− mice, means ± SEM, *p < 0.05.
fMLP (1 μM) in vitro. In contrast, spreading of mAbp1−/− PMN under static conditions upon stimulation by TNF-α (100 ng/ml) or Mn2+ (1 mM) was completely normal compared with mAbp1+/+ PMN (Fig. 4C, 4D). Thus, mAbp1 was only dispensable for spreading under shear stress conditions, but not required under static conditions.

Impact of mAbp1 for leukocyte migration and crawling under shear stress conditions

Next, we studied crawling of isolated murine PMN from mAbp1−/− mice and mAbp1+/+ mice using an in vitro flow chamber assay. Analysis of mechanotactic migration of murine PMN on immobilized ICAM-1 under physiological shear stress conditions (1 dyne/cm²) revealed that mAbp1+/+ PMN migrated under flow conditions. In contrast, the majority of mAbp1−/− PMN showed some motility, but no significant net movement (Fig. 5A, Supplemental Video 2). Quantitative analysis showed that the percentage of migrating mAbp1+/+ PMN was significantly increased in mAbp1−/− mice compared with LFA-1+/+ PMN (Fig. 5D), indicating that crawling of PMN under shear stress conditions was independent of LFA-1.

Detailed analysis of mechanotactic migration of isolated murine PMN on immobilized ICAM-1 and KC revealed that not only the percentage of migrating cells was diminished. Also, the migration velocity of the remaining mAbp1−/− PMN that crawled during 10 min of physiological shear stress of 1 dyne/cm² was significantly reduced from 1.9 ± 0.8 μm/min in mAbp1+/+ PMN to 1.4 ± 0.8 μm/min in mAbp1−/− PMN (Fig. 6A). Moreover, calculation of the frequency distribution of the migration velocity revealed that there were two groups of crawling mAbp1+/+ PMN. One group crawled at a low migration velocity (<2 μm/min), and the second group migrated at a higher migration velocity of >2 μm/min. In contrast, the majority of mAbp1−/− PMN crawled at the low migration velocity of <2 μm/min.

To study intraluminal crawling of leukocytes in vivo, we performed intravital microscopy of TNF-α–stimulated cremaster muscle venules of mAbp1−/− mice and mAbp1+/+ mice as control. The analysis of the migration tracks of leukocytes that crawled on the inflamed endothelium showed that wild-type leukocytes of mAbp1+/+ mice preferentially migrated perpendicular to the inflamed endothelium showed that wild-type leukocytes of mAbp1+/+ mice preferentially migrated perpendicular or against the direction of blood flow, as described by Phillipson et al. (59), for mechanotactic crawling of murine PMN under flow conditions in vitro and in vivo (Fig. 6B, Supplemental Video 3; WT). In contrast, a high number of mAbp1−/− leukocytes crawled in the direction of blood flow (Fig. 6B, Supplemental Video 3; KO). Quantitative analysis revealed that the percentage of cells that were not able to crawl perpendicular or against the direction of blood flow, but crawled in the direction of blood flow, was significantly increased in mAbp1−/− mice to 46.3 ± 6.2% compared with 26.0 ± 6.4% in mAbp1+/+ mice (Fig. 6C).
Upon shear stress (1 dyne/cm²) for 10 min. PMN were considered to migrate, if they moved at least one cell diameter within the observation period of 10 min. To examine the role of mAbp1 in chemoattractive migration, we used Zigmond chambers with FMLP (10 μM) as chemoattractant. We found that the genetic absence of mAbp1 in PMN did not affect chemoattractive migration toward the gradient of FMLP on immobilized fibrinogen when compared with mAbp1+/+ control PMN (Fig. 7A). This was also true for migration velocity and mean accumulated and Euclidean distance (Fig. 7C, lower panel), suggesting that chemoattractive migration under static in vitro conditions did not require mAbp1. Similar results were obtained on immobilized ICAM-1. In this study, chemoattractive and migratory parameters of PMN were again not affected in the absence of mAbp1 (Fig. 7B, 7C, lower panel). Taken together, our results demonstrate that mAbp1 was indispensable for spreading and Mac-1-dependent intraluminal crawling under shear stress conditions, but not required for spreading or chemoattractive migration under static conditions.

Discussion

The present study indicates a role of mAbp1 for induction of β2 integrin-mediated adhesion, spreading, and intraluminal crawling of PMN under flow conditions. In dHL-60 cells, mAbp1 was translocated to the leading edge during Mac-1–mediated adhesion and migration on immobilized fibrinogen. This enrichment was dependent on active Syk, indicating that mAbp1 is part of the Syk-controlled signaling complex, which stabilizes the leading edge of migrating PMN (22, 28, 60). Also, WASP and WIP showed compromised enrichment at the leading edge and impaired colocalization with actin upon inhibition of Syk. Thus, mAbp1, WASP, and WIP may represent cytoskeleton-associated components of the signaling cascade downstream of Syk, which is known to become activated upon ligand binding of β2 integrins controlling postadhesion events in PMN (14–16, 18, 21). Similar to WASP and WIP, mAbp1 colocalized with F-actin at the lamellipodium. This finding is in accordance with a previous study showing polarized recruitment of mAbp1 to the cell periphery of migrating fibroblasts, where it colocalized with F-actin. In this study, the accumulation of mAbp1 occurred predominantly at sites of high F-actin dynamics at the leading edge (35).

By means of TIRF microscopy, we identified an even more complex pattern of mAbp1 distribution forming propagating waves of mAbp1-EGFP toward the lamellipodium of polarized cells. These waves of mAbp1 resembled the discrete nonuniform propagating waves of Hem-1 in FMLP-simulated HL-60 cells found by Weiner et al. (56, 61). Hem-1 is a hematopoietic-specific component of the Arp2/3 complex-activating WASP family Verprolin-homologous protein (WAVE) complex. It was found to accumulate at the leading edge of FMLP-treated HL-60 cells, and TIRF microscopy revealed that Hem-1 forms sharp actin-based wavefronts at the plasma membrane of the lamellipodium, probably resulting from rapid Hem-1 recruitment and release (56, 61). The Arp2/3 complex, which catalyzes nucleation and branching of actin filaments, is controlled by nucleation-promoting factors like WASP and WAVE family proteins (52). In contrast to its yeast homolog.
Abp1p, mammalian Abp1 exerts no nucleation-promoting function, and mAbp1 cannot activate the Arp2/3 complex directly. However, Pinyol et al. (34, 52, 62) showed that mAbp1 directly interacted with the Arp2/3 complex activator neural WASP (N-WASP) in neuronal cells and thereby promoted actin polymerization together with N-WASP. Furthermore, mAbp1 was shown to cooperate with the small GTPase Cdc42, which in turn is known to mediate WASP/N-WASP activation. Because mAbp1 is part of the N-WASP/Arp2/3 complex, waves of mAbp1 might reflect dynamics of the WASP/N-WASP complex at the lamellipodium similar to Hem-1 in the WAVE complex.

Functional analysis revealed a substantial impact of mAbp1 for the induction of leukocyte adhesion to the endothelium in fMLP-stimulated cremaster muscle venules and for subsequent spreading against the vessel wall, as both responses were almost completely absent in mAbp1 −/− mice. In contrast, the genetic absence of mAbp1 did not interfere with P-selectin–mediated rolling, as the initial rolling flux fraction was not different between mAbp1+/+ and mAbp1 −/− mice.

FIGURE 6. Crawling of PMN was affected by the absence or downregulation of mAbp1 under flow conditions. (A) Crawling velocity of isolated murine mAbp1+/+ and mAbp1 −/− PMN in a flow chamber coated with murine P-selectin (20 µg/ml), murine ICAM-1 (12.5 µg/ml), and KC (15 µg/ml) at a physiological flow of 1 dyne/cm². Genetic absence of mAbp1 diminished the crawling velocity under flow conditions in vitro. Left, Box-whisker plot of velocities ± SD; median numbers are indicated. n = 3, *p < 0.05. Right, Frequency distribution of velocities. n = 60 mAbp1+/+ PMN and n = 90 mAbp1 −/− PMN from three independent experiments. (B) Microscopic images and single-cell tracks of leukocytes from mAbp1+/+ and mAbp1 −/− mice that crawled on the endothelium assessed from intravital microscopy of inflamed venules of the cremaster muscle. Arrows resemble migration tracks of leukocytes. Dotted arrows indicate the direction of blood flow in the venule. Microscopic images and single-cell tracks are representative for four (mAbp1+/+) or five (mAbp1 −/−) independent experiments. Scale bar, 50 µm. (C) Quantitative analysis of the percentage of leukocytes from mAbp1+/+ and mAbp1 −/− mice crawling on the inflamed endothelium in the direction of the blood flow. Leukocytes were considered to migrate, when they moved at least one cell diameter within the observation period of 10 min. The genetic absence of mAbp1 diminished the ability of leukocytes to migrate perpendicular or against the direction of blood flow. n = 157 cells in 13 venules from four mAbp1+/+ mice, n = 189 cells in 15 venules from five mAbp1 −/− mice, means ± SEM, *p < 0.05. (D and E) Trajectories and migratory parameters of crawling dHL-60 cells on human ICAM-1 (12.5 µg/ml) stimulated with fMLP (100 nM) after 10 min under flow conditions (1 dyne/cm², direction of flow is indicated). The final positions relative to their original starting point are indicated by a filled circle (D, left panel). In the rose diagram (D, right panel), the area of each sector is proportional to the frequency of the migration vectors of the tracked cells pointed in the respective direction. Under physiological flow conditions, the downregulation of mAbp1 by RNAi technique (shAbp1) diminished the migration velocity and migration distance of crawling cells and the frequency of the migration vectors pointing against direction of the applied flow compared with control dHL-60 cells (shControl), n = 4 (shControl), n = 5 (shAbp1). (F) Representative Western blot of dHL-60 cell clones stably expressing a shRNA against mAbp1 (shAbp1) or a scrambled control (shControl) and wild-type dHL-60 cells (WT). mAbp1 was detected by the mouse anti-mAbp1 mAb; actin was detected by the goat anti-actin Ab. Protein levels of mAbp1 were normalized to amount of actin. Numbers indicate relative level of mAbp1 expression of shAbp1 cells compared with shControl (100%). n = 3, mean ± SD.
and mAbp1−/− mice, providing evidence that the initial steps of leukocyte recruitment were not disturbed by the genetic absence of mAbp1. The observed defect in leukocyte spreading in the inflamed cremaster of mAbp1−/− mice resembles the spreading defect of Syk−/− leukocytes in vivo, as reported earlier (19). Interestingly, Syk was found to be indispensable for adhesion and spreading even under static in vitro conditions, whereas mAbp1 was not required for adhesion or spreading under these conditions (19, 21). Thus, unlike Syk, mAbp1 seems to be only required when mechanical force is applied on the β2 integrins.

Intraluminal crawling of neutrophils is a postarrest step of the recruitment cascade, which has been shown to be mediated by interaction of Mac-1 and endothelial ICAM-1 in mice in vivo (8, 48, 59). This was also true in our experimental setting using isolated murine PMN migrating on immobilized ICAM-1 under shear stress conditions. In this study, the percentage of migrating cells was severely compromised in mAbp1−/− PMN, suggesting an impact of mAbp1 for Mac-1–mediated postarrest steps in neutrophil recruitment. Further analysis revealed a similar defect in the human system when mAbp1 was downregulated by RNAi technique. In addition to the overall migration capacity, the genetic ablation of mAbp1 in mice or the downregulation of mAbp1 by RNAi technique in dHL-60 cells interfered with the ability of the cells to migrate against and perpendicular to the direction of flow. In contrast, this behavior was typical for mAbp1+/+ leukocytes in the inflamed cremaster muscle model in vivo as well as in control dHL-60 cells in an in vitro flow chamber assay. Phillipson et al. (8, 59) described perpendicular intraluminal crawling of PMN as a mechanism to find emigration sites. In Vav−/− mice, PMN were not able to migrate perpendicular to the direction of blood flow, but crawled with the flow. Our findings on the impact of mAbp1 on migration under shear stress resembled the observation on Vav−/− PMN. Similar to mAbp1, Vav is known to be important for neutrophil migration and was found to be part of the signaling complex downstream of Syk (28), arguing for an important impact of β2 integrin-mediated signaling via Syk for Mac-1–dependent intraluminal crawling.

Analysis of spreading and chemotactic migration of mAbp1−/− PMN under static conditions revealed no differences compared with control cells. Similarly, the downregulation of the mAbp1 ortholog Dabp1 in Dictyostelium discoideum by RNAi technique (siDabp1) did not affect cell migration (63). In contrast, the overexpression of Dabp1 led to an impaired migration, suggesting a functional compensation by other signaling molecules in the siDabp1 cells (63). A compensatory mechanism could also work in mAbp1−/− PMN, allowing adhesion, spreading, and migration at least under static conditions. In yeast, Abp1p has redundant functions with the protein Sla2p (34). Less is known about the mammalian ortholog of Sla2p, the Huntingtin-interacting protein-1–related protein (Hip1R). However, it has been shown to bind F-actin, to associate...

FIGURE 7. mAbp1 was dispensable for chemotactic migration of PMN under static conditions. (A–C) Trajectories and migratory parameters of murine PMN isolated from mAbp1+/+ and mAbp1−/− mice migrating in response to a gradient of 10 μM fMLP (●) on immobilized fibrinogen (A, C, upper panel) or murine ICAM-1 (B, C, lower panel), respectively. The final positions relative to their original starting point are indicated by a filled circle (A, B, left panels). In the rose diagram (A, B, right panels), the area of each sector is proportional to the frequency of the migration vectors of the tracked cells pointed in the respective direction. Under static conditions, chemotactic migration on immobilized fibrinogen or ICAM-1 was similar between the two groups, n = 4 on immobilized fibrinogen, n = 3 on immobilized ICAM-1. (C) Means ± SD.
depends on the affinity regulation of actin polymerization during spreading and migration under static conditions, which in turn is indispensable to resist shear forces affecting the subcellular localization of WASP under static and flow conditions. Accordingly, our data implicate that mAbp1 exerts its function rather under the influence of high external forces like exposure to shear stress than upon generation of moderate internal forces like actin polymerization during spreading and migration under static conditions. Under flow conditions, adhesion as well as crawling depends on the affinity regulation of β2 integrins (1, 3, 6). We have previously shown that mAbp1 was critical for the establishment and/or maintenance of the high-affinity conformation of β2 integrins under flow conditions (21). Accordingly, similar to the adhesion defect under shear stress conditions, also the impairment of mechanotactic crawling may be caused by the inability of the cells to tightly control affinity of the β2 integrins in the absence of mAbp1 under flow conditions.

In addition to mAbp1, an essential role for firm adhesion and migration under shear stress has been reported for WASP, whereas adhesion and migration under static conditions were largely not affected in the absence of WASP. In this study, WASP has been associated with integrin clustering to promote adhesion strengthening under shear stress (66). A functional impact on the reinforcement of the high-affinity conformation of β2 integrins under flow conditions was demonstrated for mAbp1 (21). As the genetic absence or downregulation of mAbp1 by RNAi technique did not affect the subcellular localization of WASP under static and flow conditions, mAbp1 was obviously not required for the proper localization of WASP (21). However, the localization of mAbp1 as well as WASP and WIP was dependent of active Syk. This finding suggests that mAbp1, WASP, and WIP may represent components of the same β2 integrin-mediated signaling complex downstream of Syk, leading to cytoskeletal reorganization, which in turn is thought to be essential for control of the affinity regulation of β2 integrins during PMN recruitment.

Taken together, we found that mAbp1 was critical for β2 integrin-mediated postarrest functions of PMN, namely spreading and crawling under flow conditions. However, mAbp1 was only indispensable when external forces were applied to the integrin, whereas spreading and migration were normal under static conditions. Accordingly, mAbp1 seems to be critical for the transmission of mechanical force from the ligand-bound β2 integrin to the actin cytoskeleton, which is not only crucial for induction of adhesion under flow conditions, but also for intracellular spreading and crawling of neutrophils during their recruitment to sites of inflammation.

Acknowledgments
We thank Katy Niedung, Melitta Weissinger, and Susanne Bierschenk for excellent technical assistance.

Disclosures
The authors have no financial conflicts of interest.

References