B Cell-Derived IL-10 Does Not Regulate Spontaneous Systemic Autoimmunity in MRL.Fas<sup>lpr</sup> Mice

Lino L. Teichmann, Michael Kashgarian, Casey T. Weaver, Axel Roers, Werner Müller and Mark J. Shlomchik

*J Immunol* 2012; 188:678-685; Prepublished online 9 December 2011; doi: 10.4049/jimmunol.1102456

http://www.jimmunol.org/content/188/2/678

Supplementary Material

http://www.jimmunol.org/content/suppl/2011/12/09/jimmunol.1102456.DC1

References

This article cites 46 articles, 24 of which you can access for free at:
http://www.jimmunol.org/content/188/2/678.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts

*The Journal of Immunology* is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852
Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved.
Print ISSN: 0022-1767 Online ISSN: 1550-6606.
B Cell-Derived IL-10 Does Not Regulate Spontaneous Systemic Autoimmunity in MRL.Fas\textsuperscript{bp} Mice

Lino L. Teichmann,\textsuperscript{*} Michael Kashgarian,\textsuperscript{†} Casey T. Weaver,\textsuperscript{‡} Axel Roers,\textsuperscript{§} Werner Müller,\textsuperscript{‡} and Mark J. Shlomchik\textsuperscript{*}\textsuperscript{,}\

B cells contribute to the pathogenesis of chronic autoimmune disorders, like systemic lupus erythematosus (SLE), via multiple effector functions. However, B cells are also implicated in regulating SLE and other autoimmune syndromes via release of IL-10. B cells secreting IL-10 were termed “Bregs” and were proposed as a separate subset of cells, a concept that remains controversial. The balance between pro- and anti-inflammatory effects could determine the success of B cell-targeted therapies for autoimmune disorders; therefore, it is pivotal to understand the significance of B cell-secreted IL-10 in spontaneous autoimmunity. By lineage-specific deletion of Il10 from B cells, we demonstrated that B cell-derived IL-10 is ineffective in suppressing the spontaneous activation of self-reactive B and T cells during lupus. Correspondingly, severity of organ disease and survival rates in mice harboring Il10-deficient B cells are unaltered. Genetic marking of cells that transcribe Il10 illustrated that the pool of IL-10–competent cells is dominated by CD4 T cells and macrophages. IL-10–competent cells of the B lineage are rare in vivo and, among them, short-lived plasmablasts have the highest frequency, suggesting an activation-driven, rather than lineage-driven, phenotype. Putative Breg phenotypic subsets, such as CD1d\textsuperscript{hi}CD5\textsuperscript{+} and CD21\textsuperscript{hi}CD23\textsuperscript{hi} B cells, are not enriched in IL-10–secreting B cells. Further, the adoptive transfer of IL-10–sufficient B cells, but not IL-10–deficient B cells, ameliorated disease in collagen-induced arthritis and an intestinal inflammation model (5, 6). B cell subsets with phenotypes such as CD1d\textsuperscript{hi}CD5\textsuperscript{+} (7), CD21\textsuperscript{hi}CD23\textsuperscript{hi} (akin to transitional type 2 [T2] B cells) (8), or CD23\textsuperscript{−}CD21\textsuperscript{hi} (marginal zone [MZ] B cells) (9) have been found enriched in IL-10–B cells. Because of the causal association between IL-10 secretion and B cell regulatory function, CD1d\textsuperscript{hi}CD5\textsuperscript{+} B cells even have been labeled as “B10” cells (7). Recently, expression of T cell Ig domain and mucin domain protein 1 was described to identify IL-10–producing B cells across diverse B cell phenotypes (10).

IL–10–secreting B cells have mainly been studied in infections and autoimmune syndromes induced by immunization, such as EAE, collagen-induced arthritis, and adjuvant-induced arthritis (AIA) (4, 5, 11). Recently, however, B10 cells were suggested to be protective in NZB/W F\textsubscript{1} mice, a mouse model of spontaneous lupus-like disease with polygenic inheritance (12, 13). This is of particular importance, because such disease models are strongly reflective of human autoimmune conditions, and several B cell-targeted therapies are being investigated for SLE, including the recently approved anti-BAFF Ab, belimumab. Importantly, in patients with autoimmune diseases, IL-10′ B cells have been identified that can inhibit TNF-α production by monocytes in vitro (14). Hence, nonspecific B cell-directed therapies might be a double-edged sword.

However, there is no direct evidence of a role for IL-10′ B cells in spontaneous autoimmune syndromes, such as lupus. Rather, data supporting a role in spontaneous disease comes from therapeutic cell-transfer studies. Infusion of anti-CD40–treated CD21\textsuperscript{hi}CD23\textsuperscript{hi} B cells into MRL.Fas\textsuperscript{bp} mice, another mouse model of polygenic spontaneous lupus-like disease, ameliorated lupus (15). Analogous results were obtained by transferring wild-type B10 cells into CD19\textsuperscript{−/−} NZB/W F\textsubscript{1} mice (13). Although such transfer studies demonstrated that IL-10–competent B cells have the potential to regulate disease, it is uncertain whether endogenous
IL-10+ B cells would naturally do so. Notably, depletion of B cells in 4-wk-old N2Z/B/W F1 mice accelerated the disease course (12). Yet, it was not clear whether this was a consequence of eliminating IL-10+ B cells, as suggested by the investigators, because all B cells, and not just IL-10+ B cells, were depleted. Thus, the function of native IL-10+ B cells in the context of this disease remains unknown.

In this study, we sought to determine the effect of IL-10 secreted by B cells on murine lupus and what aspects of the disease it modulates. To answer these questions, we depleted the Il10 gene in cells of the B lineage in the MRL.Fas<sup>lo</sup> model of lupus. IL-10 exerts a strong protective effect in this strain, as demonstrated by severely exacerbated disease in MRL.Fas<sup>lo</sup> mice globally lacking in IL-10 (16). The finding that transfer of IL-10–secreting CD21<sup>hi</sup> CD23<sup>hi</sup> B cells mitigates disease in MRL.Fas<sup>lo</sup> mice (15) further suggests that IL-10 derived from B cells restrains disease in this strain.

Surprisingly, despite efficient Il10 gene deletion in the B cell lineage, we discerned no appreciable effect of B cell-derived IL-10 on anti-self B and T cell responses and, consequently, organ manifestations. To our knowledge, this work is the first direct genetic test of whether endogenous B cells via IL-10 really control a spontaneous chronic autoimmune disease. We concluded that, although artificially generated and infused IL-10–secreting B cells may be a useful cellular therapy (13, 15), the importance of endogenous regulatory B cells (Bregs) may have been overestimated in lupus and possibly other spontaneous chronic autoimmune syndromes.

Materials and Methods

Mice

CD19-Cre C57BL/6 mice (17) were backcrossed to the MRL-MpJ-Fas<sup>lo</sup> 2J strain for 10 generations. Il10<sup>b/b</sup> (18) and Il20R<sup>b/b</sup> (19) C57BL/6 mice were backcrossed to MRL-MpJ-Fas<sup>lo</sup>/J mice eight times. MRL-MpJ-Fas<sup>lo</sup>/J and MRL-MpJ-Fas<sup>lo</sup> mice were obtained from The Jackson Laboratory. Homozygosity for the Fas<sup>b/b</sup> mutation was verified by PCR. CD19-Cre MRL.Fas<sup>lo</sup> mice were intercrossed with Il10<sup>fl/wt</sup> mice. CD19-Cre Il10<sup>fl/wt</sup> MRL.Fas<sup>lo</sup> mice were then crossed with Il10<sup>fl/fl</sup> MRL.Fas<sup>lo</sup> animals. To generate mice for the experiments, offspring CD19-Cre Il10<sup>fl/fl</sup> and Il10<sup>fl/wt</sup> MRL.Fas<sup>lo</sup> mice were interbred. Thus, mice in those two groups were littermates. Analogously, offspring CD19-Cre and wild-type mice were used to expand those two groups. Animals were analyzed at 16 wk of age, if not stated otherwise. Animals were maintained under specific-pathogen-free conditions and handled according to protocols approved by the Yale Institutional Animal Care and Use Committee.

Quantitative PCR

For quantitation of genomic Il10 exon 1, DNA was extracted from FACS-purified cells, and quantitative PCR was performed with the Agilent Brilliant II SYBR Green PCR kit. Il10 primers were forward 5’-GCTCTAATGCTGAGTATGCA-3’ and reverse 5’-GAGCATTGTCGTAATG-3’. The amount of Il10 in each sample was normalized to the unaffected gene Thb9 (forward 5’-ACTCCGACCTGTCCCAAT-3’ and reverse 5’-GAGCATTGTCGTAATG-3’). To calculate the amount of residual Il10 in various cell types of CD19-Cre Il10<sup>fl/fl</sup> mice, genomic DNA of the same cell type from Il10<sup>fl/wt</sup> mice was used as undeleted control. Mice were 10 wk old. Samples were run on a Stratagene MX3000P instrument.

Flow cytometry

Surface staining was performed in ice-cold PBS with 3% calf serum in the presence of FcR blocking Ab 2.4G2. Ab clones used for surface staining were anti-CD19 (1D3), anti-CD21/35 (7G6), anti-CD22 (Cy34.1), anti-CD23 (B3B4), anti-CD25 (PC61), anti-CD44 (1M7), anti-CD90.1 (1A14), anti-CD93 (AA4.1), anti-CD138 (28-1-2), anti-F4/80 (BM8), anti-–I-A/I-E (MS/114), anti-IgG1 (AMS15), anti-IgM (RS1.1), anti-Ly6G/6C (RB6-8C5), and anti–TCR-β (H57-597). Intracellular staining was performed using the BD Cytofix/Cytoperm and Perm/Wash buffers or, for intracellular Foxp3 staining, the eBioscience Foxp3 staining buffer set. For intracellular cyto-
plasmacytoid dendritic cells. Consistent with this, supernatants of sorted B cells from B-IL10−/− and IL10fl/fl mice cultured in the presence of TLR agonists had 10-fold lower IL-10 concentrations than did those from control mice (Supplemental Fig. 1). Thus, B-IL10−/− MRL.Faslpr mice are a suitable tool to investigate the function of IL-10-secreting B cells in systemic autoimmunity.

**Deficiency for IL-10 in B cells does not exacerbate organ disease**

Glomerulonephritis and interstitial nephritis in MRL.Faslpr mice are greatly enhanced by global deficiency for IL-10 (16). Severity of glomerulonephritis and interstitial nephritis in 16-wk-old B-IL10−/− and IL10fl/fl mice was similar, with glomeruli showing hypercellularity and collapsed capillary loops (Fig. 1A, 1B). Interstitial infiltrates were present in the perivascular, peritubular, and, occasionally, periglomerular region in kidneys of all mice (Fig. 1A). Accordingly, B-IL10−/− mice did not have more proteinuria than IL10fl/fl mice (Fig. 1C).

Cutaneous lupus manifestations in the MRL.Faslpr strain include facial rash, ulceration of the ears, and lesions of the back and neck. Dermatitis occurs more frequently in female mice than in males. The extent of dermatitis was not different between female B-IL10−/− and IL10fl/fl mice (Fig. 1D). Likewise, male mice in both groups had equally severe dermatitis (Supplemental Fig. 2).

MRL mice spontaneously develop splenomegaly and lymphadenopathy, as do many SLE patients during active disease. Measurement of spleen (Fig. 1E) and axillary lymph node (Fig. 1F) weight revealed no differences between B-IL10−/− and IL10fl/fl mice.

The inability of B cell-secreted IL-10 to modulate lupus-like organ manifestations prompted us to ask whether disruption of one copy of the CD19 gene by the CD19-Cre allele might influence disease expression, counteracting the effect of Il10 deletion in B cells. Hemizygosity of CD19 results in lower expression levels on B cells, possibly changing the threshold for BCR signaling. Therefore, we generated a cohort of CD19-Cre and wild-type MRL.Faslpr mice and performed a similar analysis as for B-IL10−/− and IL10fl/fl mice. We observed no significant alterations in nephritis, dermatitis, splenomegaly, or lymphadenopathy in CD19-Cre mice compared with wild-type animals (Supplemental Fig. 2). Thus, CD19 hemizygosity was not a confounding factor in our study. Taken together, the analysis demonstrated that B cell-specific Il10 deletion does not aggravate end-organ disease in lupus.

**B cell homeostasis is unperturbed in B-IL10−/− mice**

It was proposed that IL-10 regulates B cell differentiation and survival (22). We examined whether IL-10 secreted by B cells influences B cell homeostasis in an autocrine or paracrine manner. Splenic B cell numbers in B-IL10−/− mice were not different from those in IL10fl/fl mice (Fig. 2B). Absence of B cell-secreted IL-10 did not affect B cell subset frequencies (Fig. 2A, 2C, 2D). In particular, we did not observe significant changes in frequencies of T2 B cells (Fig. 2C) and B10 cells (Fig. 2D), both of which have been ascribed regulatory functions (7, 8). For T2 B cells, there was a downturn in frequency in B-IL10−/− mice (p = 0.11), which was also evident in absolute numbers/spleen; however, this did not reach statistical significance. Splenic T2 B cell numbers were 1.63 × 10^6 ± 0.23 × 10^6 (mean ± SEM) for IL10fl/fl mice and 1.15 × 10^6 ± 0.17 × 10^6 for B-IL10−/− mice (p = 0.10).

Autoantibody formation is not enhanced in mice lacking IL-10 in B cells

To determine whether Il10 expression in B cells regulates the humoral response against self in lupus, we used the HEp-2 cell-based immunofluorescent microscopy assay to detect serum anti-nuclear and anti-cytoplasmic IgG. Nine of 17 (52.9%) sera from B-IL10−/− mice demonstrated homogenous nuclear staining and equatorial staining of mitotic chromatin, corresponding to anti-chromatin (Fig. 3A, 3B). A similar fraction of sera from IL10fl/fl mice (6 of 13, 46.2%) produced these same staining patterns (Fig. 3A, 3B). A speckled nuclear staining pattern, corresponding to Abs that recognize RNA or RNA-associated proteins, was ob-

**FIGURE 1.** Deletion of Il10 in B cells does not exacerbate organ disease. A, Representative H&E-stained kidney sections showing glomeruli (upper panels) and perivascular infiltrates (lower panels, black arrows). Scale bars, 50 μm (upper panels); 2 mm (lower panels). Glomerular and interstitial renal disease (B, n = 12), proteinuria (C, n = 25), and dermatitis severity (D, n = 14) were scored for B-IL10−/− and IL10fl/fl mice. Each dot represents an individual mouse. Horizontal lines indicate the median. Weight of spleens (E) and the two largest axillary lymph nodes (F) (n = 25). Data in E and F are mean ± SEM. Data shown are combined from five experiments.
served for 41.2% of sera from B-IL10−/− animals and 30.8% of sera from IL10fl/fl animals. ELISAs for serum rheumatoid factor (Fig. 3C) and antinucleosome IgG (Fig. 3D) demonstrated similar concentrations in B-IL10−/− and IL10fl/fl mice.

In MRL.Faslpr mice and other lupus-prone mouse strains, autoantibodies derive, in large part, from short-lived plasmablasts in the spleen (23). As expected, B cell-specific IL-10 deficiency did not alter splenic plasmablast numbers as determined by flow cytometry (Fig. 3E). Similar evaluation of CD19-Cre and wild-type MRL.Fas+/− animals revealed no confounding effect of the CD19-Cre knock-in per se (Supplemental Fig. 3). We concluded that B cell-secreted IL-10 plays no role in B cell homeostasis, activation, plasmablast differentiation, or autoantibody formation.

**FIGURE 2.** B cell-derived IL-10 does not affect B cell homeostasis. A, Contour plots show gating of T2, MZ, and FOL I B cells after exclusion of IgM−IgD− cells and gating on CD19+ cells. B, Numbers of B cells (CD19+CD22+) per spleen (n = 15). C, Frequencies of T2, MZ, and FOL I B cells as a percentage of total B cells (n = 8). B cell subsets were gated as depicted in A. D, Frequency of B10 cells as a percentage of total B cells (n = 11). The contour plot illustrates how B10 cells were identified after gating on CD19+TCRβ− cells. Data shown are combined from three experiments (mean ± SEM).

T cells contribute considerably to the pathogenesis of SLE (24). B cells affect T cells in autoimmunity in Ab-independent ways that probably involve both Ag presentation and cytokine secretion (25, 26). We explored whether T cell autoimmunity is tempered by B cell-derived IL-10. T cell numbers in the spleen were unaltered in B-IL10−/− mice compared with IL10fl/fl mice (Fig. 4A). CD4 and CD8 staining did not reveal any changes in T cell composition in the absence of B cell-secreted IL-10 (Fig. 4B), including CD4+CD8+ cells that typically accumulate in Faslpr animals. In MRL. Fas+/− mice, there is a paucity of phenotypically naive (CD44−CD62L+) T cells; this compartment amounted to ∼4% of all CD4+ T cells in both B-IL10−/− and IL10fl/fl mice (Fig. 4C).
In myeloid cells, IL-10 inhibits the transcription of p35 and p40, the subunits of IL-12 (27). IL-12 release by dendritic cells and macrophages induces differentiation of Th and cytotoxic cells in IFN-γ-secreting effectors. Excessive production of IFN-γ has been linked to SLE pathogenesis (28). In MRL.Fas<sup>lo</sup> mice, deletion of Ifng or Ifnγr1 dramatically ameliorates disease (29, 30). To determine whether B cell-derived IL-10 suppresses differentiation of CD4<sup>+</sup> and CD8<sup>+</sup> T cells into IFN-γ-secreting effectors, we quantitated splenocytes for intracellular IFN-γ staining of PMA/ionomycin-stimulated splenocytes gated on CD4<sup>+</sup> (cytometric data. **p < 0.01, two-tailed Mann–Whitney U test. F. Frequency of Tregs (Foxp3<sup>+</sup>CD25<sup>+</sup>) as a percentage of CD4<sup>+</sup> T cells. A–F, n ≥ 15. Data shown are combined from three experiments (mean ± SEM).

**FIGURE 4.** B cell-derived IL-10 does not constrain T cell activation, expansion, or differentiation into effectors. A. T cell numbers in the spleen. B. Frequencies of CD4<sup>+</sup>, CD8<sup>+</sup>, CD4<sup>+</sup>CD8<sup>+</sup>, and double-negative T cells as a percentage of total T cells of IL10<sup>−/−</sup> (black bars) and B-IL10<sup>−/−</sup> (white bars) mice. C. CD44 and CD62L staining of CD4<sup>+</sup> T cells of IL10<sup>−/−</sup> (black bars) and B-IL10<sup>−/−</sup> (white bars) mice to identify naive (CD44<sup>+</sup>CD62L<sup>+</sup>), CD44<sup>+</sup>CD62L<sup>+</sup>, and CD44<sup>−</sup>CD62L<sup>+</sup> populations. Representative contour plots of gated CD44<sup>+</sup> T cells are shown (left panels). Intracellular IFN-γ staining of PMA/ionomycin-stimulated splenocytes gated on CD4<sup>+</sup> (D) or CD8<sup>+</sup> (E) T cells. Histograms to the left of the bar graphs show representative examples of flow cytometric data. **p < 0.01, two-tailed Mann–Whitney U test. F. Frequency of Tregs (Foxp3<sup>+</sup>CD25<sup>+</sup>) as a percentage of CD4<sup>+</sup> T cells. A–F, n ≥ 15. Data shown are combined from three experiments (mean ± SEM).

**FIGURE 5.** IL-10 produced by B cells confers no survival advantage. Kaplan–Meier survival curves of IL10<sup>−/−</sup> (n = 15; 9 females and 6 males) and B-IL10<sup>−/−</sup> (n = 20; 12 females and 8 males) mice.
Thy-1.1+ cells than in aged animals (Table II), indicating that Il10 transcription is induced over the disease course. Induction was particularly strong in CD4+Foxp3− T cells and macrophages. The fraction of Thy-1.1+ cells in the Treg compartment remained essentially unchanged (11.9% in aged mice versus 9.7% in young mice). In conclusion, T cells and macrophages are the predominant cell types that express Il10 in MRL.

Discussion

In this study, we addressed the role of IL-10 derived from endogenous, unmanipulated B cells in spontaneous chronic autoimmune disease. By deleting Il10 specifically in B cells in lupus-prone mice, we demonstrated that B cell-secreted IL-10 has no protective effect in lupus. This was reflected in equally severe organ disease, similar degrees of immune system activation, and indistinguishable survival rates in MRL.

Faslpr mice. On the contrary, IL-10–competent B cells (Thy-1.1+) are rare and are not restricted to a specific B cell phenotypic subset, although they are more common among plasmablasts.

Table II. Il10 transcription is strongly induced in CD4+Foxp3− T cells and macrophages during lupus

<table>
<thead>
<tr>
<th>Cell Population</th>
<th>16 Wk</th>
<th>5 Wk</th>
</tr>
</thead>
<tbody>
<tr>
<td>T cells</td>
<td>3.97</td>
<td>2.02</td>
</tr>
<tr>
<td>Tregs</td>
<td>11.92</td>
<td>9.74</td>
</tr>
<tr>
<td>CD4+Foxp3− T cells</td>
<td>15.81</td>
<td>0.89</td>
</tr>
<tr>
<td>CD8+ T cells</td>
<td>0.75</td>
<td>1.08</td>
</tr>
<tr>
<td>CD4−CD8− T cells</td>
<td>0.52</td>
<td>2.27</td>
</tr>
<tr>
<td>B cells</td>
<td>0.63</td>
<td>0.10</td>
</tr>
<tr>
<td>T2 B cells</td>
<td>0.30</td>
<td>nd</td>
</tr>
<tr>
<td>FOL I B cells</td>
<td>0.59</td>
<td>0.03</td>
</tr>
<tr>
<td>MZ B cells</td>
<td>0.61</td>
<td>nd</td>
</tr>
<tr>
<td>B10 cells</td>
<td>0.94</td>
<td>0.28</td>
</tr>
<tr>
<td>Plasmablasts</td>
<td>2.09</td>
<td>nd</td>
</tr>
<tr>
<td>Conventional dendritic cells</td>
<td>4.86</td>
<td>0.13</td>
</tr>
<tr>
<td>Plasmacytoid dendritic cells</td>
<td>0.55</td>
<td>0.87</td>
</tr>
<tr>
<td>Macrophages</td>
<td>12.96</td>
<td>0.53</td>
</tr>
<tr>
<td>Neutrophils</td>
<td>1.13</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Flow cytometry of spleen single-cell suspensions of 16- and 5-wk-old 10BiT MRL.

Faslpr mice (n = 4). The data for the 16-wk-old mice are the same as in the bar graph in Fig. 6A and are shown here in tabular form for easier comparison to the results obtained from 5-wk-old animals.

*In 5-wk-old 10BiT MRL.

Faslpr mice, plasmablasts cannot be reliably identified by flow cytometry because of their very low frequency.

nd, no detectable Thy-1.1 expression.
critical in pathogen responses and induced models of autoimmunity, whereas syndromes of chronic autoimmunity in humans, such as SLE, rheumatoid arthritis, type 1 diabetes, and multiple sclerosis, and mice may not be regulated by B cell-secreted IL-10, even if IL-10+ B cells might be therapeutic when infused.

It was described that CD24hiCD38hi B cells from healthy individuals suppress Th1 cell differentiation in vitro in a partially IL-10–dependent manner (38). In contrast, CD24hiCD38hi B cells from SLE patients lacked an equivalent suppressive capacity and expressed less IL-10 after stimulation. These results, although in vitro, are consistent with our findings that, in lupus, B cells do not bring their regulatory potential to bear.

To define the cells that produce IL-10 in the context of ongoing autoimmunity, we used 10BiT reporter mice on the MRL.Faspr background. B cells represented only a minor fraction of II10-transcribing cells and had low expression levels. Importantly, the vast majority of B cells with a CD11b+CD5+ or CD21hiCD23hi phenotype did not spontaneously synthesize IL-10 mRNA in vivo. From these data, we could not confirm that there are bona fide, discrete, IL-10–producing Breg subsets at least during active murine lupus. However, there was a considerable plasmablast population that transcribed II10. This argues that the stimuli that lead to the acquisition of IL-10 competence frequently induce plasmablast differentiation at the same time. Similar findings were reported for Vert-X C57BL/6 mice, another IL-10 reporter mouse, after challenge with different immunogens (35). It is unclear whether the B cells that gave rise to IL-10–competent plasmablasts had a specific phenotype. Because plasmablasts are short-lived, our results imply that, in lupus, IL-10–producing B cell progeny represent a transient activation state and not a stable cell lineage with homeostatic regulation.

Both resting (39, 40) and activated (3) B cells can suppress immune responses. TLR activation, particularly in combination with BCR ligation, and CD40 stimulation are signals that have repeatedly been found to induce IL-10 production in B cells (41). In MRL.Faspr mice, self-reactive B cells are spontaneously activated via TLR7/9 and BCR cross-linking by immune complexes (42). Further, CD40L-deficient MRL.Faspr mice do not develop nephritis or make rheumatoid factor and anti-dsDNA autoantibodies (43), arguing that CD40–CD40L interactions occur in this strain. Hence, it is reasonable to assume that B cells receive signals in vivo that are known to induce IL-10. However, chronic exposure to those signals might have a different outcome than acute stimulation, or other factors might impede a Breg phenotype in MRL.Faspr mice.

Recently, it was reported that deletion of all mature B cells, including B10 cells, in young preautoimmune NZB/W F1 mice accelerates disease onset and decreases survival time (12). CD19+/- NZB/W F1 mice had exacerbated nephritis, paralleled by a reduction of B10 cells (13). Both studies were interpreted to support a protective effect of B10 cells in lupus. However, in these studies, the total mature B cell population was either depleted or genetically impaired, but it was not directly tested whether the observed effects were actually caused by the lack of B10 cells or any other IL-10–producing B cell population. Many other mechanisms could explain the observed effects. Altered activation state of macrophages after uptake of Ab-coated B cells during the depletion process, indirect effects on the T cell compartment owing to lack of global B cell interactions, structural changes in lymphoid architecture, or skewing of residual or regenerating B cell compartments could all potentially account for these earlier findings.

Hypothetically, it is possible that B cells can use IL-10–independent mechanisms to suppress an immune response that is potent enough to compensate for II10 deficiency. However, in vivo evidence for such mechanisms has yet to be presented. Rather, in essentially all articles on Bregs in which a mechanism of regulation was demonstrated, IL-10 was implicated (4–7). Of greatest relevance to the present data, regulatory effects of infused B cells are clearly IL-10 dependent in MRL.Faspr mice (15). Even if Bregs were to possess inhibitory means apart from IL-10, published studies indicated that II10 transcription would at least identify most Bregs. Yet, the fraction of II10-transcribing B cells in MRL.Faspr mice was very small. Therefore, our data do not favor the interpretation that factors other than IL-10 account for suppressive effects of endogenous Bregs in lupus. In any case, it is important to emphasize that the previously implicated mechanism of B cell regulation in this instance was not validated when directly tested.

Our results, along with studies of B cell-targeted therapies in humans (1, 44) and mice (45, 46), suggested that B cells have a net pathogenic role in lupus that is not substantially counterbalanced by their IL-10–dependent regulatory functions. Using lupus-prone mice bearing an IL-10 reporter transgenic locus, we did not identify distinct B cell subsets that are enriched for II10 transcription (other than plasmablasts), calling into question the existence of discrete Breg populations, at least in the context of ongoing lupus. Our findings should precipitate a rethinking of whether endogenous B cells exist that regulate spontaneous chronic autoimmunity and emphasize the need to define the variables that govern Breg capacity in vivo.

Acknowledgments
We thank the Yale Animal Resources Center for outstanding animal husbandry.

Disclosures
The authors have no financial conflicts of interest.

References


SUPPLEMENTAL FIGURE S1. Efficient deletion of *Il10* in B cells of B-IL10−/− mice. B cells were purified by FACS from spleens of IL10fl/fl (black bars) and B-IL10−/− (white bars) mice and stimulated with 10 µg/ml LPS E. coli 0111:B4, 5 µg/ml CpG ODN 2395 or medium for 48 hrs. IL-10 was measured in the supernatants of B cell cultures by Luminex assay (n = 3). Data are from a single experiment (mean ± SEM).
SUPPLEMENTAL FIGURE S2. Organ disease in MRL.Fas<sup>hr</sup> mice is not affected by the CD19-Cre knock-in. 

A, Dermatitis severity was scored for male B-IL10<sup>−/−</sup> and IL10<sup>fl/fl</sup> mice (n ≥ 13). 

B and C, Proteinuria (B, n ≥ 14) and dermatitis severity (C, n = 5 — 9) were scored for wild type (WT) and CD19-Cre mice. Each dot represents an individual mouse. Horizontal lines indicate the median. 

D and E, Weight of spleens (D) and the two largest axillary lymph nodes (E) (n ≥ 14). Data are represented as mean ± SEM in bar graphs. Data shown are combined from 5 experiments.
SUPPLEMENTAL FIGURE S3. CD19-Cre does not confound analysis of the B cell system. A and B, Numbers of B cells (A) and plasmablasts (B) per spleen (n ≥ 6). C and D, HEp-2 ANA staining patterns classified as homogenous, speckled, or cytoplasmic (C) and mitotic chromatin staining classified as positive or negative (D) produced by sera from wild type (WT) and CD19-Cre mice. The numbers in the circles indicate the numbers of mice analyzed in each group. E and F, ELISAs showing serum concentrations of anti-IgG2a rheumatoid factor (E) and antinucleosome IgG (F) (n ≥ 10). B cell and plasmablast data are pooled from 3 experiments. HEp-2a assay and ELISAs were performed once with mouse sera prepared in 3 experiments. Data are represented as mean ± SEM in bar graphs.
SUPPLEMENTAL FIGURE S4. CD19-Cre has no effect on the anti-self T cell response. A, T cell numbers in the spleen. B, Frequencies of CD4⁺, CD8⁺, CD4⁺CD8⁺ and double-negative T cells as a percentage of total T cells of wild type (WT, black bars) and CD19-Cre (white bars) mice. C, CD44 and CD62L staining of CD4⁺ T cells of wild type (WT, black bars) and CD19-Cre (white bars) mice to identify naïve (CD44⁺CD62L⁺) and activated/memory populations. D and E, Intracellular IFN-γ staining of PMA/ionomycin-stimulated splenocytes gated on CD4⁺ (D) or CD8⁺ (E) T cells. F, Frequency of Tregs (Foxp3⁺CD25⁺) as a percentage of CD4⁺ T cells. A–F, n ≥ 6. Data shown are combined from 3 experiments (mean ± SEM).