Epithelial Cell-Intrinsic Notch Signaling Plays an Essential Role in the Maintenance of Gut Immune Homeostasis

Yuuki Obata, Daisuke Takahashi, Masashi Ebisawa, Kisa Kakiguchi, Shigenobu Yonemura, Toshi Jinnohara, Takashi Kanaya, Yumiko Fujimura, Masumi Ohmae, Koji Hase and Hiroshi Ohno

J Immunol 2012; 188:2427-2436; Prepublished online 25 January 2012; doi: 10.4049/jimmunol.1101128
http://www.jimmunol.org/content/188/5/2427

Supplementary Material

http://www.jimmunol.org/content/suppl/2012/01/25/jimmunol.1101128.DC1

References

This article cites 39 articles, 10 of which you can access for free at:
http://www.jimmunol.org/content/188/5/2427.full#ref-list-1

Subscription

Information about subscribing to _The Journal of Immunology_ is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Epithelial Cell-Intrinsic Notch Signaling Plays an Essential Role in the Maintenance of Gut Immune Homeostasis

Yuuki Obata,‡† Daisuke Takahashi,†‡ Masashi Ebisawa,†‡ Kisa Kakiguchi,§ Shigenobu Yonemura,§ Toshi Jinnohara,†‡ Takashi Kanaya,† Yumiko Fujimura,† Masumi Ohnai,† Koji Hase,†‡§ and Hiroshi Ohno*,‡†

Intestinal epithelial cells (IECs) have important functions as the first line of defense against diverse microorganisms on the luminal surface. Impaired integrity of IEC has been implicated in increasing the risk for inflammatory disorders in the gut. Notch signaling plays a critical role in the maintenance of epithelial integrity by regulating the balance of secretory and absorptive cell lineages, and also by facilitating epithelial cell proliferation. We show in this article that mice harboring IEC-specific deletion of Rbpj (RBP-JΔIEC), a transcription factor that mediates signaling through Notch receptors, spontaneously develop chronic colitis characterized by the accumulation of Th17 cells in colonic lamina propria. Intestinal bacteria are responsible for the development of colitis, because their depletion with antibiotics prevented the development of colitis in RBP-JΔIEC mice. Furthermore, bacterial translocation was evident in the colonic mucosa of RBP-JΔIEC mice before the onset of colitis, suggesting attenuated epithelial barrier functions in these mice. Indeed, RBP-JΔIEC mice displayed increase in intestinal permeability after rectal administration of FITC-dextran. In addition to the defect in physical barrier, loss of Notch signaling led to arrest of epithelial cell turnover caused by downregulation of Hes1, a transcriptional repressor of p27kip1 and p57kip2. Thus, epithelial cell-intrinsic Notch signaling ensures integrity and homeostasis of IEC, and this mechanism is required for containment of intestinal inflammation. The Journal of Immunology, 2012, 188: 2427–2436.

The mucusal surface of the gastrointestinal tract is continuously exposed to a profusion of foreign Ags including food Ags, food-borne pathogens, and commensal bacteria. A single layer of columnar epithelial cells covering the intestinal mucosa serves as a barrier to protect the host from invasion by potential pathogens, as well as a sentinel to warn of their presence. Epithelial stem cells located at the crypt bottom continuously divide to produce transit-amplifying cells, which can then divide several times before creating terminally differentiated epithelial cell lineages: absorptive enterocytes and three types of secretory epithelial cells, namely, goblet cells, enteroendocrine cells, and Paneth cells. Under physiological conditions, the cellular composition of the intestinal epithelium is kept in balance; however, disruption of this homeostatic state has been associated with various gastrointestinal diseases including ulcerative colitis (UC) (1), experimental colitis induced by dextran sodium sulfate (DSS) (2), and an infection model with Citrobacter rodentium (3, 4). These findings raise the possibility that the balanced composition of the four types of intestinal epithelial cells (IECs) is essential for the maintenance of intestinal homeostasis and for host defense functions.

Notch proteins function as receptors for transmembrane ligands, Jagged and Delta-like proteins, to regulate a broad spectrum of cell fate decisions. Upon ligand activation, Notch receptors undergo γ-secretase-mediated proteolytic cleavage to release the Notch intracellular domain (NICD). The liberated NICD translocates into the nucleus, where it forms a transcriptional activator complex with recombination signal binding protein for Ig κ J region (RBP-J) to regulate the Notch signaling pathway (5). In the intestinal epithelium, this complex activates Notch target genes such as Hes1, which, in turn, represses the expression of Math1, a master regulator for differentiation of secretory cell lineages (6, 7). Consequently, activation of epithelial Notch signaling suppresses the differentiation of secretory cell lineages (8), and thus plays a central role in the binary cell fate decision of intestinal progenitors between the secretory and absorptive lineages.

Previous studies with a γ-secretase inhibitor and transient loss of function of RBP-J have demonstrated that inactivation of Notch signaling results in conversion of proliferating progenitors into postmitotic goblet cells (9). Conversely, transgenic expression of NICD inhibits secretory cell differentiation with a reciprocal increase in immature progenitors (8). These observations support the biological significance of Notch signaling not only in the binary cell fate decision but also in the maintenance of the proliferating progenitors in the crypts of the intestinal epithelium.

By contrast, the contribution of Notch signaling to epithelial defense functions remains elusive. Notch signaling within the...
intestinal epithelium is upregulated in the inflamed mucosa of UC patients and in DSS-treated mice. This is thought to be important for epithelial regeneration in these diseases (10), and inhibition of Notch activation at the late stage of colitis development in the DSS model exacerbates disease by impairing epithelial regeneration (10). In contrast, inhibition of Notch signaling in early-stage DSS colitis alleviates acute inflammation by preventing the typical decrease in the number of goblet cells seen in this model (11). Thus, it remains controversial whether Notch signaling participates in the development or prevention of colitis.

To better understand the role of Notch signaling in epithelial defense functions and gut immune homeostasis, we have generated mice in which there is an IEC-specific deletion of the Rbpj gene (RBP-J^IEC). In this article, we report that RBP-J^IEC mice spontaneously develop Th17-dominant chronic colitis. Bacterial translocation into colonic mucosa preceded the development of colitis, suggesting an impaired epithelial defense against bacteria on the colonic mucosa of these mice. This defect was remarkable in the crypt region, where there was goblet-cell hyperplasia and epithelial turnover was significantly retarded by the absence of Notch signaling. Our findings underscore the importance of Notch signaling in epithelial defense functions by securing the epithelial integrity and rapid turnover that is required for the maintenance of gut immune homeostasis.

Materials and Methods

Animal experiments

Mice carrying a floxed Rbpj allele (RBP-J^Fr/F) (12) were obtained from the RIKEN BioResource Center. To generate RBP-J^IEC mice, we crossed RBP-J^Fr/F mice with Villin-Cre transgenic mice obtained from The Jackson Laboratory. RBP-J^IEC mice and control RBP-J^Fr/F littersmates were maintained under specific pathogen-free (SPF) or conventional (CV) conditions in the RIKEN or Yokohama City University animal facilities, respectively.

To deplete commensal bacteria, we maintained 12- to 14-wk-old RBP-J^IEC and RBP-J^Fr/F mice under CV conditions, and they received a 4-mM acetic acid solution containing 1 g/l ampicillin sodium, 0.5 g/l vancomycin hydrochloride, 1 g/l neomycin sulfate, and 1 g/l metronidazole (all from Wako Pure Chemical Industries) as drinking water for 5 wk. All studies were approved by the Animal Research Committees of RIKEN Yokohama Research Institute and Yokohama City University.

Histology

Prefixed colonic tissue sections were deparaffinized, rehydrated, and stained with either H&E or Alcian blue-nuclear fast red. The specimens were histologically examined for scoring the degree of colitis based on the following criteria: inflammatory infiltrates, mucosal hyperplasia, mucosal erosion and/or ulceration, and loss of goblet cells.

Immunostaining

Frozen sections of colonic tissue were fixed with cold acetone for 10 min. Background signals were blocked by incubating the sections in 5% normal serum in PBS from the same species as the secondary Abs. The sections were then incubated overnight at 4˚C with anti-CD4 (H129.19), anti-CD11c (HL3), biotinylated anti-CD11b (M1/70; all from BD Biosciences); anti–E-cadherin (R40.76; Santa Cruz Biotechnology) mAbs; goat anti–myeloperoxidase (Abcam) and rabbit anti-Hes1 polyclonal Abs (a gift from Dr. Tetsuo Sudo) (13) or an identical concentration of control rat IgG overnight at 4˚C. The binding of primary Ab was detected with biotinylated donkey anti-rabbit IgG (Jackson Immunoresearch) followed by streptavidin-HRP (ABC Elite; Vector Laboratories), and was visualized with 3,3-diaminobenzidine (Dako Cytomation). The tissue sections were counterstained with hematoxylin.

For lysozyme and chromogranin A immunostaining, prefixed small and large intestinal sections were treated and analyzed as described earlier, except that rabbit anti-lysozyme (Dako Cytomation) and anti-chromogranin A (ImmunoStar) polyclonal Abs or an identical concentration of control rat IgG were used as primary reagents.

Preparation of lamina propria mononuclear cells

Colonial tissue was fragmented into 2- to 3-cm segments and then incubated in HBSS containing 20 mM EDTA and 2% FCS at 37˚C for 20 min to remove epithelial cells. The segments were further minced and dissociated with RPMI 1640 medium containing 20 mM HEPES (pH 7.4), 2% FCS, 0.5 mg/ml collagenase (Wako Pure Chemical Industries), 250 U/ml Dispase (BD Biosciences), and 0.5 mg/ml DNase I (Roche) at 37˚C for 30 min.

After this incubation, lamina propria mononuclear cells (LPMCs) were fractionated on discontinuous Percoll gradients as described previously (14).

Flow cytometry

LPMCs were preincubated with anti-CD16/CD32 mAb (93; eBioscience) for FcγR blocking, followed by incubation with FITC-anti-CD11b (M1/
70), PE-anti-CD11c (HL3), V500-anti-CD3ε (500A2), and allophycocyanin-anti-CD4 (GK1.5; eBioscience) mAbs.

For intracellular cytokine staining, LPMCs were cultured for 6 h in complete medium (RPMI 1640 containing 10% FCS, 100 U/ml penicillin, 100 μg/ml streptomycin, 55 μM mercaptoethanol, and 20 mM HEPES [pH 7.2]) supplemented with 50 ng/ml PMA, 500 ng/ml ionomycin, and Golgi Plug (BD Pharmingen) in 12-well plates. The LPMCs were then stained with V500-anti-CD3ε (500A2), Pacific blue-anti-CD4 (RM4-5), followed by intracellular staining using a Cytofix/Cytoperm kit (BD Bioscience) and PerCP/Cy5.5-antIFN-γ (XMG1.2; eBioscience), Alexa Fluor 488-anti-TNF-α (MP6-XT22), PE-anti-IL-17A (TC11-18H10), PE-Cy7-anti-IL-4 (BVD6-24G2; eBioscience) mAbs. All mAbs were obtained from BD Biosciences unless specified otherwise.

The stained samples were analyzed using a FACS CantoII (BD Bioscience), and the obtained raw data were further analyzed using FlowJo software version 8.8.7 (Tony Digital Biology).

Quantitative PCR

Total RNA was isolated from colonic tissues with the RNeasy mini kit (Qiagen) and was subjected to reverse transcription using the ReverTra Ace kit (Toyobo), following the manufacturer’s instructions. The cDNA samples were amplified with the SYBR premix Ex Taq (Takara Bio) and the primer sets specific for mouse genes. The sequences of the primer sets are available upon request. Target gene expression was assessed by a comparative cycling threshold method, using expression of Actb as the control, according to the manufacturer’s protocol (Thermal Cycler Dice Real Time System; Takara Bio).

Bacterial genomic DNA was isolated as described previously with minor modifications (15). In brief, fecal samples were freeze-dried, homogenized, and disrupted using 0.1 mm Zirconia/Silica Beads, and were extracted with 5 mM Tris-HCl buffer (pH 7.2) solution containing 5% SDS and 5 mM EDTA. Bacterial genomic DNA was purified from the fecal extracts by a phenol/chloroform/isoaamyl alcohol method. Bacterial genomic DNA samples were amplified with a Cycler Dice Real Time System using the SYBR premix Ex Taq (Takara Bio) and the primer sets specific for bacterial 16S rDNA (16).

Fluorescence in situ hybridization

Fluorescence in situ hybridization (FISH) analysis for bacterial 16S rRNA was performed as described previously (17). In brief, frozen sections of colonic tissues were fixed in 4% paraformaldehyde and then incubated in 50 μl of 30% formaldehyde. Bacterial 16S rDNA (16) was purified from the fecal extracts by the phenol/chloroform/isoaamyl alcohol method. Bacterial genomic DNA samples were amplified with a Cycler Dice Real Time System using the SYBR premix Ex Taq (Takara Bio) and the primer sets specific for bacterial 16S rDNA (16).

Transmission electron microscopy

Colonic tissues were fixed with 2% fresh formaldehyde and 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer (pH 7.4) for 2 h at room temperature. After washing with 0.1 M cacodylate buffer (pH 7.4) three times (5 min each), they were postfixed with ice-cold 1% OsO4 in the same buffer for 2 h. The postfixed samples were rinsed with distilled water, stained with 0.5% aqueous uranyl acetate for 2 h or overnight at room temperature, dehydrated with ethanol, and embedded in Poly/Bed 812. Ultrathin sections were doubly stained with 4% uranyl acetate and 0.4% lead citrate, and viewed with a JEM 1010 transmission electron microscope (JEOL) at an accelerating voltage of 100 kV.

FIGURE 2. RBP-JΔIEC mice spontaneously develop colitis. (A–C) Mice were maintained under SPF conditions for 20–26 wk after birth (A, B), or SPF conditions for 12–14 wk followed by CV conditions for 2 wk (C). Macroscopic view of rectal prolapse in RBP-JΔIEC mice (B). Colonic tissue sections were stained with H&E for histological examination (A, C, upper panels) or with Alcian blue-nuclear fast red for detection of mucus (turquoise)-producing goblet cells (A, C, middle panels). Immunofluorescence staining of the distal colon from colitis-positive SPF RBP-JΔIEC mice (A) and CV RBP-JΔIEC mice (C) was performed using polyclonal Abs against MPO (green), and nuclei were counterstained with DAPI (blue) (A, C, lower panels). Scale bars, 200 μm. Data are representative of three independent experiments. (D) The number of MPO+ cells per mucosal area (1 mm2) was quantified. Values are mean ± SD (n = 3). *p < 0.05 (Student t test). (E) The histological colitis score was calculated based on the criteria described in Materials and Methods. Values are mean ± SD of 28 (SPF) and 8 (CV) mice. *p < 0.05, **p < 0.01 (Mann–Whitney U test).
In vivo epithelial barrier permeability

The in vivo assay of barrier function was performed using a FITC-labeled dextran method. In brief, 12-wk-old SPF mice fasted for 4 h were rectally administered with 4 kDa FITC-dextran (1 mg/g body weight) as a permeability tracer. Blood was collected after 1 h, and serum fluorescence intensity was measured using a Fusion-α microplate analyzer (Packard BioScience). Concentrations of FITC-dextran were calculated from standard curves generated by serial dilution of FITC-dextran.

EdU-labeling study

A 5-ethyl-uridine (EdU)-labeling study was performed using Click-iT EdU Imaging Kits (Invitrogen), following the manufacturer’s instructions. RBP-JΔIEC and RBP-JF/F mice were sacrificed at 4, 96, and 144 h after i.p. injection of 1 mg/mouse EdU. Frozen sections of colonic tissue were fixed with 4% paraformaldehyde for 15 min at room temperature. After washing with 3% BSA in PBS, the colonic tissue sections were incubated with 0.5% Triton X-100 in PBS for 20 min at room temperature. EdU-labeled cells were visualized using Click-iT reaction cocktails (Invitrogen). The specimens were incubated with Hoechst 33342 to visualize nuclei, then mounted in VectorShield (Vector Laboratories) and analyzed using a BX51 fluorescence microscope (Olympus).

Statistical analysis

Differences between two groups were analyzed by Student t test. When variances were not homogeneous, the data were analyzed by Mann–Whitney U test. Differences among more than two groups were analyzed by one-way ANOVA followed by Dunnett test. When variances were not homogeneous, the data were analyzed by Kruskal–Wallis test.

Results

RBP-JΔIEC mice spontaneously develop colitis

To directly assess the role of epithelial Notch signaling in intestinal homeostasis, we generated RBP-JΔIEC mice and maintained them under SPF conditions. These mice were born at the expected Mendelian ratio. Histological analysis of 6-wk-old RBP-JΔIEC mice demonstrated that the number of secretory cell lineages was increased in both small and large intestines (Fig. 1A, 1B), an observation consistent with a previous observation in mice with inducible RBP-J deficiency (9). Goblet cell hyperplasia was particularly obvious in the colon of RBP-JΔIEC mice (Fig. 1B). In association with these anomalies, 20- to 26-wk-old RBP-JΔIEC mice had an aberrant accumulation of mucus under the tunica serosa (Fig. 1C, arrowheads). Furthermore, nearly half of the RBP-JΔIEC mice spontaneously developed colitis characterized by thickening of the colonic wall (Fig. 2A) and rectal prolapse (Fig. 2B). Immunofluorescent staining of the colonic tissue demonstrated infiltration of MPO+ cells in RBP-JΔIEC mice, but not in control RBP-JF/F mice (Fig. 2A, lower panels). These data indi-

![Graphs showing cytokine mRNA expression](http://www.jimmunol.org/Downloadedfrom)
cate that RBP-JΔIEC mice have a defect not only in regulation of IEC differentiation, but also in maintenance of gut homeostasis.

In multiple experimental models of colitis and human inflammatory bowel diseases (IBDs), environmental factors such as the microbiota have been shown to be involved in the development of inflammatory response in the colon (18, 19). To explore the potential role of the intestinal microbiota in colitis development in RBP-JΔIEC mice, we maintained them under CV condition. Strikingly, all of the CV RBP-JΔIEC mice developed spontaneous colitis. Histological analysis of these mice showed a loss of goblet cells and a massive cellular infiltration into the colonic mucosa and submucosa (Fig. 2C, upper and middle panels). Immunofluorescent staining of the colonic tissue demonstrated massive infiltration of MPO+ cells in RBP-JΔIEC mice, but not in control littermates (Fig. 2C, lower panels). Based on histological scores, RBP-JΔIEC mice developed more severe colitis in CV than in SPF conditions (Fig. 2D, 2E). Hereafter, we mainly sought to characterize the immunopathogenesis of spontaneous colitis in CV RBP-JΔIEC mice.

CD11b+ cells and CD4+ T cells accumulate in the colonic lamina propria of RBP-JΔIEC mice

For the initial characterization of the inflammatory response in the colonic tissue of RBP-JΔIEC mice, we measured cytokine expression profiles. Quantitative real-time PCR (Q-PCR) analysis demonstrated that transcripts of proinflammatory cytokine genes Il1b, Il6, Il17a, Tnfsf1a, and Ifng were significantly upregulated in the RBP-JΔIEC mice compared with control RBP-JF/F littermates (Fig. 3). Of note, these proinflammatory cytokine genes, except Ifng, were also significantly upregulated in colitis-positive SPF RBP-JΔIEC mice (Supplemental Fig. 1). Moreover, the expression of inducible NO synthase, which has been shown to be increased in the mucosa of IBD patients (20), was also highly upregulated in the RBP-JΔIEC mice. These data confirmed that ablation of epithelial Notch signaling leads to chronic inflammation in the colon.

We subsequently examined the cellular composition of the inflammatory infiltrates in the colonic tissue. Immunofluorescent staining of the colonic tissue demonstrated massive infiltration of CD4+ T cells, CD11c+ dendritic cells (DCs), and CD11b+ cells in RBP-JΔIEC mice, but not in control mice (Fig. 4A). FACS analysis also confirmed a marked increase in the total number of CD4+ T cells, CD11c+ DCs, and CD11b+ cells in RBP-JΔIEC mice (Fig. 4B), as well as in the percentage of CD11b+ cells and CD4+ T cells (Supplemental Fig. 2A, 2B), in the colonic lamina propria in RBP-JΔIEC mice. In contrast, the proportion of B220+ B cells in the lamina propria of RBP-JΔIEC mice was decreased (Supplemental Fig. 2A, 2B). To determine the phenotype of these CD4+ T cells, we performed intracellular staining of representative T cell cytokines IL-17A, IFN-γ, TNF-α, and IL-4. The frequency of IL-17A-expressing CD4 T cells was increased >2-fold in the RBP-JΔIEC mice compared with littermate controls (Supplemental Fig. 2C, 2D), whereas the frequency of cells producing the other cytokines was unchanged. These results indicate that RBP-JΔIEC mice develop Th17-dominant chronic colitis.

Translocation of commensal microbiota into the colonic mucosa causes chronic inflammation in RBP-JΔIEC mice

Previous studies have shown that human IBDs result from inappropriate and ongoing activation of the mucosal immune system driven by the commensal microbiota (21). To test this possibility, we initially compared the composition of fecal bacteria between RBP-JΔIEC mice and control littermates housed together under CV condition. Q-PCR analysis using primer sets for specific groups of commensal bacteria, such as SFB, Bacteroides, Clostridiales, and Lactobacillaceae, revealed the existence of comparable levels of these bacterial groups in RBP-JΔIEC and littermate controls (Supplemental Fig. 3), suggesting that the development of spontaneous colitis is not attributed to the alteration of intestinal microbiota. Therefore, we next analyzed the localization of commensal bacteria by FISH in colitis-free 12- to 14-wk-old SPF RBP-JΔIEC and control mice. The bacteria were exclusively localized on the luminal surface and not in the crypt region of control mice. By contrast, in RBP-JΔIEC mice, the bacteria were abundant in the crypt region and colonic lamina propria (Fig. 5A, upper panels). These observations illustrate that the normal innate defense of the intestinal epithelium was compromised in RBP-JΔIEC mice. To assess the pathological relevance of commensal microbiota more

FIGURE 4. Characterization of infiltrating cells in the colonic lamina propria. (A) Immunofluorescence staining of the distal colon from 14- to 16-wk-old CV RBP-JΔIEC mice and control RBP-JF/F littermates was performed using mAbs against CD4 (green), CD11b (red), and CD11c (green). Nuclei were counterstained with DAPI (blue). Scale bars, 200 μm. Data are representative of three independent experiments. (B) The total number of colonic lamina propria-infiltrating CD4+ T cells, CD11c+ DCs, and CD11b+ cells of CV RBP-JΔIEC mice and control RBP-JF/F littermates was quantified by FACS analysis. Values are mean ± SD (n = 5). *p < 0.05 (Student t test).
directly, we gave RBP-JΔIEC mice under CV condition a combination of broad-spectrum antibiotics via their drinking water for 5 wk. Histological analysis indicated that the depletion of commensal microbiota alleviated the intestinal inflammation (Fig. 5B, 5C). Infiltration of CD4+, CD11b+, CD11c+, and MPO+ cells in the colonic lamina propria was also markedly decreased by the antibiotic treatment (Fig. 5D–F). These observations suggest that the aberrant bacterial translocation into the colonic mucosa leads to recruitment and activation of inflammatory cells, resulting in chronic inflammation of the colon in RBP-JΔIEC mice.

A physical barrier is defective in RBP-JΔIEC mice

The results presented earlier raise the question as to how luminal bacteria translocate into the colonic mucosa. We hypothesized that RBP-JΔIEC mice have a defect in epithelial-intrinsic barrier functions, such as formation of physical barrier or production of antimicrobial proteins. To test these possibilities, we initially analyzed the formation of intercellular junctional complexes, namely, tight junctions (TJs) and adherens junctions (AJs), which are responsible for the physical barrier. Because inflammatory stimuli frequently induce physical barrier dysfunction (22), we analyzed colonic epithelial cells from 12- to 14-wk-old SPF RBP-JΔIEC mice before they showed any signs of colitis. Immunofluorescent staining and transmission electron microscopy (TEM) analysis revealed no apparent difference in subcellular localization of TJ (ZO-1) and AJ (E-cadherin) components (Fig. 6A), as well as formation of electron-dense structures at the subapical region of the lateral plasma membrane (Fig. 6B) between RBP-JΔIEC and control RBP-JΔIEC mice.
control mice. To further examine the functional integrity of
the colonic epithelial barrier, we analyzed control and RBP-J
mice for systemic translocation of rectally administered, FITC-
labeled dextran. We observed significant increase in serum lev-
els of FITC-labeled dextran in RBP-JIEC mice compared with
control littermates, indicative of increased colonic permeability
(Fig. 6C). Together, these data indicate that deficiency of RBP-J
impairs epithelial barrier functions conceivably by establishment
of leaky junctions.

We subsequently examined the expression of antimicrobial
proteins in colonic epithelium. The expression of the genes
encoding β-defensins, cathelicidin, angiogenins, CCL6, RegIIIα,
and RegIIIβ in the colonic epithelium of RBP-JΔIEC mice was
normal (Supplemental Fig. 4A). Interestingly, the expression of
α-defensins, lysozyme-1, and phospholipase A2, group IIA, all of
which are known to be secreted by Paneth cells (23, 24), was
remarkably upregulated in the colonic epithelium of RBP-JΔIEC
mice (Supplemental Fig. 4B). Although Paneth cells exclusively
localize in the small intestine and not the colon (25), our immu-
nostaining of lysozyme identified Paneth-like cells in colonic
epithelium of RBP-JΔIEC mice (Supplemental Fig. 4C). The ec-
topic appearance of Paneth-like cells in the colon of these mice is
similar to the pathological change called Paneth cell metaplasia
seen in patients with UC (26). The expression of antimicrobial
proteins in small intestinal epithelium of RBP-JΔIEC mice was
also normal, although α-defensin expression was upregulated in RBP-
JΔIEC mice (Supplemental Fig. 4D). It is plausible that upregu-
lation of α-defensins results from Paneth cell hyperplasia in the
small intestine (Fig. 1A, middle panels). Collectively, ablation of
RBP-J unlikely attenuates the production of antimicrobial proteins
by IECs.

RBP-JΔIEC mice have a defect in epithelial regeneration

The rapid turnover of IECs because of vigorous proliferation of
epithelial progenitors is thought to be an important innate defen-
sive mechanism, which contributes to expel colonized pathogens,
confines bacterial spreading, and localizes inflammation (27–30).
Consistent with previous studies (31), Ki67+ proliferating cells
were abundant at the bottom of virtually all the crypts in control
mice, whereas Ki67+ proliferating cells were nearly absent in multiple crypts of
RBP-JΔIEC mice (Fig. 7A, 7B). The lack of proliferating cells was
remarkable in the crypt areas with prominent goblet cell hyper-

FIGURE 6. A physical barrier is defective in the
colonic epithelium of RBP-JΔIEC mice. (A) Immuno-
fluorescence staining for TJs and AJs in the distal
colon of 12- to 14-wk-old SPF RBP-JΔIEC mice and
control RBP-JF/F littermates was performed using
mAbs against ZO-1 (upper panels) and E-cadherin
(lower panels). Nuclei were counterstained with DAPI
(blue). Scale bars, 50 μm. Data are representative of
three independent experiments. (B) The distal colon of
SPF RBP-JΔIEC mice and control RBP-JF/F littermates
was analyzed by TEM. Arrowheads indicate electron
dense structures. Representative photomicrographs
obtained from the analyses with three mice per group
are shown. Scale bars, 1 (upper panels) and 0.2 μm
(lower panels). (C) Colonic epithelial permeability was
examined in 12-wk-old SPF RBP-JΔIEC mice and
control RBP-JF/F littermates by measuring FITC fluo-
rescence in blood serum at 1 h after rectal adminis-
tration of FITC-dextran. Values are mean ± SD (n = 4). *p < 0.05 (Student t test).
Hes1 because of the absence of RBP-J. These data also raise the possibility that RBP-J^{ΔIEC} mice are defective in epithelial cell turnover. We therefore performed an in vivo EdU incorporation assay. For the quantification of the rate of colonic epithelial turnover, we counted the number of EdU⁺ cells per crypt at early (4 h after i.p. injection of EdU) and late (96 and 144 h after i.p. injection of EdU) phases of colonic turnover. Consistent with Ki67-staining data, the number of EdU⁺ cells was significantly reduced in the colonic epithelium of RBP-J^{ΔIEC} mice at early phase (Fig. 8A). Subsequently, upward migration of EdU-labeled cells was slower in multiple crypts of RBP-J^{ΔIEC} mice compared with those in RBP-J^{IEC} mice at late phases (Fig. 8B, 8C). Thus, ablation of epithelial Notch signaling results in impaired epithelial turnover, leading to the defects in the innate defense and the healing of intestinal epithelium.

Discussion

We have demonstrated that epithelial Notch signaling contributes to maintenance of the rapid epithelial cell turnover, whose breakdown leads to colonic inflammation caused by persistent bacterial colonization and impaired healing of inflamed mucosa. We observed that exposing RBP-J^{ΔIEC} mice to a CV environment predisposes them to more severe colitis mediated by Th17-dominant immune response. Antibiotic depletion of intestinal bacteria prevented the inflammatory response in RBP-J^{ΔIEC} mice. These observations imply that intestinal microbiota play a significant role in colitis development. The spontaneous colitis in RBP-J^{ΔIEC} mice resembles the disease observed in mice with IEC-specific deletion of protein O-fucosyltransferase 1 (Pofut1^{ΔIEC} mice) (33). Because Pofut1 mediates O-fucosylation of Notch, which is required for ligand-binding activity (34), the ablation of Pofut1 results in defective Notch signaling, leading to goblet cell hyperplasia. Pofut1^{ΔIEC} mice develop spontaneous colitis as late as 9 mo after birth. The colitis in Pofut1^{ΔIEC} mice was at least partially explained by an alternation in the intestinal microbiota, particularly the accumulation of spiral-shaped bacteria in the colonic crypts. By contrast, we did not observe accumulation of the spiral-shaped bacteria in RBP-J^{ΔIEC} mice at any age; moreover, the composition of commensal bacteria was comparable between RBP-J^{ΔIEC} mice and control littermates. Thus, colitis development in RBP-J^{ΔIEC} mice is unlikely due to any major alternations in the intestinal microbiota. The chronic inflammatory response in these mice most likely arises from the aberrant bacterial translocation into the colonic mucosa caused by retarded epithelial turnover.

IEC barrier dysfunction has been implicated in increasing the risk for inflammatory disorders in the gut (22). Likewise, RBP-J^{ΔIEC} mice displayed abnormal bacterial translocation into the colonic mucosa. Under normal physiological conditions, secretory lineages of IECs express Notch ligands on their cell surface and activate Notch signaling in juxtaposing cells to inhibit their differentiation into secretory cell lineages. Because of this lateral inhibition, secretory cells such as goblet cells are not normally found adjacent to each other (35). Goblet cells are able to form functional TJs with absorptive enterocytes, although TJs formed between absorptive cells are different from those formed between goblet cells and absorptive enterocytes in terms of the number of TJ strands and the depth of TJ formation (36, 37). Malfunction of this lateral inhibition caused by RBP-J⁻deficiency allows unusual differentiation of goblet cells that are now juxtaposed, probably causing the formation of TJs between goblet cells that are functionally distinct from those established between goblet cells and absorptive enterocytes. In support of this notion, RBP-J^{ΔIEC} mice displayed increased permeability to rectally administrated FITC-labeled dextran, even though TEM analysis demonstrated that
The expression of p27Kip1 is restricted at the villi and not the crypts. Bars, 200 μm. At each time point, three mice per group were analyzed, and representative staining data are shown. For quantification analysis, 20 crypts per mouse are randomly selected, and the number of EdU+ cells per crypts was counted. **p < 0.01 (Mann–Whitney U test).

