Natural IgM in Immune Equilibrium and Harnessing Their Therapeutic Potential

Srini V. Kaveri, Gregg J. Silverman and Jagadeesh Bayry

J Immunol 2012; 188:939-945; doi: 10.4049/jimmunol.1102107
http://www.jimmunol.org/content/188/3/939

References
This article cites 87 articles, 38 of which you can access for free at:
http://www.jimmunol.org/content/188/3/939.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Natural IgM in Immune Equilibrium and Harnessing Their Therapeutic Potential

Srini V. Kaveri,*†‡§ Gregg J. Silverman,* and Jagadeesh Bayry*,†‡§

Natural IgM Abs are the constitutively secreted products of B1 cells (CD5+ in mice and CD20−CD27−CD43+CD70+ in humans) that have important and diverse roles in health and disease. Whereas the role of natural IgM as the first line of defense for protection against invading microbes has been extensively investigated, more recent reports have highlighted their potential roles in the maintenance of tissue homeostasis via clearance of apoptotic and altered cells through complement-dependent mechanisms, inhibition of inflammation, removal of misfolded proteins, and regulation of pathogenic autoantibody-producing B cells. These observations have provided the theoretical underpinnings for efforts that currently seek to harness the untapped therapeutic potential of natural IgM either by boosting in vivo natural IgM production or via therapeutic infusions of monoclonal and polyclonal IgM preparations. The Journal of Immunology, 2012, 188: 939–945.

Cooperation between innate and adaptive immune compartments reinforces host protection from invading pathogens while maintaining an immunologic tolerance toward self. Igs or Abs, the product of B cells, are some of the essential components of the immune system and are divided into five isotypes, namely IgG, IgM, IgA, IgE, and IgD. Well established as effector molecules of the adaptive compartment, Igs also participate as links or organizing factors in health and disease. Whereas the role of IgM is to provide the theoretical underpinnings for efforts that currently seek to harness the untapped therapeutic potential of natural IgM either by boosting in vivo natural IgM production or via therapeutic infusions of monoclonal and polyclonal IgM preparations.

Properties of IgM

IgM isotype represents one of the major Ig classes in the body. IgM is also the earliest type of membrane-associated Ig expressed during B cell ontogeny and as secreted Abs during Ag-specific immune responses. Although the molecular mass of a monomeric IgM is 190 kDa, circulating IgM exists more frequently as a pentamer or sometimes even as a hexamer, which can convey increased avidity for the binding of an Ag. Pentameric IgM is generally associated with a J chain to form a macromolecule of ~970 kDa. In healthy adults, circulating human polyclonal IgM is generally present at ~1 to 2 mg/ml of blood, with a t1/2 of ~5 d. Although IgM are often potent activators of the classical pathway of complement, there are great variations in the properties of different IgM-secreting B cell clones, even when they share the same fine binding specificity.

IgM is known to bind to two receptors: FcR/μR and the polymeric Ig receptor (3, 4). However, these receptors are not solely specific for IgM and can also recognize IgA. CD22, an inhibitory coreceptor on B cells, can also act as receptor for the glycoconjugates on soluble IgM through its sialoprotein-binding domain (5). In addition, TOSO/FAIM3, regulator of Fas-induced apoptosis, was identified as a high-affinity FcR specific for IgM (6, 7).

TOSO is a transmembrane protein of ~60 kDa expressed predominantly by lymphocytes, and in contrast to its name, it has no antiapoptotic functions. However, the binding of IgM, in particular the multimeric form of IgM, to TOSO would facilitate B and T cell cooperation, complement activation, and enhanced Ab-dependent cell-mediated cytotoxicity. TOSO recognizes the Fc portion of pentameric IgM with high affinity (~10 nM). The multimeric form of IgM seems to be critical for this binding, as higher concentrations (>100-fold) are required for binding of IgM monomers to TOSO (6, 7). Furthermore, TOSO may play a role in immune surveillance through internalization of IgM-bound immune complexes that contribute to B cell activation. As leukemic B cells generally express high levels of TOSO, this receptor represents an attractive therapeutic target for the delivery of IgM-conjugated drugs into these cancer cells (8).

Natural IgM

In health, the circulating IgM that arise without known immune exposure or vaccination are referred to as natural,
whereas immune IgM are generated in response to defined antigenic stimuli. In the mouse, natural IgM (nlgM) are often without N-region additions and are germline encoded or with minimal somatic hypermutations, although less is known about the human counterparts. nlgM can display polyreactivity, whereas some IgM clones have highly refined Ag-binding specificities. A major set of nlgM has been reported to recognize self-Ags (9).

B-1 cells

The B-lineage compartment includes at least three distinct mature B cell subsets: B-1 that constitutively produce nlgM, which is most often IgM, but can be IgG and IgA isotypes; marginal zone B cells that are responsible for responses to encapsulated organisms and their nonprotein Ags; and B-2 cells (also termed follicular B cells) that are recruited into T cell-dependent germinal centers upon protein Ag exposure (10, 11). In mice, B-1 cells that express CD5 have long been considered as the major source of nlgM (12, 13). Although identification of their human cellular counterpart has been controversial, in part because CD5 can be an activation marker on human B cells, a recent report identified CD20^CD27^CD43^ memory B cells as the human B-1 cell equivalent. These cells are distinct from CD20^CD27^CD43^- activated memory B and CD20^CD27^-CD43^- naive B cells, as B-1 cells do not display the activation markers CD69 and CD70 (14). B-1 cells are also characterized by their ability to efficiently present Ags and can provide potent signaling to T cells in the absence of specific antigenic stimulus (14–16). Compared to B-2 cells that are susceptible to BCR-mediated negative selection due to activation-induced apoptotic death, B-1 cells are resistant to strong BCR-mediated signaling (14, 17). B-1 cells also have a special ability for self-renewal, and there is also constant addition to the peripheral B-1 repertoire from newly generated cells from the bone marrow that ensures the continuous production of nlgM throughout life (18–21).

The functional contributions of B-1 cells are intertwined in the tight regulation of their trafficking between different lymphoid compartments. B-1 cells migrate from the bone marrow and into the peritoneal cavity as they follow gradients of CXCL13, and CXCL13-deficient mice have reduced levels of peritoneal B-1 cells (22, 23). Stimulation with certain cytokines, or by infectious agent-derived ligands that bear the pathogen-associated molecular patterns (PAMPs), recognized by innate immune receptors, such as TLRs, can activate peritoneal B-1 cells. This process can also induce expression of the chemokine receptor CCR7 that can mediate their relocalization to other lymphoid organs and differentiation into Ig-producing cells. However, the homing of B1 cells into the peritoneal cavity is not an absolute requirement for mounting T-independent Ab responses, as most of the production of IgM by murine B-1 cells occurs in the spleen (24).

nlgM in immune equilibrium

nlgM can play diverse roles in health and disease. Whereas extensive studies have documented the contribution of nlgM as a first line of defense from infection, more recent reports have highlighted their potential roles in the maintenance of immune homeostasis, prevention from overexuberant inflammatory responses, and development of autoimmune disease. Taken together, these observations have provided the theoretical underpinnings to justify efforts to exploit the untapped therapeutic potential of IgM.

nlgM mediate protection against infection. The first indication of the crucial role of nlgM in controlling infections came from the evidence that primary Ig-deficient patients display high susceptibility for recurrent infections from bacteria, viruses, fungi, and parasites. Indeed, reconstitution of immunodeficient animals with nlgM may itself restore the capacity of these animals to control certain infections. This may be explained by virtue of the ability of polyclonal nlgM to directly recognize a wide range of PAMPs that leads to inhibition of the growth of microbial pathogens through their direct neutralization or by activation of the classical complement pathway and amplification of humoral immune responses, leading to the enhanced phagocytosis of these opsonized pathogens (25–31) (Fig. 1).

Indeed, the roles of nlgM in preventing infections likely extend beyond simple neutralization and opsonization. Immediately after the entry of pathogens into the host, interactions with nlgM also set the stage for the shaping of the subsequent immune response. nlgM promote the recognition of pathogens by professional APCs, such as dendritic cells (DCs), and may guide the ensuing functional polarization of T cell responses, as well the isotype class-switch recombination of the induced B cell response and the induction long-term immune memory (32, 33). For example, following vaccination with Leishmania protein, nlgM can promote IL-4 secretion by CD11b^CD11c^ phagocytes (29, 34). These results indicate that formation of complexes of antigenic ligands with nlgM could be one of the mechanisms responsible for the enhanced humoral immune responses induced by aluminum hydroxide adjuvant-containing vaccines (29, 34). nlgM in immune tolerance and tissue homeostasis. nlgM may have first arisen to reinforce fundamental mechanisms for maintaining homeostasis. Apoptosis is an obligatory outcome of development, proliferation, and cell differentiation that continues throughout life. Every day, >10^11 cells in our body die by apoptosis, and therefore, apoptotic cell (AC) clearance is essential for tissue homeostasis. The innate immune system recognizes ACs when they become spontaneously decorated with solubile innate immune molecules, such as complement C1Q and mannose-binding lectin (MBL) that can recognize ligands specifically expressed on the AC membranes (ACMs). In fact, this specialized process of phagocytic clearance of ACs, termed efferocytosis, is one of the most fundamental functions of the innate immune system. In health, ACs do not pose an immediate threat to the host, as there are redundant means to ensure rapid and efficient cell corpse clearance by macrophages and DCs. To rationalize how defects in efferocytosis may be linked to autoimmune pathogenesis, Walport and colleagues (35) developed the waste disposal hypothesis. If efficiency of AC clearance is limited, there can be progression to secondary necrosis and the ensuing release of nuclear Ags such as high-mobility group box 1 protein, heat shock proteins, and other components of dying cells (danger-associated molecular patterns), which are believed to activate pattern-recognition receptors of innate immune cells that include TLRs, leading to inflammatory responses. Necrotic cells can also release autoantigens that can select pathogenic B and T cell clones, which together
can lead to the development of autoimmune disease in predisposed individuals.

Naive humans and mice have substantial levels of nIgM that recognize ACMs, whereas even higher levels can be induced by i.v. infusions of large numbers of ACs (36). The IgM-dependent deposition of C1Q of the classical complement pathway has a major role in determining the efficiency of clearance of apoptotic cells by phagocytic cells such as DCs and macrophage (MΦ), clearance of altered or malignant cells or misfolded proteins, and regulation of the disease-associated IgG and B cell clones. Further, nIgM can confer protection against invading pathogens through direct neutralization of pathogens, activation of classical complement pathways, opsonization of pathogens and phagocytosis by DC and MΦ, and transportation of Ags to lymphoid organs for initiating the immune responses by innate immune cells. In addition, nIgM can also regulate the immune response to pathogens by influencing the T cell polarization and B cell class-switch. B, B cell; C1Q, complement C1Q (classical complement pathway); T, T cell.

![Diagram of natural IgM](image)

FIGURE 1. Natural IgM in immune equilibrium. nIgM can maintain immune equilibrium by regulating the tissue homeostasis and acting as a first line of defense against invading microbes and shaping the subsequent immune response. The role of nIgM in tissue homeostasis implicates activation of complement pathways and helps to prevent inflammation, autoimmunity, and malignancy. These functions include recognition of apoptotic cell membranes and promoting the clearance of apoptotic cells by phagocytic cells such as DCs and macrophage (MΦ), clearance of altered or malignant cells or misfolded proteins, and regulation of the disease-associated IgG and B cell clones. Further, nIgM can confer protection against invading pathogens through direct neutralization of pathogens, activation of classical complement pathways, opsonization of pathogens and phagocytosis by DC and MΦ, and transportation of Ags to lymphoid organs for initiating the immune responses by innate immune cells. In addition, nIgM can also regulate the immune response to pathogens by influencing the T cell polarization and B cell class-switch. B, B cell; C1Q, complement C1Q (classical complement pathway); T, T cell.
opment of atherosclerosis is also associated with B cell activation, particularly manifested by enhanced production of natural anti-OxLDL IgM and IgG autoantibodies (42). Levels of circulating anti-OxLDL IgM Abs have been linked with reduced vascular risk in humans (48). Yet anti-OxLDL IgG Abs show variable association with vascular risk (49). In fact, in earlier studies, it was shown that bacterial vaccine that induced high levels of IgM anti-PC Abs arrested the progression of atherosclerosis in atherosclerosis-prone mice with cholesterol levels >1000 mg/dl (43). However, the underlying mechanisms were undefined, as infusions of such Abs did not affect the in vivo clearance of OxLDL (50).

It was nonetheless postulated that the balance of inflammation and accumulation of ACs in atherosclerosis is a direct reflection of the potential influences of specific types of atherosclerosis-associated autoantibodies. In an earlier report, it was shown that anti-PC IgM Abs blocked phagocytic clearance of ACs (44). However, as described below, subsequent studies showed that this T15 clonotypic PC-specific IgM enhances AC clearance in vivo and in vitro, in a complement-dependent fashion (36, 38) that may suggest that there was an insufficient level of early complement factors, such as C1q and MBL, in the assays described in this earlier in vitro report (44).

Recent studies in murine models demonstrated that anti-ACM IgM directed against PC and MDA can have two major regulatory functions: 1) enhance clearance of ACs by phagocytes (termed efferocytosis) (36, 38); and 2) direct suppression of proinflammatory responses induced by agonists for TLR3, TLR4, TLR7, and TLR9 and likely many other innate pathways (38). However, it is not clear whether these two immunomodulatory functions are mediated through the same signaling pathway, as inhibition of AC phagocytosis does not necessarily inhibit the anti-inflammatory influences of AC interactions with DCs (51). Investigations of the inhibitory properties of the prototypic anti-PC IgM T15, which also recognizes ACs, did not decrease TLR transcript expression or induce TGF-β or IL-10 in DCs (38).

In well-characterized inducible murine models of inflammatory autoimmune diseases, collagen-induced arthritis and autoantibody-mediated arthritis, anti-ACM nlgM infusions (i.e., T15 IgM), but not isotype control or saline, protected from inflammatory arthritis (38). Also, recent observations in patients with the autoimmune disease systemic lupus erythematosus highlight the association of nlgM levels in protection against autoimmunity (52–54). For example, decreased levels of anti-PC IgM Abs are characteristic features of active lupus compared with disease in remission (52, 53). These studies suggest that some nlgM may serve as regulators of the innate immune system to help maintain homeostasis and, in certain cases, suppress the development of inflammatory and autoimmune diseases.

Another important role of nlgM in tissue homeostasis implicates clearance of altered or malignant cells via complement-dependent cell lysis and induction of apoptosis (55, 56). Many tumor-related epitopes are carbohydrate in nature and by themselves are poorly immunogenic, thereby rendering the formulation of effective active immunization approach a daunting task. Owing to their capacity in some cases to recognize the repetitive motifs of some carbohydrate Ags and with an increased avidity due to their polymeric structure, nlgM may provide an endogenous therapeutic tool for enhancing certain types of immune responses (57, 58).

Deficiency in serum IgM may predispose to the development of IgG autoantibodies, suggesting that nlgM contribute to the suppression of disease-associated IgG autoantibody production (59) (Fig. 1). It has also been argued that the protective effect of IgM may at times involve anti-idiotypic (i.e., targeting of the Ag receptors of some clonally related lymphocytes) downregulation of some autoimmune responses or result from the induction by some IgM anti-idiotypic Abs of apoptotic death of pathogenic B cell clones or the selection of other protective B cell subsets (60–62). The maintenance of tissue homeostasis by nlgM may also involve the enhanced clearance of misfolded proteins, which could have clinical implications for conditions like Alzheimer’s disease in which pathogenesis results from the deposition of misfolded proteins such as β-amyloid plaques in the brain. Relevant to this hypothesis, IgM Abs have been shown to recognize and hydrolyze β-amyloid proteins (63).

How can we boost natural IgM in vivo?

In recent reports, several strategies have been described for boosting of nlgM levels. Following splenectomy or thermal injury, patients often develop a selective loss of circulating IgM and display an associated heightened susceptibility to certain types of infections. While in health, nlgM is constitutively produced; there is extensive evidence that levels can be enhanced by a number of interventions. Experimental models suggest that exogenous administration of IL-18 can restore nlgM production and also strengthen the host defenses to infection (64, 65) (Fig. 2). Additional strategies to induce nlgM include: 1) parenteral administration of CpG, an unmethylated, oligodeoxynucleotide PAMP that activates B cells via TLR9; 2) use of mimetic peptides derived from random in silico screening of peptides that mimic poorly immunogenic nonprotein Ags; 3) immunization with PC-containing Ags that are also a dominant type of phospholipid-related neodeterminant on ACMs and OxLDL; 4) pneumococcal vaccination that exploits the molecular mimicry among the PC moieties of microbial cell-wall polysaccharide, unfractionated OxLDL, and ACs; and 5) injection of internal-image bearing anti-idiotypic Abs (43, 66–70). Indeed, idiotype vaccination strategies that boost IgM and IgG

FIGURE 2. Means to harness therapeutic potential of natural IgM.
levels against NeuGcGM3 ganglioside Ags have also shown promising results in early clinical trials (71, 72).

Harnessing therapeutic potential of natural IgM

Use of IgM-enriched therapeutic preparations. As normal human plasma contains a substantial amount of nIgM, it may be practical and economically viable to harness therapeutic potential of these IgM through the generation of therapeutic preparations in a manner analogous to i.v. Ig that is now extensively used for the treatment of a wide range of pathological conditions (73, 74) (Fig. 2). Indeed, an IgM-enriched Ig preparation, pentaglobin, contains 12% IgM, and this has been successfully used for treating infections associated with sepsis in patients, as well as transplant rejection, and for certain inflammatory conditions in experimental models (75–78). Such preparations may also provide benefits to combat infections that arise in patients with autoimmune disease (79). This preparation likely benefits from enrichment for a common type of VH4-34–encoded nIgM Ab that has specific high binding capacity for microbial LPS (80), a factor implicated in infection-induced cardiovascular collapse.

Similarly, a pilot preparation of pooled polyreactive normal IgM that contains >90% i.v. IgM (IVIgM) was generated from plasma of >2500 healthy donors. Such IVIgM also contains anti-idiotypic Abs that recognize disease-associated IgG-autoantibodies from patients with a diverse range of autoimmune diseases, and this IVIgM can inhibit in vitro the activities of these IgG-autoantibodies (81). Furthermore, the in vivo therapeutic efficacy of IVIgM was confirmed in complement-dependent inflammatory conditions and in experimental models of uveitis, myasthenia gravis, and multiple sclerosis (77, 81–84). While exploring the mechanisms for such protection, it was found that IVIgM can induce the apoptosis of mononuclear cells, suppress the functions of T cells and also prevent the activation of the complement cascade under inflammatory conditions (77, 85, 86).

Use of monoclonal IgM Abs. Promising results obtained with polyclonal nIgM prompted the identification and use of monoclonal nIgM Abs in experimental autoimmune diseases in mice (Fig. 2). Two such mAbs (either derived from serum or generated by recombinant approach), IgM22 and IgM46, have provided protection against Thelier’s murine encephalomyelitis virus-induced chronic progressive demyelinating disease and lysolecithin-induced demyelination in mice by promoting remyelination (83, 84, 87, 88) and are potential candidates for therapeutic trials.

Conclusions

Although the therapeutic opportunities of nIgM appear vast, so far the promise of clinical utility has been evaluated in only a small range of diseases. Several different approaches to nIgM-based therapy are being considered for suitability for clinical trials. A natural human mAb, IgM22, that binds to oligodendrocytes and promotes their remyelination will soon complete primate toxicology testing prior to submission for Food and Drug Administration approval (M. Rodriguez, personal communication). Interestingly, anti-idiotype–based approaches that boost IgM Ab directed against NeuGcGM3 ganglioside in vivo have also recently reached phase III clinical trials for the treatment of metastatic breast cancer (71).

One of the main reasons for the slow progress in translating the basic research findings on nIgM to clinical application is the issue inherent to the nature of the molecules themselves. The existence of IgM in either monomeric or pentameric forms presents a dilemma regarding the identification of the form of the therapeutic molecule that will achieve the most attractive profiles for efficacy, tolerability, and safety. The pentameric form poses further potential challenges regarding the stability of such manufactured IgM-based therapeutics. Similar to IgG, the glycosylation pattern of IgM can also play a critical role in its effector functions, and μ C region–associated high mannose glycoconjugates can mediate the recruitment of MBL, which can enhance the clearance of ACs (36), whereas in other settings, this may instead trigger downstream complement activation and associated undesirable complications. Hence, the specialized effector functions of IgM can provide clinical opportunities but also pose challenges for the purification of well-characterized homogeneous preparations that are required for therapeutic applications.

As for monoclonal IgM, identification of the most relevant and specific molecular targets and then optimizing production at an industrial scale are all likely to be technically challenging and time-consuming. Further, depending on the molecular targets, each particular monoclonal IgM may have a limited range of clinical indications. For these reasons, pooled polyclonal IgM may present clear advantages, as the plasma fractionation industry is well suited for these manufacturing challenges. In fact, an Ig preparation containing 12% pooled IgM is currently used for the treatment of patients with sepsis (75, 76). Early results from pilot IVIgM preparations containing ~90% IgM have also shown immunomodulatory potential in experimental models of autoimmune and inflammatory diseases (77, 81–84). In the future, data from planned investigations should provide insights into the ideal concentration of IgM in the Ig preparations that strikes the optimal balance between therapeutic efficacy and minimal adverse reactions. IgM-containing Ig preparations may also be used as supplemental therapy for patients who are treated with agents that induce B cell and Ig depletion or other immunosuppressive regimens that can be associated with increased susceptibility to infection.

Acknowledgments

We thank Peter Spaeth for critical comments. We were limited in the number of references we could cite, but acknowledge that numerous other key contributions were not included due to space limitations.

Disclosures

The authors have no financial conflicts of interest.

References

