Properdin Is Critical for Antibody-Dependent Bactericidal Activity against *Neisseria gonorrhoeae* That Recruit C4b-Binding Protein

Sunita Gulati, Sarika Agarwal, Shreekant Vasudhev, Peter A. Rice and Sanjay Ram

J Immunol 2012; 188:3416-3425; Prepublished online 24 February 2012;
doi: 10.4049/jimmunol.1102746
http://www.jimmunol.org/content/188/7/3416

References

This article cites 66 articles, 28 of which you can access for free at:
http://www.jimmunol.org/content/188/7/3416.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Properdin Is Critical for Antibody-Dependent Bactericidal Activity against *Neisseria gonorrhoeae* That Recruit C4b-Binding Protein

Sunita Gulati, Sarika Agarwal, Shreekant Vasudhev, Peter A. Rice, and Sanjay Ram

Gonorrhea, a sexually transmitted disease caused by *Neisseria gonorrhoeae*, is an important cause of morbidity worldwide. A safe and effective vaccine against gonorrhea is needed because of emerging resistance of gonococci to almost every class of antibiotic. A gonococcal lipoooligosaccharide epitope defined by the mAb 2C7 is being evaluated as a candidate for development of an Ab-based vaccine. Immune Abs against *N. gonorrhoeae* need to overcome several subversive mechanisms whereby gonococci evade complement, including binding to C4b-binding protein (C4BP; classical pathway inhibitor) and factor H (alternative pathway [AP] inhibitor). The role of AP recruitment and, in particular, properdin in assisting killing of gonococci by specific Abs is the subject of this study. We show that only those gonococcal strains that bind C4BP require properdin for killing by 2C7, whereas strains that do not bind C4BP are efficiently killed by 2C7 even when AP function is blocked. C3 deposition on bacteria mirrored killing. Recruit-

Neisseria gonorrhoeae (the gonococcus) is the causative agent of gonorrhea, a sexually transmitted disease that causes considerable morbidity worldwide. In 2009, 301,174 cases of gonorrhea were reported in the United States (http://www.cdc.gov/std/stats09/gonorrhea.htm), although the Centers for Disease Control and Prevention estimates that the true incidence may be about twice the number of reported cases (1). Gonorrhea elicits a wide variety of clinical syndromes at local genital sites, ranging from uncomplicated lower genital tract infection (cervicitis and urethritis) to upper tract endometritis and salpingitis in women and occasionally epididymitis in men. In some instances, *N. gonorrhoeae* disseminate, causing tenosynovitis, septic arthritis, and/or papulopustular skin lesions (2–5). Over the years, *N. gonorrhoeae* has demonstrated a remarkable capacity to develop resistance to almost every class of antibiotic used to treat infection (6). Thus, there is an urgent need to develop a safe and effective vaccine against this disease.

Prior efforts to develop vaccines against *N. gonorrhoeae* have not come to fruition because the Ags selected showed extreme variability across strains as in the case of pilin and porin (Por), which may limit protection to a limited repertoire of strains (7, 8). Abs directed against outer membrane proteins following natural infection, such as opacity protein and porin B (PorB), may provide protection against homologous or closely related strains, but again, antigenic variability of these proteins precludes eliciting cross-protective Abs against diverse strains (9–11). In contrast, Abs elicited against antigenically conserved targets on *N. gonorrhoeae*, such as reduction modifiable protein, are often either nonbactericidal or even subversive (blocking Abs) (12–16).

Lipooligosaccharide (LOS) is an important gonococcal virulence factor and plays a key role in several aspects of gonococcal pathogenesis, including but not limited to resistance to complement, adhesion, and entry into cells and recognition by the innate immune system (17–26). Abs directed against LOS activate the complement system that result in direct killing of *N. gonorrhoeae* (27), which has prompted efforts to evaluate LOS as a vaccine candidate. Abs against LOS may protect against reinfection with the homologous strain, as suggested in the male urethral experimental gonococcal infection model; those males who showed a ≥4-fold rise in anti-LOS IgG were more resistant to reinfection with the homologous strain than volunteers who did not mount an anti-LOS response (28).

Prior work in our laboratory has identified an LOS epitope that is recognized by a bactericidal mAb called 2C7 (29) as a potential vaccine candidate and have prompted efforts to develop a mimotope of the 2C7 LOS epitope as an approach to circumvent the potential toxicity of the LOS molecule (30, 31).

The complement system forms an important line of defense against Neisserial infections. The complement cascade comprises three major pathways called the classical, lectin, and alternative pathways (AP), all of which converge at the level of C3 (32, 33). Although an intact classical pathway of complement is required for complement-dependent killing of *N. gonorrhoeae* (34, 35), the role of the AP, in particular properdin, in facilitating killing by
specific Abs remains unclear. Properdin functions as a positive regulator of the AP by virtue of its ability to stabilize C3 convertase (C3b,Bb) and prolong its t_{1/2} from ~1.5 min by 5–10-fold (36). The secondary granules of polymorphonuclear neutrophils (PMNs) are the principal reservoir of properdin (37). Cervical secretions contain an intact complement system (38), the result of local synthesis of AP proteins by cervical epithelial cells (39) and exudation of serum components into the cervical lumen (40). A requirement for properdin in bacterial killing could suggest an important role for PMNs in determining the efficacy and efficiency of complement activation and killing of gonococci.

In this study, we sought to examine the role of the AP and properdin in determining the bactericidal efficacy of Abs directed against the 2C7 epitope, which is present on diverse gonococcal strains. Studies used a murine mAb directed against the 2C7 epitope and were also performed using specific immune human serum derived from a gonococcal vaccine trial that contained excess Ab against the 2C7 epitope.

Materials and Methods

Strains

Strains used in this study were 15253 (41, 42), 252 (40), and 442089 (43, 44), all of which express PorB.1A molecules and strains FA1090 (45) and 24-1 (46) (both express PorB.1B molecules). N. gonorrhoeae strains were chosen based on their ability to: 1) resist killing (100% survival) in 16.7% pooled nonimmune normal human serum (NHS) used in this study; and 2) be killed ≥50% when 5 μg/ml mAb 2C7 was added to NHS. With the exception of strain 24-1, all of the wild-type strains fulfilled these criteria. 24-1 is sensitive to the bactericidal action of NHS but develops resistance to complement-mediated killing when grown in media supplemented with 5'-cytidinemonophospho-N-acetyluramic acid (CMP-NANA) (47). Resistance of sialylated 24-1 is related to its ability to bind to human factor H and downregulate the AP of complement (47). Note that strain 252 is killed by select normal human sera, but none of the individual sera that were pooled in this study as a source of complement had intrinsic bactericidal activity against this strain. A mutant derivative of strain 252 (lgtG) that did not express the 2C7 epitope.

An isogenic mutant derivative of strain 252 that differed only in its PorB sequence; and 2) also bound to mAb 2C7 were selected for further study.

Sera and complement reagents

Sera obtained from three healthy adult human volunteers (NHS) were pooled, aliquoted, and stored at ~80°C until used. The use of these sera was approved by the Committee for the Protection of Human Subjects in Research at the University of Massachusetts Medical School. All subjects who donated blood for this study provided written informed consent. None of the sera, used individually or pooled, killed any of the gonococcal strains in a serum bactericidal assay that contained 16.7% serum. Further, the addition of 5 μg/ml mAb 2C7 to 16.7% serum mediated ≥50% killing of test strains as indicated above. Factor B-depleted serum, C2-depleted serum, purified factor B, and purified C2 were all purchased from Complement Technologies (Tyler, TX). In some experiments, complement activity of NHS was destroyed by heating at 56°C for 30 min.

Sera from adult male volunteers immunized with a gonococcal outer membrane preparation enriched for porin (PorB.1B), but also containing 2C7 epitope bearing LOS, taken as part of a 1985 vaccine and challenge trial (50, 51), were tested for bactericidal activity against strain 15253 and its lgtG deletion mutant (15253 lgtG) that did not express the 2C7 epitope. Four (of seven tested) sera killed the parent but not the mutant strain; one of these sera was selected for use because it displayed the greatest change in Ab titer (from corresponding preimmunization serum) directed against all of the strains used in this study.

In experiments to measure the effects of anti-factor Bb to block AP activation in zymosan (see below), the classical and lectin pathways of complement were blocked by adding EGTA (10 mM) and MgCl$_2$ (10 mM) to NHS (NHS-Mg/EGTA).

Abs

mAb 2C7 [IgG3 (51, 52)] is directed against an epitope that comprises at a minimum a lactose extension off heptose (Hep) I and a lactose residue on HepII of LOS. In addition, N-acetylation of LOS appears to be required for mAb 2C7 binding (29). mAb 2C7 binding is not affected by HepI glycan extensions beyond the primary HepII substituent (50).

The function of the AP in serum was blocked by the addition of an anti-factor Bb mAb (catalog number A227; Quidel, San Diego, CA) used at a final concentration of 125 μg/ml. Properdin function was blocked with an anti-properdin mAb (anti-properdin mAb #1; catalog number A233) used at a final concentration of 50 μg/ml (53). C7 function in NHS was blocked by adding anti-C7 mAb (catalog number A221; Quidel) at a concentration of 100 μg/ml. Blockade of C7 function was confirmed by loss of hemolytic activity of NHS as measured using the Total Hemolytic Complement Kit (The Binding Site, Birmingham, UK). Azide (0.1%), present in the commercial anti-properdin, anti-factor Bb, and anti-C7 mAb preparations, was removed by spin-concentration and dialyzed against PBS/0.1% BSA using a 30-kDa cutoff Amicon Ultra-15 centrifugal filter device (Milli-pore). Polyclonal goat anti-human C3 antiserum was from Complement Technologies, and goat polyclonal anti-human factor Bb from Quidel.

An Ab preparation directed against a membrane preparation derived from strain FA1090 was kindly provided by Dr. Ann E. Jerse (Uniformed Services University of the Health Sciences, Bethesda, MD).

Flow cytometry

Flow cytometry was used to determine the concentration of anti-Bb mAbs required to block C3 deposition on zymosan using anti-human C3c conjugated to FITC (Biosign/Meridian Life Science, Saco, ME). C3 deposition on zymosan either in the absence or presence of increasing concentrations of anti-factor Bb mAb was measured using previously described methods (53). Briefly, NHS-Mg/EGTA (final concentration of 5% [v/v]) containing concentrations of anti-factor Bb mAb ranging from 0–500 μg/ml was added to 5 × 105 zymosan particles suspended in HBSS containing 10 mM MgCl$_2$ and 10 mM EGTA for 30 min at 37°C. The final volume of the reaction mixture was 100 μl. Total C3 deposited on zymosan was detected using anti-C3c-FITC (reacts with C3b and iC3b). Data were collected on an FACS Calibur instrument (BD Biosciences, Franklin Lakes, NJ) and analyzed using the FlowJo analysis software program (version 7.2.4; Tree Star, Ashland, MA).

Serum bactericidal assays

Serum bactericidal assays were performed as described previously (54), with minor modifications. Bacteria that had been harvested from an overnight culture on chocolate agar plates were resuspended onto fresh chocolate agar and allowed to grow for 6 h at 37°C in an atmosphere containing 5% CO$_2$. Bacteria were then suspended in HBSS containing 1 mM MgCl$_2$ and 0.15 mM CaCl$_2$ (HBSS++) for use in serum bactericidal assays. Strain 24-1 was sialylated by growth to the exponential phase in a serum bactericidal assay that contained 16.7% pooled immune human serum. The reaction volume was 450 μl reaction mixtures were incubated at 80°C until used. The use of these sera...
Material lysates of FA1090 and 252 with a 1:1000 dilution of the immune serum, followed by disclosing the mouse IgG-reactive bands with anti-mouse IgG alkaline phosphatase.

Whole-cell ELISA

C3 deposition on and factor B binding to bacteria were measured by whole-cell ELISA as described previously (40, 56, 57). Briefly, \(2 \times 10^8\) organisms in HBSS++ were incubated with NHS (final concentration 16.7%) that contained either no anti-complement component mAbs or contained anti-C7 alone or anti-C7 plus either anti-factor B or anti-properdin (same concentrations used for bactericidal assays) in a reaction volume of 100 \(\mu\)l and then incubated for 10 min at 37°C. This time point was chosen because maximal killing was observed at 10 min in this study (see Results) and based on complement deposition on gonococci in previously published data (40). Reactions were stopped after 10 min by washing three times with ice-cold HBSS containing 5 mM PMSF at 4°C. Organisms were resuspended in 200 \(\mu\)l of the same buffer and 50 \(\mu\)l each sample applied well of a 96-well U-bottom polystyrene microtiter plate (Dynatech Laboratories, Chantilly, VA) and incubated for 3 h at 37°C. Plates were washed with PBS containing 0.05% Tween 20. Primary Abs (goat anti-human C3 and goat anti-human factor B) were diluted in PBS and secondary Abs diluted in PBS-0.05% Tween 20 prior to use. To ensure similar capture of bacteria incubated under different conditions, we measured the amount of gonococcal H8 Ag (58, 59) expression using mAb 2-8C-4-1 (57), followed by anti-mouse IgG-alkaline phosphatase conjugate.

Results

Characterization of mAb 2C7 binding to the selected serum-resistant N. gonorrhoeae strains

A simplified schematic of the organization of LOS glycans on gonococcal LOS is provided in Fig. 1A. The phase-variable genes involved in gonococcal LOS biosynthesis are indicated in gray italic font (Fig. 1A). Expression of lactose on both HepI and HepII (indicated by the gray shaded box) is required for mAb 2C7 reactivity with gonococcal LOS (Fig. 1A). Glycan extensions beyond the lactose residue on HepI do not affect 2C7 binding (29). Thus, although expression of LgtG is required for mAb 2C7 binding, phase variations of lgtA, lgtC, and lgtD do not affect 2C7 reactivity. mAb 2C7 reactivity with the LOS of the strains used in this study is shown by Western blot in Fig. 1B, and, as expected, LOS phase variation resulted in variations in the pattern of mAb 2C7-reactive bands across strains. The lgtG deletion mutant of strain 15253 (15253DlgtG, Fig. 1B) that does not bind to mAb 2C7 was used as a negative control.
mAb 2C7-dependent killing of select serum-resistant strains of N. gonorrhoeae requires properdin

We next asked whether the bactericidal activity of mAb 2C7 required participation of the AP of complement. To maintain activity of the classical (and lectin) pathways, but block activity of the AP, the function of factor B was blocked with an anti-factor Bb mAb. To determine the concentration of this mAb needed to fully block AP activation, we measured C3 deposition on zymosan, an AP-activating particle (60, 61), in the presence of Mg/EGTA-NHS that contained anti-factor Bb mAb at concentrations ranging from 62 to 500 ìg/ml. Deposition of C3 was blocked (no increase in fluorescence over baseline) even at anti-factor Bb concentrations as low as 62.5 ìg/ml (data not shown). Thus, an anti-factor Bb concentration of 125 ìg/ml was chosen to ensure maximal AP blockade in subsequent experiments. The ability of the anti-properdin mAb (50 ìg/ml) to limit C3 deposition on zymosan and on the surface of N. gonorrhoeae has been demonstrated previously (53).

As shown in Fig. 2A, all strains resisted killing by NHS alone (>100% survival at 30 min), but were killed >50% in the presence of 5 ìg/ml of added 2C7. Blocking the AP with anti-factor Bb resulted in complete (>100%) survival of strains 442089, FA1090, and 15253, the C4BP-binding strains, but had little effect on the survival of strains 24-1 sia+ and 252 that did not bind C4BP. These results showed that Ab-mediated killing of some, but not all, serum-resistant strains of N. gonorrhoeae required an intact AP. Blocking properdin function with anti-properdin yielded similar results as with anti-factor Bb mAb, suggesting that the positive regulatory function of properdin on the AP was required for Ab-dependent killing of select strains of N. gonorrhoeae (Fig. 2A). The negative control for this experiment included organisms incubated with mAb 2C7 and heat-inactivated NHS (no complement activity), which showed no killing (data not shown). In addition, the mutant strain 15253 ΔgtG (does not bind to mAb 2C7) was not killed in a bactericidal assay that contained NHS (complement intact) and mAb 2C7 (data not shown).

We used factor B-depleted serum to confirm the results obtained with anti-factor Bb-blocking mAb (Table I). Note that the factor B-depleted serum alone (without added mAb 2C7) killed strain 252, so this strain could not be tested in this assay. Factor B-depleted serum supported significantly greater killing of 24-1 sia+ than the C4BP-binding strains (FA1090, 15253, and 442089) by mAb 2C7. Almost identical results were shown using properdin-depleted serum instead of factor B-depleted serum (24-1 sia+ showed only 9% survival, whereas C4BP binders FA1090, 15253, and 442089 survived 62, 69, and 107%, respectively).

An intact classical pathway of complement is required for mAb 2C7-mediated killing

A requirement of the AP for manifestation of bactericidal activity of mAb 2C7 against select gonococcal strains raised the possibility that Ab-dependent AP activation (34) may have been fully responsible for killing of bacteria. To address this possibility, strains 24-1 sia+ and FA1090 were incubated with mAb 2C7 in the presence of C2-depleted human serum (classical and lectin pathways blocked, AP intact). No killing of either strain (>100% survival) was seen. Reconstitution of C2-depleted serum with physiological concentrations of C2 restored killing by mAb 2C7 (92.5 and 83% killing of strains 24-1 sia+ and FA1090, respectively). Controls included C2-depleted serum alone and depleted serum reconstituted with C2; neither control showed killing (>100% survival). To underscore the importance of an intact classical pathway in mediating killing by specific Ab, we tested wild-type strain 24-1 (unsialylated) that is extremely sensitive to killing by NHS (46, 47). Incubating this strain with mAb 2C7 and C2-depleted serum together also resulted in >100% survival. As expected, killing was restored (0% survival) when purified C2 was added to the reaction mixture. These data suggest that an intact classical pathway is required for 2C7-dependent bactericidal activity; recruitment of the AP alone is insufficient to support gonococcal killing under these conditions.

![FIGURE 3. C3 deposition on and factor B binding to N. gonorrhoeae. Bacterial strains were incubated with NHS that contained anti-C7 to prevent bacterial lysis, either in the presence or absence of mAb 2C7. Anti-factor Bb or anti-properdin mAbs to block function of these components was added to some reactions as indicated. C3 deposition on (top panel) and factor B binding to (bottom panel) bacteria was measured by whole-cell ELISA. C3 and factor B binding when bacteria were incubated with NHS alone were similar to results obtained when organisms were incubated with NHS + anti-C7 mAb (data not shown). Gonococcal H.8 Ag measured using mAb 2-8C-4-1 was similar across wells and ensured equal bacterial capture (data not shown). Controls in which bacteria were incubated with heat-inactivated NHS showed OD absorbance readings <0.1 and have been omitted for simplicity, *p ≤ 0.001 compared with all other data points for the corresponding strain (two-tailed Student t test).](http://www.jimmunol.org/)

| Table I. Factor B in killing of N. gonorrhoeae by mAb 2C7 |
|------------------|------------------|-----------------|------------------|
| Strain | Percent Survival | 2C7 |
| | [Mean (Range)] | fB-dep + 2C7 | fB-dep/fB + 2C7 |
| 24-1 sia+ (C4BP+) | 117 (4) | 6 (0) | 7.3 (2) |
| FA1090 (C4BP+) | 110 (2) | 70 (2) | 18 (2) |
| 15253 (C4BP+) | 105 (2) | 65.5 (3) | 16.8 (6) |
| 442089 (C4BP+) | 107.5 (3) | 107 (6) | 50.5 (3) |

*Factor B (fB)-depleted serum (fB-dep) reconstituted with purified human fB (200 ìg/ml).
Properdin does not alter the rate of killing by mAb 2C7

Although 2C7-mediated killing of strains 252 and 24-1 sia+ at 30 min in the presence or absence of properdin was similar, we asked whether properdin influenced the rate of bacterial killing as may be expected if the AP was amplifying Ab-dependent Neisserial killing to a significant extent (62). Blocking properdin function did not alter the kinetics of killing of strain 252 by mAb 2C7. Both in the presence and absence of properdin, bactericidal activity was almost complete within 10 min, suggesting that properdin did not augment the rate of killing of a strain that bound minimal levels of C4BP (data not shown) and that bacterial killing of these strains was less influenced by the AP.

Direct complement-dependent killing of N. gonorrhoeae requires an intact classical pathway (34, 35). Active inhibition of the classical pathway, as occurs on strains that bind to the classical pathway inhibitor C4BP (43), may reduce the ability of the classical pathway alone to support bactericidal activity, although small amounts of active C3b deposited on organisms are sufficient to amplify the AP. We reasoned, therefore, that killing of C4BP-binding strains may require participation of the AP. Properdin is critical for stabilization of the positive-feedback loop of the AP and therefore is likely to be critical for killing. In contrast, Ab-dependent killing, via the classical pathway, of strains that do not bind to C4BP should be unimpeded. We speculated that strains that bound C4BP were killed by mAb 2C7 via the AP, which required properdin. C4BP binding to strains 15253, 442089, and FA1090 in 1, 3, and 10% human serum (Fig. 2B) (43) correlated with a properdin requirement for 2C7-mediated killing of these strains (Fig. 2A), whereas strains 252 and 24-1 sia+ that bound C4BP minimally or not at all were killed in the absence of properdin (Fig. 2A).

Maximal C3 deposition on C4BP-binding gonococci requires an intact AP

Having shown that killing of C4BP-binding N. gonorrhoeae by mAb 2C7 required properdin and an otherwise intact AP, we next determined the roles for factor B and properdin in C3 fragment deposition on and factor Bb binding to gonococci by whole-cell ELISA. A 10-min incubation period was chosen based on the killing kinetics presented above and our previous studies of complement activation on N. gonorrhoeae (40). In these experiments, a function-blocking anti-C7 mAb was added to NHS to avoid a possible effect from bacterial killing and membrane lysis. When compared with NHS, the addition of anti-C7 to NHS did not affect C3 or factor Bb binding to bacteria; therefore, only data with NHS plus anti-C7 are shown for simplicity. Shown in Fig. 3 (top panel) and in accordance with the results of bactericidal assays presented in Fig. 2A, blocking factor B or properdin function did not affect mAb 2C7-mediated C3 deposition on the C4BP nonbinding strains 24-1 sia+ and 252, but significantly reduced mAb 2C7-dependent C3 deposition on the C4BP binders (FA1090, 15253, and 442089). Controls in which bacteria were incubated with heat-inactivated NHS or with buffer alone showed OD405 nm readings <0.1 (data not shown).

Addition of mAb 2C7 to NHS resulted in a marked increase in factor Bb binding to all strains (Fig. 3, bottom panel), suggesting that this Ab recruited the AP on all strains, even though only C4BP-binding strains required the AP for killing (Fig. 2A). Of note, blocking properdin function resulted in almost complete loss of detectable factor Bb binding to all strains to levels comparable to those seen when factor B function was blocked, suggesting a key role for properdin in AP recruitment by mAb 2C7.

Collectively, these data suggest that unimpeded classical pathway activation on C4BP nonbinders was sufficient for maximal C3 deposition and killing of these strains even in the absence of AP activation (factor B function blocked) or when the AP lacked function.
of its positive regulator properdin. In contrast, C4BP-binding gonococcal isolates required an intact AP for mAb 2C7-mediated killing. Further, properdin played a critical role in mAb 2C7-mediated recruitment of the AP and assembly of C3 convertases on gonococci.

Isogenic mutant strains confirm the association between C4BP binding and the requirement of properdin for Ab-dependent killing

In addition to their ability to bind to complement inhibitors, additional factors such as LOS structure can modulate serum resistance of N. gonorrhoeae (22, 23, 63). To provide further evidence linking C4BP binding to the requirement for properdin for Ab-mediated killing, we created isogenic mutants that differed in their ability to bind C4BP by replacing the PorB.1A molecule in strain 252 (binds C4BP minimally) (Fig. 2B) with the PorB.1A molecule of strain FA19 that binds C4BP strongly (43). The resulting mutant, called 252/PorFA19, showed no change in the 2C7 binding profile compared with the parent strain, 252 (Fig. 4B). As expected, the 252/PorFA19 mutant strain also bound C4BP (Fig. 4A). Shown in Fig. 4C, C4BP binding to strain 252/PorFA19 resulted in resistance to killing by mAb 2C7 when properdin function was blocked. A second 252/PorFA19 clone yielded similar results (data not shown). Similar to results seen with the anti-properdin mAb, blocking factor B function with the anti-Bb mAb yielded a mean bacterial survival of 66% of strain 252/PorFA19 (results omitted from the graph for simplicity), thereby demonstrating the absolute need for properdin for recruitment of the AP and killing of C4BP-binding gonococci. Similar to strain 252/PorFA19, the C4BP-binding strain FA1090, used as a control, showed restored survival when properdin function was blocked, whereas mAb 2C7-mediated killing of the C4BP nonbinding parent strain 252 was unaffected by loss of properdin function (Fig. 4C). The effects of blocking factor B on survival of control strains 252 and FA1090 under similar conditions are shown in Fig. 2A. C3 deposition on strain 252/PorFA19, measured by whole-cell ELISA, showed that blocking properdin function resulted in a significant decrease in C3 deposition on the organism (Fig. 4D). This stood in contrast to the parent strain 252, in which the total amount of C3 deposition was not affected by blockade of the AP. Blocking factor B function reduced C3 deposition to levels similar to those seen when properdin function was blocked (mean ± SD, OD405nm 0.8 ± 0.05).

Taken together, these results strongly suggest that killing of N. gonorrhoeae strains that bind to C4BP by specific anti-LOS Ab requires participation of the AP. Further, properdin plays a key role in facilitating AP recruitment to mediate bactericidal activity.

Requirement for properdin for killing by human Ab elicited by vaccination with a gonococcal vaccine preparation

The studies described above were performed with a murine bactericidal mAb against LOS. To address the applicability of the results to human immune Ab against LOS, we asked whether properdin was required for killing by immune serum obtained from a human volunteer and administered a gonococcal outer membrane-derived vaccine candidate. The vaccine candidate used was enriched with PorB.1B, derived from a gonococcal strain called 2399, but the candidate also contained other components of the outer membrane that were immunogenic including LOS (50, 51). The PorB.1B Ab response was restricted to that of the homologous strain (2399) used to prepare the vaccine candidate; no cross-reacting PorB.1B Abs to any of the PorB Ags present in the strains used in this study were detected by Western blotting (data not shown). However, in several vaccinees, the resultant bactericidal Ab response was directed principally against the LOS-derived 2C7 epitope.

We used such a vaccinee serum in this study (2C7 epitope-specific Ab was 3.61 μg/ml, which was 91% of the total LOS Ab [3.95 μg/ml]) (51), in which bactericidal activity depended solely on LgtG expression of the target organism as evidenced by complete killing (no survival) of 15253, but no killing (≥100% survival) of 15253 ΔlgtG (shown in Fig. 5A).

Consistent with the presence of 2C7 epitope-specific bactericidal Abs, the vaccinee serum also killed strains FA1090, 252, and sialylated 24–1 (sia+), all displaying the 2C7 epitope (Figs. 1B, 5B). In accordance with results using mAb 2C7, the immune human serum also required functional properdin to kill strains FA1090 and 15253 (both bound C4BP), but not 252 or 24–1 sia+ (bound C4BP minimally or not at all) (Fig. 5B). Survival of 252 and 24–1 sia+ in the presence of the human immune serum when factor B function was blocked (no AP activity) were similar to results seen when properdin was blocked (mean survival of 252 and 24–1 sia+ in two independent experiments was 48.5 and 1.6%, respectively, demonstrating that killing of the C4BP nonbinders by specific human anti-LOS Ab did not require any input from the AP). Survival of the C4BP-binding strains ≥100% when only the positive regulatory function of the AP was blocked with anti-
Properdin obviated the need for testing survival of these strains when the entire pathway was rendered nonfunctional with anti-Bb.

Properdin is required for maximal bactericidal activity against C4BP-binding gonococci of a polyvalent murine anti-outer membrane vesicle Ab

The data thus far have focused on the requirement of properdin for the bactericidal activity of anti-LOS Abs, in particular Abs directed against the 2C7 epitope. To determine whether properdin was required for killing activity of Abs directed at potential bacterial Ab-reactive targets other than LOS, we tested complement-dependent killing mediated by a murine polyclonal Ab raised against a membrane preparation of FA1090 (Fig. 6A shows a silver stain of the immunogen). The broad cross-reactivity of the elicited murine Abs against the membrane preparation as well as whole-cell lysates of FA1090 and 252 was determined by Western blot, shown in Fig. 6A. The antiserum reacted strongly with a variety of proteins, but only weakly against LOS. In the presence of an intact complement cascade, the polyclonal anti-membrane Ab was bactericidal against strain FA1090 (the homologous strain) and to a similar extent against heterologous strain 252 (Fig. 5A, solid bars). Akin to observations with anti-LOS Abs, the addition of the anti-properdin mAb to block properdin function resulted in increased survival of C4BP binding strain FA1090 (Fig. 5B, left panel), but had no effect on survival of 252 (Fig. 5B, right panel). Thus, the critical role for properdin in maximizing Ab-mediated bactericidal activity against C4BP-binding gonococcal strains likely extends to Ags other than LOS.

Discussion

In addition to its pivotal role in protection against Neisserial infections (64), complement also plays an important role in innate immune defenses against several other bacterial pathogens. Over 50 y ago, Roantree and Rantz (65) reported that Gram-negative bacteria isolated from the bloodstream were almost always resistant to the killing activity of complement. Defects in Ab and/or early components of the classical pathway that impair opsonophagocytosis predispose to recurrent respiratory infections and sepsis caused by bacteria such as Haemophilus influenzae and Streptococcus pneumoniae (66, 67). The link between deficiencies of the alternative and terminal pathways of complement and recurrent, disseminated meningococcal disease is well established (66, 67).

Previous studies have shown that the classical pathway of complement is essential to mediate complement-dependent killing of N. gonorrhoeae (34, 35). Gonococcal strains that are otherwise sensitive to killing by nonimmune normal human serum (all pathways of complement intact) survive when the classical (and lectin) pathway is blocked with Mg/EGTA-NHS (to selectively chelate Ca++) (34) or with serum that lacks C1q (35), while permitting activation of the AP. However, such strains can be killed when the AP alone is selectively blocked, as with factor B-depleted serum (35). N. gonorrhoeae have evolved several mechanisms to resist killing by human complement. Effective strategies used by N. gonorrhoeae to escape killing by complement include binding to human complement inhibitors such as factor H and C4BP through their PorB molecule (43, 44). Sialylation of gonococcal LOS that expresses the lacto-N-neotetraose structure also enhances factor H binding to bacteria.

The rapid and widespread development of antibiotic resistance by N. gonorrhoeae (6, 68) has severely limited therapeutic options, and there is an urgent need to develop safe and effective vaccines that prevent gonococcal carriage and disease. Ab-based vaccines against N. gonorrhoeae could depend on efficient complement activation to either mediate direct killing through membrane attack complex insertion or promote opsonophagocytosis to protect the host. To effectively activate complement on the bacterial surface, vaccine-induced Abs need to overcome the complement inhibitory effects of molecules such as factor H and C4BP that bind to the gonococcal surface. mAb 2C7 kills gonococci that inherently resist killing by complement (Fig. 2A) (51) via any of several mechanisms (31, 51) and is therefore an attractive vaccine candidate. Abs elicited by immunization of mice with a peptide that mimics the 2C7 epitope bind the 2C7 epitope on gonococcal LOS and kill gonococci for which LOS displays the epitope (31). Binding of mAb 2C7 to gonococcal LOS requires expression of LgtG, which is encoded by lgtG that contains a poly-C tract and may therefore be subject to phase variation (48). Nevertheless, >90% of minimally passaged clinical isolates of N. gonorrhoeae bind to 2C7 (52), suggesting an important, but undefined role for

FIGURE 6. Killing of C4BP-binding gonococcal strain FA1090 by anti-membrane preparation Ab requires functional properdin. (A) Broad cross-reactivity of murine antiseraum raised against an FA1090 membrane preparation (Memb. prep.). The membrane preparation that was used as the immunogen (a silver stain of the sample is also shown) and whole-cell lysates of FA1090 and 252 were separated on a 4–12% Bis-Tris gel and transferred to a polyvinylidenefluoride membrane that was then overlaid with a 1:1000 dilution of anti-FA1090 membrane Ab in PBS/0.05% Tween 20. Mouse IgG bound to bacterial Ags was disclosed with anti-mouse IgG alkaline phosphatase and substrate. Localization of IgG-reactive PorB.1B (faintly visualized only in the Memb. prep. and FA1090 lanes) and opacity protein (Opa) bands are indicated. LOS and LOS-reactive IgG bands are indicated with solid black dots. (B) Murine anti-membrane antiseraum (dilutions ranging from 1:75 to 1:300) mediates complement-dependent killing of strains FA1090 (left panel) and 252 (right panel) in the presence (dashed lines) or absence (solid lines) of α-P (anti-properdin mAb) that blocks function of properdin; 16.7% NHS was used as a source of human complement. The 1:75 dilution experiment represents the mean (±SD) of three separately performed experiments; the 1:150 and 1:300 dilution experiments, the mean (±SD) of two experiments. *p < 0.005 (two-tailed Student t test).
lactose substitution of the HepII chain [a requirement for 2C7 epitope expression (29)] of gonococcal LOS.

A novel finding in this study was the requirement of the AP and, in particular, properdin for specific Ab-mediated dependent killing of N. gonorrhoeae strains that bind C4BP. Strains that bind C4BP and limit classical pathway activation require recruitment of the AP to assemble sufficient C3/C5 convertases for subsequent membrane attack complex (C5b-9) and bacterial killing. In the absence of the AP or when properdin is blocked, mAb 2C7 deposits only a small amount of C3 on strains such as FA1090, 442089, and 15253 because these strains actively regulate the classical pathway through recruitment of C4BP to their surfaces. However, an intact AP appears to effectively amplify the C3b that breaks through the barrier posed by C4BP and effect bacterial killing. The stabilizing effects of properdin on the AP C3 convertases are crucial to amplify C3 deposition and mediate bacterial killing. In contrast, strains that resist complement by mechanisms independent of C4BP binding and do not actively cleave C4b or dissociate the classical pathway convertase [C4b,2b, according to newly proposed nomenclature (32)] do not require properdin for specific Ab-mediated bactericidal activity.

Importantly, the role of properdin in facilitating Ab-dependent killing was not restricted to murine mAb 2C7 but also extended to specific immune human serum that contained Abs directed against the 2C7-specific LOS epitope. These findings have implications for Ab-based vaccine development because PMNs are a major reservoir and source of properdin (37). In addition, properdin is synthesized by primary cervical epithelial cells (39) and would also be exuded into the cervical lumen from serum. The concomitant presence of neutrophils is likely to ensure high levels of properdin that may enhance complement activation on gonococci. Enhanced complement activation in the vicinity of PMNs may also facilitate opsonophagocytic disposition of organisms. As shown by Bracnonier et al. (69), phagocytic killing was reduced in S. pneumoniae serotype 23F due to defective opsonization in the presence of properdin-deficient sera. Addition of native properdin to the properdin-deficient sera restored opsonization of S. pneumoniae serotype 23F by human granulocytes (69), showing the significance of properdin in phagocytosis. Indeed, a recent report showed that PMNs stimulated by cytokines such as TNF-α activate the AP of complement and result in C3 fragment deposition on these cells (70). Properdin secreted by PMNs was detected on cell surfaces, and it was proposed that the cell-bound properdin could serve as a focus for additional activation of the AP. Complement activation in turn resulted in further activation of PMNs, which was accompanied by an increase in CD11b expression and the oxidative burst (70). The presence of classical pathway activation by specific Abs, coupled with this positive-feedback loop involving PMNs and the AP, could prove important in curtailing gonococcal infection by vaccine-elicited Abs.

In conclusion, we have demonstrated that both human and murine Abs that are directed against an LOS epitope that is currently being investigated as a potential vaccine candidate (31), as well as Abs raised against a gonococcal membrane preparation more generally, require a functional AP and, in particular, properdin to kill serum-resistant gonococcal strains that bind to the complement inhibitor C4BP. Strains that do not bind to C4BP are efficiently killed by specific Abs raised against a gonococcal membrane preparation via the classical pathway alone and do not require properdin. These findings provide insights into how complement is activated on N. gonorrhoeae by specific Ab and also shed light on the requirements for effective complement-dependent bactericidal activity by potential vaccine candidates.

Acknowledgments

We thank Dr. Anna M. Blom (Lund University, Malmö, Sweden) for the gift of anti-C4BP mAb 104, Drs. P. Frederick Sparling and Christopher Elkins (University of North Carolina, Chapel Hill, NC) for strain FA6564, Dr. Ann E. Jerse and Dr. Abdul Khan (Uniformed Services University of the Health Sciences, Bethesda, MD) for FA1090 membrane preparation and murine Abs directed against the membrane preparation, and Edward W. Hook, III (University of Alabama, Birmingham, AL) and Peter K. Kohl (Vivantes-Klinikum Neukölln, Berlin, Germany) for providing vaccinee serum. We also thank Nancy Nowak for excellent technical assistance.

Disclosures

The authors have no financial conflicts of interest.

References

21. Quan, D. N., M. D. Cooper, J. L. Potter, M. H. Roberts, H. Cheng, and

24. Song, W., L. Ma, R. Chen, and D. C. Stein. 2000. Role of lipooligosaccharide in

142: 856–863.

61–66.

34.24 PROPERDIN IN GONOCOCCAL KILLING

797.

51. Gulati, S., D. P. McQuillen, R. E. Mandrell, D. B. Jani, and P. A. Rice. 1996. Immunoglobulin of Neisseria gonorrhoeae lipooligosaccharide epitope 2C7, widely expressed in vivo with no immunological similarity to human glyco-

spingolipids. [Published erratum appears in 1997 J. Infect. Dis. 175: 1027; J.

45. Cohen, M. S., J. G. Cannon, A. E. Jerse, L. M. Charniga, S. F. Isbey, and

54. McQuillen, D. P., S. Gulati, and P. A. Rice. 1994. Complement-mediated bac-

1954. The properdin system and immunity. I. Demonstration and isolation of

75: 1112–1120.

77: 1112–1120.

21. Quan, D. N., M. D. Cooper, J. L. Potter, M. H. Roberts, H. Cheng, and

24. Song, W., L. Ma, R. Chen, and D. C. Stein. 2000. Role of lipooligosaccharide in

175: 1027–1034.

51. Gulati, S., D. P. McQuillen, R. E. Mandrell, D. B. Jani, and P. A. Rice. 1996. Immunoglobulin of Neisseria gonorrhoeae lipooligosaccharide epitope 2C7, widely expressed in vivo with no immunological similarity to human glyco-

spingolipids. [Published erratum appears in 1997 J. Infect. Dis. 175: 1027; J.

45. Cohen, M. S., J. G. Cannon, A. E. Jerse, L. M. Charniga, S. F. Isbey, and

54. McQuillen, D. P., S. Gulati, and P. A. Rice. 1994. Complement-mediated bac-

1954. The properdin system and immunity. I. Demonstration and isolation of

75: 1112–1120.

77: 1112–1120.

