Functional Changes in Myeloid-Derived Suppressor Cells (MDSCs) during Tumor Growth: FKBP51 Contributes to the Regulation of the Immunosuppressive Function of MDSCs

Yun-Sun Kim, Yeon-Jeong Kim, Jung-Mi Lee, Eun-Kyung Kim, Young-Jun Park, Su-Kyong Choe, Hyun-Jeong Ko and Chang-Yuil Kang

J Immunol 2012; 188:4226-4234; Prepublished online 2 April 2012; doi: 10.4049/jimmunol.1103040

http://www.jimmunol.org/content/188/9/4226

Supplementary Material

http://www.jimmunol.org/content/suppl/2012/04/02/jimmunol.1103040.DC1

References

This article cites 49 articles, 28 of which you can access for free at:
http://www.jimmunol.org/content/188/9/4226.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Functional Changes in Myeloid-Derived Suppressor Cells (MDSCs) during Tumor Growth: FKBP51 Contributes to the Regulation of the Immunosuppressive Function of MDSCs

Yun-Sun Kim,*† Yeon-Jeong Kim,*† Jung-Mi Lee,* Eun-Kyung Kim,* Young-Jun Park,* Su-Kyong Choe,‡ Hyun-Jeong Ko,‡ and Chang-Yuil Kang*†

Myeloid-derived suppressor cells (MDSCs) are increased by tumor-derived factors and suppress anti-tumor immunity. MDSCs obtained at a late time point after tumor injection had stronger suppressive activity than MDSCs obtained at an early time point, as measured by T cell proliferation assays. To find factors in MDSCs that change during tumor growth, we analyzed gene expression profiles from MDSCs at different time points after tumor injection. We found that immune response-related genes were downregulated but protumor-related genes were upregulated in both monocytic MDSCs (Mo-MDSCs) and polymorphonuclear granulocytic MDSCs (PMN-MDSCs) at the late time point. Among differentially expressed genes, FK506 binding protein 51 (FKBP51), which is a member of the immunophilin protein family and plays a role in immunoregulation, was increased in the Mo-MDSCs and PMN-MDSCs isolated from the late time points. Experiments using small interfering RNA and a chemical inhibitor of FKBP51 revealed that FKBP51 contributes to the regulation of the suppressive function of MDSCs by increasing inducible NO synthase, arginase-1, and reactive oxygen species levels and enhancing NF-κB activity. Collectively, our data suggest that FKBP51 is a novel molecule that can be targeted to regulate the immunosuppressive function of MDSCs. The Journal of Immunology, 2012, 188: 4226–4234.

Received for publication October 21, 2011. Accepted for publication February 28, 2012.

This work was supported by the National Research Laboratory Program (Grant 20090083191), the Public Welfare & Safety Research Program (Grant 20110020963), and the World Class University Program (Grant R31-2008-000-10103-0) of the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology.

The microarray data presented in this article have been submitted to the Gene Expression Omnibus database (http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE35398.

Copyright © 2012 by The American Association of Immunologists, Inc.
Materials and Methods
Mice
All experiments were approved by the Institutional Animal Care and Use Committee of Seoul National University. BALB/c mice and C57BL/6 mice (Charles River Laboratories, Seoul, Korea) were purchased at 6 wk of age and used in all of the experiments. The mice were kept under specific pathogen-free conditions in the Animal Center for Pharmaceutical Research at Seoul National University.

Tumor models
To obtain MDSCs, 1 × 10^5 CT26 cells expressing Her-2/neu (Her-2/CT26) (22) were s.c. injected into the left flank of BALB/c mice, and 1 × 10^5 CT26 and EL4 cells (both from American Type Culture Collection) were i.p. injected into BALB/c mice and C57BL/6 mice, respectively. In the s.c. tumor model, we defined the early time point as 21–27 d after tumor injection, when the tumor size was less than 10 mm in diameter and the proportion of CD11b^+Gr-1^+ cells increased to ~10% in the spleen. The late time point was defined as 42–48 d after injection, when the tumor size was ~30 mm in diameter and more than 30% of the splenocytes were CD11b^+Gr-1^- cells. Some mice had wounds in the tumor mass at the late time point; however, we excluded these mice from the experiment. In the i.p. tumor model, we defined the early and late time points as 7–9 d after tumor injection and 16–18 d after tumor injection, respectively.

Abs and flow cytometry
To detect CD11b^+Gr-1^- MDSC populations, allophycocyanin-labeled anti-CD11b and FITC-labeled anti-Gr-1 Abs (both from BioLegend, San Diego, CA) were used. To classify the subpopulations in the CD11b^+ cells, FITC-labeled Ly-6C Ab (BD Biosciences, San Diego, CA) and PE-labeled Ly-6G Ab (BioLegend) were used. To detect FKBP51, CD11b^+Gr-1^- cells were intracellularly stained with anti-rabbit anti-FKBP51 (Abcam, U.K.) and anti-rabbit IgG–PE Abs (BD Biosciences). Stained cells were analyzed by gating on viable cells using a FACSCalibur (BD, Franklin Lakes, NJ).

MDSC isolation
To obtain CD11b^+Gr-1^- MDSCs, splenocytes were prepared from naive or tumor-bearing mice and stained with anti-CD11b microbeads (Miltenyi Biotec, Germany). The CD11b^+Gr-1^- cells were isolated by MACS Cell Separation, and the purity of CD11b^+Gr-1^- cells was greater than 99% (Supplemental Fig. 1A). To obtain MDSC subpopulations, CD11b^+ cells, enriched by the MACS system were stained with an allophecocyanin-conjugated anti-CD11b Ab, an FITC-conjugated anti–Ly-6C Ab, and a PE-conjugated anti–Ly-6G Ab. The CD11b^+Ly-6C^+Ly-6G^- population was polymerized with nuclear granulocytic MDSCs (PMN-MDSCs) and the CD11b^+Ly-6G^+Ly-6C^- monocytes were isolated by a FACSAria II cell sorter (BD Biosciences). The purity of these populations was greater than 97% (Supplemental Fig. 1B, 1C).

Microarray and data preprocessing
Total RNA was purified from CD11b^+Ly-6C^-Ly-6G^- and CD11b^+Ly-6C^-Ly-6G^- cells using Qiagen RNeasy kits (Qiagen, Valencia, CA) and reverse-transcribed into cDNA. To analyze gene expression profiles, the GeneChip Mouse Gene 1.0 ST Array was performed. The RMA algorithm was used for expression summaries and signal calculation. Sketch quantile normalization was performed for the signal normalization. Fold changes were applied to select the differentially expressed genes. Microarray data are available at the Gene Expression Omnibus database (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE35398).

siRNA nucleofection
We used a commercially available siRNA comprising three target-specific 19–25 nt siRNAs that were recommended for the inhibition of FKBP51 expression (siFKBP51) (23). A commercially available control siRNA (siCtrl) consisting of a scrambled sequence that should not lead to the specific degradation of any known cellular mRNA was also used (both from Santa Cruz Biotechnology, Santa Cruz, CA). To knock down target gene, MDSCs were nucleofected with 500 nM siFKBP51 or siCtrl using the Amxa nucleofection system (Lonza, Germany).

In vitro T cell suppression
OT-1 or DO11.10.10 cells (3 × 10^6/well) were stimulated with 250 μg/ml OVA protein (grade V, Sigma-Aldrich) and cocultured with or without MDSCs for 3 d. For the final 24 h, 1 μCi/well [3H]Thymidine was added, and [3H]Thymidine incorporation into the dividing cells was detected with a liquid scintillation counter (Wallac, Turku, Finland).

Quantitative real-time PCR
Total RNA was isolated from 3 × 10^6 MDSCs using the RNeasy Mini Kit (Qiagen, Germany). Reverse transcription was performed using M-MLV reverse transcriptase (Invitrogen, Carlsbad, CA), and quantitative real-time PCR was conducted using SYBR Premix Ex Taq (Takara, Japan). The following primers were used: iNOS, forward 5’-AGG AAG TGG GCC GAA GGA GGA T-3’; reverse 5’-GAA ACT ATG GAG CAC AGC CAC AF-3’; ARG1, forward 5’-AAC ACG GCA GTG GTC ATT ACC T-3’; reverse 5’-GTG ATG CCC CAG ATG GTT TTC T-3’; NOX2, forward 5’-GCAC GAT GCA GGA AAG GAA-3’; reverse 5’-TCA TGG TGC ACA GAA AAC TGA T-3’; and GAPDH, forward 5’-CCT GGA AAA ACC TGC CAA GTA T-3’; reverse 5’-GGA AGA GTG GTT GAA GTT G-3’.

Western blot analysis
MDSCs were cultured in media containing LPS and/or rapamycin prior to lysis. Western blot analysis was performed using mAbs to LkBa or GAPDH (Abcam).

Statistical analysis
The Student t test was used to compare the differences between two groups. The p values <0.05 were considered significant at a 95% confidence interval.

Results
Suppressive activity of CD11b^+Gr1^- MDSCs increases with tumor growth
We previously reported that MDSCs could be converted into immunogenic APCs and induce tumor Ag-specific immune responses in a Her-2/neu–expressing tumor model (16, 17). During these experiments, we found that MDSCs obtained at different time points after tumor injection had different characteristics. The percentage of MDSCs in splenocytes and tumor-infiltrated cells was dramatically increased as tumors grew (Fig. 1A). At an early time point, 21–27 d after tumor inoculation, the percentage of the CD11b^+Gr-1^- cells increased to ~10% in the spleen, but at the late time point, 42–48 d after tumor injection, more than 30% of the splenocytes were CD11b^+Gr-1^- cells. Furthermore, the expression levels of MHC-related molecules, such as H-2K^d/, I-A^d/, and costimulatory molecules, such as CD86 and CD40, on CD11b^+Gr-1^- cells were dramatically decreased (data not shown) (17), suggesting that the Ag presentation capacity of CD11b^+Gr-1^- cells might be decreased at late time points.

Next, we compared the suppressive activity of CD11b^+Gr-1^- MDSCs in a T cell proliferation assay. Whereas CD11b^+Gr-1^- cells from naive mice had no suppressive effect on T cell proliferation, CD11b^+Gr-1^- MDSCs from tumor-bearing mice inhibited CD4^+ T cell proliferation (Fig. 1B) in a MDSC dose-dependent manner. MDSCs also inhibited allogenic CD8^+ T cell proliferation (Fig. 1C), as described in other studies (24). Although early MDSCs had acquired suppressive activity against T cell proliferation, the suppressive activity of late MDSCs was much stronger than that of early MDSCs.

As previously described, CD11b^+Gr-1^- MDSCs consisted of two major subsets, a CD11b^+Ly-6C^-Ly-6G^-Mo-MDSCs subset and a CD11b^+Ly-6C^-Ly-6G^-PMN-MDSCs subset (25). Therefore, we investigated the changes in the MDSC subpopulations at early and late time points. The percentage and number of both Mo-MDSCs and PMN-MDSCs in total splenocytes were increased at the late time point (Fig. 1D). In particular, PMN-MDSCs exponentially increased and became the predominant MDSC population at the late time point both in the spleen and the tumor site (Fig. 1E). We sorted each population to evaluate the suppressive activity of each of the MDSC subpopulations. The sorted Mo-MDSCs were mononuclear cells, which had a light blue cytoplasm, and the
PMN-MDSCs were neutrophils, which had lobulated nuclei and faint cytoplasm (Fig. 1F). The sorted Mo-MDSCs and PMN-MDSCs were cocultured with OVA-stimulated OT-1 cells. Both Mo-MDSCs and PMN-MDSCs suppressed OVA-stimulated OT-1 T cell proliferation. However, Mo-MDSCs had a stronger suppressive capacity than PMN-MDSCs at each T cell/MDSC ratio (Fig. 1G). PMN-MDSCs suppressed T cell proliferation when they were present in high numbers (Fig. 1H). Although Mo-MDSCs constituted a smaller population, their high suppressive capacity can overcome their limited numbers. In contrast, PMN-MDSCs have weaker suppressive function but constituted a larger population. Taken together, these factors might contribute to the total suppressive function of MDSCs.

Mo-MDSCs and PMN-MDSCs express tumor-promoting genes at late time points

To identify the factors that license MDSCs to be more suppressive as tumors grow, we analyzed gene expression profiles in the two subsets of MDSCs at different time points after tumor injection. At the late time point, most of the increased genes were related to the cell cycle and cellular division (data not shown). We focused on the analysis of mRNA levels of genes related to cell lineage markers, apoptosis, tissue remodeling, tumor metastasis, cell recruitment, and immune suppression. Immune response-related genes, including cell surface molecules, cytokines, chemokines, and cell signaling molecules, were downregulated in both Mo-MDSCs and PMN-MDSCs at the late time point (Fig. 2A, 2B), suggesting that the APC function of MDSCs might decrease with tumor growth. In contrast, some genes related to MDSC immunosuppressive function, such as S100a8 and S100a9 (26) in Mo-MDSCs and urokinase (Plau) (27) in PMN-MDSCs, were increased with tumor growth (Fig. 2C, 2D). In addition, lipocalin 2 (Lcn2), which is an iron-binding protein that promotes tumor metastasis (28, 29), and leukotriene A4 hydrolase (Lta4h), which is involved in leukotriene B4-mediated MDSC chemotraction (30), were also increased in Mo-MDSCs and PMN-MDSCs, respectively, at the late time point. These data suggest that MDSCs are genetically regulated to possess protumor functions as tumors grow.

FKBP51 is associated with the suppressive function of MDSCs

We next investigated the role of the other differentially expressed genes in MDSCs. Among the upregulated genes, we focused on FKBP51 (Fkbp5)—which was overexpressed in both Mo-MDSCs and PMN-MDSCs at the late time point—because it is a member of the immunophilin protein family, which plays a role in immune suppression.
The late Mo-MDSCs expressed an 8-fold higher level of \textit{Fkbp5} than that of the early Mo-MDSCs, and the late PMN-MDSCs expressed a 3.5-fold higher level of \textit{Fkbp5} than that of the early PMN-MDSCs (Fig. 2C, 2D). We confirmed the increase of FKBP51 expression in CD11b+Gr-1+ MDSCs by RT-PCR. Consistent with the gene chip data, gene expression level of FKBP51 was enhanced in late CD11b+Gr-1+ MDSCs (Fig. 3A). We also measured the levels of FKBP51 protein at different time points and confirmed that the expression level of FKBP51 was higher in the late CD11b\textsuperscript{Gr-1+} MDSCs than that in the early CD11b\textsuperscript{Gr-1+} MDSCs (Fig. 3B). In addition, in i.p. injected tumor models, FKBP51 was also increased in both splenic and tumor-infiltrated CD11b\textsuperscript{Gr-1+} MDSCs at a later time point (Fig. 3C).

We next sought to clarify the role of FKBP51, particularly whether FKBP51 is involved in the suppressive function of MDSCs. We knocked down FKBP51 using siRNA. CD11b\textsuperscript{Gr-1+} MDSCs were isolated and then transfected with either an irrelevant control siRNA (siCtrl) or an siRNA specific for FKBP51 (siFKBP51). When FKBP51 expression was measured by FACS staining after siRNA nucleofection, the expression of FKBP51 was reduced in the majority of cells (Fig. 4A). Nucleofection itself influenced cell viability; however, there was no difference in the viability of the cells receiving the siFKBP51 and the cells receiving the siCtrl (Supplemental Fig. 2). We then tested the role of FKBP51 in mediating immunosuppression by coculturing Ag-stimulated DO11.10 or OT-1 cells with siRNA-transfected MDSCs. We found that
proliferation of both CD4+ and CD8+ T cells was inhibited by MDSCs, but siFKBP51 significantly reduced the suppression compared with that by siCtrl (Fig. 4B, 4C). Collectively, these data suggest that FKBP51 contributes to the suppressive function of MDSCs on T cell proliferation.

A chemical inhibitor of FKBP51, rapamycin, reduces the suppressive effect of MDSCs

We sought to find a chemical inhibitor that regulates FKBP51 function for more in-depth analysis of the role of FKBP51 in MDSCs, and several reports demonstrated that FK506 and rapamycin inhibit the peptidyl-prolyl isomerase (PPIase) function of FKBP51 (33, 34) and regulate inflammation (35, 36). Thus, we tested whether FK506 and rapamycin could inhibit the suppressive activity of MDSCs. Purified MDSCs were preincubated with rapamycin and FK506 in vitro and then evaluated for their suppressive activity on T cell proliferation. When we compared the suppressive activities of inhibitor-pretreated MDSCs with untreated MDSCs, rapamycin, which has a higher affinity for FKBP51 than FK506 (33), reduced the suppressive activity (Fig. 5A). Also, we found that rapamycin reduced the suppressive function of MDSCs in a dose-dependent manner (Fig. 5B) and did not affect MDSC viability at the doses we used.

To test whether in vivo treatment of FKBP51 inhibitor would influence the suppressive activity of MDSCs, we injected rapamycin to tumor-bearing mice and 2 d later isolated CD11b+Gr-1+ MDSCs, which has a higher affinity for FKBP51 than FK506 (33), reduced the suppressive activity (Fig. 5A). Also, we found that rapamycin reduced the suppressive function of MDSCs in a dose-dependent manner (Fig. 5B) and did not affect MDSC viability at the doses we used.

In addition, we tested whether inhibition of FKBP51 function in MDSCs has an impact on tumor growth. To rule out the effect that rapamycin might have on other immune cells, MDSCs were pretreated with rapamycin or DMSO in vitro and then adoptively transferred to tumor-bearing mice that had been s.c. challenged with 3 x 10^5 HER-2/CT26 tumor cells 7 d prior to the transfer. The rapamycin-pretreated MDSCs significantly restrained tumor growth compared with the DMSO-pretreated MDSCs (Fig. 5E). Although the adoptive transfer of DMSO-pretreated MDSCs slightly accelerated tumor growth, no statistically significant difference between the DMSO-pretreated MDSC group and the control group was observed. Collectively, these data suggest that inhibiting FKBP51 activity in MDSCs with rapamycin might reduce the suppressive effects that MDSCs have on T and other effector cells and consequently slow tumor growth.

FKBP51 regulates the expression of immunosuppressive mediators

ARG1, iNOS, and ROS have been previously implicated in the suppressive activity of MDSCs (2, 10). Therefore, we examined whether inhibition of FKBP51 would influence ARG1, iNOS, and ROS levels in MDSCs. After nucleofection with siFKBP51 or siCtrl, MDSCs were stimulated with LPS to induce the expression of iNOS, ARG1, and NOX2, which are responsible for ROS production (37), were measured. MDSCs transfected with siFKBP51 exhibited decreased expression of LPS-induced iNOS, ARG1, and NOX2 (Fig. 6A). When the function of FKBP51 was blocked by rapamycin, LPS or INF-γ-induced iNOS, ARG1, and NOX2 expression was also inhibited (Fig. 6B, 6C).

It is well known that FKBP51 is an important cofactor of IKKe because overexpression of FKBP51 results in NF-κB activation (34, 38). Therefore, we checked whether the NF-κB signaling pathway in MDSCs was regulated by FKBP51. When MDSCs...
MDSCs (37). In this study, we highlighted the changes in MDSCs iNOS and arginase and have more suppressive activity than splenic (37, 39). MDSCs in the tumor microenvironment have upregulated around the tumor site enhance the suppressive function of MDSCs. For instance, inflammation and hypoxic conditions the suppressive function of MDSCs suggest that FKBP51 is a new more strongly than that by early MDSCs. In addition, our findings a late time point after tumor injection inhibited T cell proliferation were stimulated with LPS, rapamycin delayed IκB degradation (Fig. 6D). Thus, these results suggest that FKBP51 enhances the suppressive function of MDSCs by increasing iNOS, ARG1, and ROS levels and enhancing NF-κB activity.

Discussion

MDSCs are important immune suppressor cells in the tumor microenvironment, and they inhibit anti-tumor immunity (1–3). In the current study, we found that CD11b+Gr-1+ MDSCs obtained at a late time point after tumor injection inhibited T cell proliferation more strongly than that by early MDSCs. In addition, our findings that FKBP51 is overexpressed in the late MDSCs and regulates the suppressive function of MDSCs suggest that FKBP51 is a new target for overcoming MDSC-mediated immune suppression.

The context of where MDSCs are present influences the function of MDSCs. For instance, inflammation and hypoxic conditions around the tumor site enhance the suppressive function of MDSCs (37, 39). MDSCs in the tumor microenvironment have upregulated iNOS and arginase and have more suppressive activity than splenic MDSCs (37). In this study, we highlighted the changes in MDSCs during tumor growth. The number and percentage of CD11b+Gr-1+ MDSCs increased as tumors grew, and the late MDSCs had more potent suppressive activity on T cell proliferation than that of early MDSCs (Fig. 1). The numbers and percentage of PMN-MDSCs became predominant among the MDSC subpopulations at late time point (Fig. 1) (24, 37). During tumor growth, increases of inflammation and tumor-derived factors, such as IL-1β (40), G-CSF (41, 42), and IL-6 (39), might be responsible for these changes. Indeed, we observed that IL-6 levels in the sera were also increased with tumor growth (C.-Y. Kang, unpublished observations).

We found that the immune response-related genes were decreased and the protumor function-related genes were increased in MDSCs at the late time point (Fig. 2). These genetic changes may license the functional changes of MDSC observed during the tumor growth. Although we and others have identified the function of several genes important in the immunosuppressive function of MDSCs (26–30), many genes still remain unknown. For instance, it is interesting that all neutrophil serine proteases (NSPs), including neutrophil elastase, cathepsin G, and proteinase-3, are increased in Mo-MDSCs, and serpinb1, which is an NSP inhibitor, was increased in both Mo-MDSCs and PMN-MDSCs (Fig. 2). It is well known that excess NSPs induce cytokine and neutrophil chemokine production in alveolar macrophages (43, 44). In addition, Serpinb1−/− mice showed an increase of TNF-α, KC, and IL-1β in the bronchoalveolar lavage fluid and G-CSF in the serum compared with wild-type mice after *Pseudomonas aeruginosa* infection (45). In addition, increased neutrophil apoptosis was observed in Serpinb1−/− mice compared with wild-type mice (45). Therefore, we suspect that NSPs and serpinb1 might be related to the accumulation and function of MDSCs. However, this hypothesis requires further investigation.

MDSCs provide an immunosuppressive tumor microenvironment and limit the effect of anti-cancer immunotherapy. Therefore, the effects of anti-cancer immunotherapy could be enhanced by the removal of MDSCs or the inhibition of the suppressive function of MDSCs (13). Several approaches have been used to overcome the suppressive effect of MDSCs in various experimental settings. Gemcitabine (13, 14) and 5-fluorouracil (15) eliminate MDSCs. α-Galactosylceramide (16, 17) and retinoic acid (18, 19) induce the differentiation of MDSCs into immunogenic APCs. In addition, sildenafl, an inhibitor of phosphodiesterase-5 (20), and sunitinib, a tyrosine kinase inhibitor (21), reduce the suppressive activity of MDSCs. Thus, blocking of FKBP51 with siRNA or rapamycin could be an alternative approach to overcome the effect of MDSCs.

FKBP51 encoded by the *Fkbp5* gene possesses PPlase activity and participates in protein–protein interactions (31, 32). This PPlase activity is essential for IκB degradation. Thus, FKBP51 overexpression results in NF-κB activation and relevant gene expression (31, 32). The NF-κB signaling pathway has been shown to regulate the protumor function of tumor-associated macrophages (46, 47). On the basis of these reports, we hypothesized that FKBP51 might be involved in the immunosuppressive function of MDSCs. Our data supported this hypothesis by showing that the late MDSCs, which expressed a higher level of FKBP51 than the early MDSCs, have stronger suppressive activity, and experiments using siRNA and a chemical inhibitor of FKBP51 reduced the suppressive activity of the late MDSCs. The reduction in the suppressive function of MDSCs was not complete (Figs. 4, 5), either because the inhibition of FKBP51 with the inhibitors was not complete or because other regulators were involved in the suppressive function. In addition, despite their low expression of FKBP51, the early MDSCs expressed a higher level of other immunosuppressive genes, such as S100a8 and S100a9. Therefore, we conclude that FKBP51 is one factor that contributes to the suppressive activity of the MDSCs. However, it remains unclear whether FKBP51 directly or indirectly affects the suppressive function,
and the relative contribution of FKBP51 to the suppressive function of MDSCs compared with that of other molecules should be studied.

Rapamycin inhibited the MDSC suppressive function in vitro and in vivo (Fig. 5). We hypothesize that these results were due to the blockade of FKBP51 PPIase activity by rapamycin (33, 34), and the results with siRNA supported this claim (Fig. 4). However, it cannot be excluded that a rapamycin–FKBP12 complex blocked the mTORC1 pathway and subsequently affected the MDSC suppressive activity. However, it was reported that mTORC1 inhibition by rapamycin treatment of granulocytes reduced c-Myc expression and resulted in rapid differentiation (48). Therefore,

FIGURE 5. Rapamycin reduced the suppressive function of MDSCs. (A) Late MDSCs from Her-2/CT26 tumor-bearing mice were preincubated with 100 nM rapamycin or FK506 for 2 h, and then the chemicals were washed out. Rapamycin- or FK506-treated MDSCs were cocultured with Ag-stimulated OT-1 cells for 3 d. (B) Late MDSCs were preincubated with various concentrations of rapamycin for 2 h and then cocultured with Ag-stimulated OT-1 cells for 3 d. (C and D) Her-2/CT26 tumor cells were s.c. injected into the flanks of BALB/c mice. After 45 d, the tumor-bearing mice were i.p. injected with 30 μg rapamycin, and 2 d later, CD11b+ cells were sorted by MACS. Ag-stimulated DO11.10 (C) and OT-1 (D) cells were cocultured with MDSCs from rapamycin-treated or untreated tumor-bearing mice for 3 d. Representative data from three separate experiments are shown. *p < 0.05, **p < 0.005. (E) CD11b+Gr-1+ MDSCs were purified from Her-2/CT26 tumor-bearing mice 45 d after 1 × 10^5 Her-2/CT26 tumor injection (s.c.). The MDSCs were incubated with 100 nM rapamycin or DMSO for 2 h, and 1 × 10^7 cells were adoptively transferred to BALB/c mice that were s.c. challenged with 3 × 10^5 Her-2/CT26 tumor cells on their left flanks 7 d prior. *p < 0.05 (compared with MDSC-RAP AT).

FIGURE 6. iNOS, ARG1, and ROS levels were decreased by FKBP51 inhibition. (A) CD11b+ cells were purified from Her-2/CT26 tumor-bearing mice at day 42 and nucleofected with 500 nM siFKBP51 or siCtrl. Four hours after siRNA nucleofection, 1 μg/ml LPS and 20 ng/ml GM-CSF were added into the cell cultures. After 48 h, the mRNA levels of iNOS, ARG1, and NOX2 were measured. (B and C) MDSCs were stimulated with 100 ng/ml LPS (B) or IFN-γ (C). To inhibit FKBP51 function, 100 ng/ml rapamycin or DMSO (control) was added. After 48 h, the mRNA levels of iNOS, ARG1, and NOX2 were measured. (D) MDSCs that were cultured with 100 ng/ml LPS and 100 nM rapamycin. Cell lysates were obtained at the indicated time points, and IκBα levels were measured by Western blotting. The data shown are representative of two separate experiments. *p < 0.05, **p < 0.005.
FKBP51 to overcome the potent immunosuppressive activity of MDSCs provides new insight into MDSC regulation, demonstrating that MDSCs have different characteristics of cell surface molecule observations) and inhibited the immunosuppressive activity (Fig. 5). Gemcitabine-induced apoptosis in vitro (C.-Y. Kang, unpublished over, rapamycin enhanced the apoptosis of chemotherapy-resistant inactivation.

In summary, according to the stage of tumor development, MDSCs have different characteristics of cell surface molecule expression, gene expression, and function. Therefore, this study provides new insight into MDSC regulation, demonstrating that different approaches are needed to overcome the different stages of MDSCs. In addition, this study suggests a new approach targeting FKBP51 to overcome the potent immunosuppressive activity of late MDSCs.

Disclosures

The authors have no financial conflicts of interest.

References

