Magnesium Decreases Inflammatory Cytokine Production: A Novel Innate Immunomodulatory Mechanism

Jun Sugimoto, Andrea M. Romani, Alice M. Valentin-Torres, Angel A. Luciano, Christina M. Ramirez Kitchen, Nicholas Funderburg, Sam Mesiano and Helene B. Bernstein

J Immunol 2012; 188:6338-6346; Prepublished online 18 May 2012; doi: 10.4049/jimmunol.1101765
http://www.jimmunol.org/content/188/12/6338
Magnesium Decreases Inflammatory Cytokine Production: A Novel Innate Immunomodulatory Mechanism

Jun Sugimoto,* Andrea M. Romani,† Alice M. Valentin-Torres,‡ Angel A. Luciano,§ Christina M. Ramirez Kitchen,§ Nicholas Funderburg,‡ Sam Mesiano,* and Helene B. Bernstein*‡

MgSO4 exposure before preterm birth is neuroprotective, reducing the risk of cerebral palsy and major motor dysfunction. Neonatal inflammatory cytokine levels correlate with neurologic outcome, leading us to assess the effect of MgSO4 on cytokine production in humans. We found reduced maternal TNF-α and IL-6 production following in vivo MgSO4 treatment. Short-term exposure to a clinically effective MgSO4 concentration in vitro substantially reduced the frequency of neonatal monocytes producing TNF-α and IL-6 under constitutive and TLR-stimulated conditions, decreasing cytokine gene and protein expression, without influencing cell viability or phagocytic function. In summary, MgSO4 reduced cytokine production in intrapartum women, term and preterm neonates, demonstrating effectiveness in those at risk for inflammation-associated adverse perinatal outcomes. By probing the mechanism of decreased cytokine production, we found that the immunomodulatory effect was mediated by magnesium and not the sulfate moiety, and it was reversible. Cellular magnesium content increased rapidly upon MgSO4 exposure, and reduced cytokine production occurred following stimulation with different TLR ligands as well as when magnesium was added after TLR stimulation, strongly suggesting that magnesium acts intracellularly. Magnesium increased basal Il10 levels, and upon TLR stimulation was associated with reduced NF-κB activation and nuclear localization. These findings establish a new paradigm for innate immunoregulation, whereby magnesium plays a critical regulatory role in NF-κB activation, cytokine production, and disease pathogenesis. The Journal of Immunology, 2012, 188: 6338–6346.

Magnesium sulfate is widely used in obstetrics for seizure prophylaxis in preeclampsia and as a tocolytic to arrest preterm labor. Despite widespread use, the mechanism by which MgSO4 exerts its action is poorly understood. Retrospective, clinical studies associated antepartum antenatal MgSO4 exposure with reduced risk of adverse neurologic outcome in premature newborns (1, 2), leading to randomized clinical trials (3–7); additionally, a recent review concluded that antenatal MgSO4 therapy significantly reduces the risk of cerebral palsy and substantial gross motor dysfunction (8). These findings raise a critical question, “How does MgSO4 mediate neuroprotection?”

Cerebral palsy is the most common cause of pediatric motor dysfunction (9). Multiple prospective studies strongly associate cerebral palsy with antepartum and intrapartum inflammation, whereas isolated birth asphyxia accounts for <10% of the cases (9, 10). These conclusions are supported by animal studies demonstrating that proinflammatory cytokines are neurotoxic, causing CNS damage (11), as well as by epidemiologic research correlating increased neonatal serum levels of inflammatory cytokines with adverse neurologic outcome (12–18). Preterm parturition is associated with a fetal inflammatory response syndrome defined by increased cord blood IL-6 levels (19), as well as increased levels of IL-1, IL-8, RANTES, TNF-α, and other inflammatory cytokines (20). Magnesium sulfate is used both as a tocolytic to arrest preterm labor and for seizure prophylaxis in women with preeclampsia, a condition sharing features with atherosclerosis, including endothelial dysfunction and systemic inflammation (21, 22). Inflammation is also linked to seizure activity. A very recent study linked TLR4 signaling to seizure activity; remarkably, seizure activity was ameliorated with TLR4 antagonists, supporting a mechanism of inflammation-induced seizure ictogenesis (23).

Inflammation plays a central role in the three conditions for which MgSO4 is used as therapy: 1) to treat preterm labor, 2) to prevent preeclamptic seizures, and 3) to reduce the development of cerebral palsy. This led us to hypothesize that MgSO4 exerts its neuroprotective effect by downregulating inflammatory cytokine production in neonates. Following in vivo MgSO4 treatment, we observed a reduced frequency of monocytes producing TNF-α and IL-6 in women receiving MgSO4 for clinical indications. Exposing peripheral and/or cord blood mononuclear cells in vitro to MgSO4 yielded similar results. MgSO4 exposure was accompanied by decreased cytokine and Il10 gene expression and diminished NF-κB activation; moreover, reduced cytokine production was observed following exposure to different TLR ligands, suggesting that magnesium has broad anti-inflammatory activity. Taken together, our data establish a new paradigm for innate immunoregulation whereby magnesium plays a critical regulatory role in NF-κB activation, cytokine production, and disease pathogenesis.

Copyright © 2012 by The American Association of Immunologists, Inc. 0022-1767/12$16.00

*Department of Reproductive Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106; †Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106; ‡Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106; Division of Neonatology, Department of Pediatrics, College of Medicine, University of South Florida, Tampa, FL 33606; and †Department of Biostatistics, School of Public Health, University of California at Los Angeles, Los Angeles, CA 90095

Received for publication June 15, 2011. Accepted for publication April 13, 2012.

H.B.B. received support from American Cancer Society Grant RSG-07-070-01-LIB.

Address correspondence and reprint requests to Dr. Helene B. Bernstein, Case Western Reserve University, Wood Building, W210D, 10900 Euclid Avenue, Cleveland, OH 44106-4960. E-mail address: hbb22@case.edu

The online version of this article contains supplemental material.

Abbreviations used in this article: CBMC, cord blood mononuclear cell; HAB, human serum from AB donors; ICS, intracellular cytokine staining; MALP, macrophage-activating lipopeptide; polyIC:C, polyinosinic-polycytidylic acid.

Copyright © 2012 by The American Association of Immunologists, Inc. 0022-1767/12$16.00
Materials and Methods

Abs and reagents

LPS (from Escherichia coli 0111:B4) and brefeldin A were from Sigma-Aldrich (St. Louis, MO). Macrophage-activating lipopeptide (MALP)-2 was purchased from Invemun. Polynosinic-polycytidyllic acid (poly(IC)) was provided by Dr. Aaron Weinberg of Case Western Reserve University. Fluorochrome-labeled Abs and reagents used were: FITC-annexin V, PE-anti-CD14, PE-Cy5 anti-CD163, and allophycocyanin-anti–TNF-α from BD Biosciences; FITC-anti-CD14, allophycocyanin-anti-CD4, PE-anti-CD56, and ECD-anti-CD19 were from Beckman Coulter, and PE-anti–IL-6 was from R&D Systems. Mouse anti-IκBα (LS35A5) was obtained from Cell Signaling Technology, mouse anti-tubulin (DM1A) was obtained from Sigma-Aldrich, and rabbit anti-TFID (TBP) (N-12) and NF-κB p65 (C-20) were obtained from Santa Cruz Biotechnology.

Cell isolation and culture

Anti-coagulated umbilical cord blood and peripheral blood were collected under protocols approved by the University Hospitals Institutional Review Board; all donors provided written informed consent. Mononuclear cells were isolated by density gradient centrifugation on lymphocyte separation medium (density, 1,077–1,080 g/mL) (Mediatech). Monocytes were purified by positive selection using anti-CD14 magnetic beads (Miltenyi Biotech), and cultures were maintained in RPMI 1640 (HyClone; magnesium concentration is 1 mg/dl or 0.4 mM) supplemented with 10% heat-inactivated fetal calf serum. Cyclohexamide (Sigma-Aldrich) was used at 100 g/mL; magnesium concentration is 1 mg/dl or 0.4 mM). The concentration is 1 mg/dl or 0.4 mM). THP-1 cells were obtained from the Skovronsky Laboratory and maintained in media described above, supplemented with 10% FCS. Cyclohexamide (Sigma-Aldrich) was used at 100 µg/mL to inhibit protein synthesis, whereas 10 µM 6-amino-4-(4-phenoxyphenylethylamino)quinazoline and 80 µM 4-methyl-N3-(3-phenylpropyl)benzene-1,2-diamine (JSH-23) (Calbiochem) were used to inhibit NF-κB activation.

TLR ligand stimulation

Mononuclear cells (1 × 10^6 cells/mL) were cultured in six-well plates and in some cases stimulated with 50 pg/mL LPS, 1–10 ng/mL MALP-2, or 0.1–1.0 µg/mL poly(IC) for 6 h. For the dose-response determination, 0–1 µg/mL LPS was used.

Intracellular cytokine staining

Two hours following the addition of TLR ligands, brefeldin A was added to inhibit cytokine secretion (1 µg/mL; Sigma-Aldrich). Cells were harvested and blocked with excess HAB (5% HAB in PBS). Cells were stained with FITC-conjugated anti-CD14 Ab. After fixation with 2% paraformaldehyde, cells were permeabilized using 1% Perm/Wash buffer (BD Biosciences), blocked with 5% HAB, followed by staining with intracellular Abs (ICS; allophycocyanin-conjugated anti–TNF-α, and PE-conjugated anti–IL-6, followed by flow cytometric analysis (BD FACSCalibur, FlowJo)). MNaN whole blood (1 mL) was stimulated by the direct addition of TLR ligands and brefeldin A as described above, followed by surface staining, fixation, and RBC lysis using BD FACS Lyse solution and ICS as described above.

Quantitative PCR

Total RNA was extracted using RNeasy (Qiagen) with Qiashredders according to the manufacturer’s protocol. Single-stranded cdNA was synthesized using TaqMan reverse transcription reagents (Applied Biosystems) in a thermal cycler. Quantitative PCR was carried out in an ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 min, followed by 40 cycles of 95°C for 15 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Prism sequence detection system. Cycling conditions were: 95°C for 10 s and 60°C for 1 min using the ABI Primer light system imager (Li-Cor Biosciences) using IRDye (Bio-Rad). The NuPAGE system (Invitrogen) was used to resolve and transfer proteins to a 4–12% Bis-Tris gel. Protein bands on polyvinylidene difluoride membranes were detected and quantified by Western blotting with the Odyssey system imager (Li-Cor Biosciences) using IRDye 800CW goat anti-mouse IgG and IRDye 800CW goat anti-rabbit IgG.

Magnesium determination

Total cellular Mg2+ content was assessed by atomic absorbance spectrophotometry in a PerkinElmer 3100 (PerkinElmer, Waltham, MA), as reported previously (25). Briefly, aliquots of cells (1 × 10^6) exposed to or not exposed to 2.5 mM extracellular Mg2+ were rapidly sedimented through a 0.5-mL oil layer (dibutyl phthalate/dioctyl phthalate 2:1 [v/v]) in microfuge tubes at 15,000 rpm for 5 min. The supernatant and oil layers were removed, and the cell pellets were digested overnight in 0.5 mL 10% HNO3. Following sedimentation of denatured protein at 14,000 rpm for 5 min in Microfuge tubes, the Mg2+ content of the acid extracts was measured by atomic absorbance spectrophotometry calibrated with appropriate standards.

Statistical analysis

Data are expressed and plotted as means ± standard deviations. A Wilcoxon signed-rank test was used to compare differences between related samples. A Student’s t test was used to compare differences between independent samples. A p < 0.05 is defined as statistically significant.

Results

In vivo MgSO4 therapy reduces monocyte-mediated cytokine production

To determine the in vivo effect of MgSO4 exposure, we assessed cytokine production in heparinized blood samples obtained from women immediately prior to initiating MgSO4 therapy and 6–12 h after beginning MgSO4 therapy for clinical indications. Cytokine production was assessed in untouched and LPS-challenged whole blood from the same donor via ICS. We found that in vivo MgSO4 treatment significantly decreased the frequency of maternal cells producing TNF-α and IL-6 (Fig. 1). The frequency of TNF-
α-producing cells was reduced by 25% \((p = 0.03, n = 7)\), and relative TNF-α expression as determined by the median fluorescence intensity was reduced by 27%. Induction of IL-6 production was reduced by \(\sim 20\% \,(p < 0.05, n = 7)\) as assessed by both a reduced cell frequency and median fluorescence intensity, and monocytes comprised most of the cytokine-producing cells.

Circulating monocytes comprise 10% of mononuclear cells, playing a key role in systemic inflammation and cytokine production and differentiating into macrophages when recruited into tissue. We next assessed whether in vitro exposure to MgSO₄ influences cytokine production. A dose-response curve measuring the effect of LPS on TNF-α production was established using PBMCs. LPS concentrations of 1 μg/ml are typically used for in vitro stimulation assays (26). However, in our assay conditions an LPS concentration of 50–100 pg/ml (5 × 10⁻⁵–10⁻⁴ μg/ml) generated \(\sim 50\%\) of the maximal response, permitting assessment of the influence of MgSO₄ on cytokine production. This LPS concentration is above the mean plasma LPS concentration (25 pg/ml) within normal, adult nonbacteremic individuals (27). Overall, these results demonstrate that in vivo MgSO₄ treatment decreases the frequency of cells producing inflammatory cytokines and establishes in vitro conditions for further analysis.

MgSO₄ reduces monocyte-mediated IL-6 and TNF-α production in neonates

Because neonatal serum cytokine levels are associated with the development of cerebral palsy, we assessed the influence of MgSO₄ exposure on cytokine production within CBMCs. Magnesium rapidly crosses the placenta, resulting in equivalent maternal and fetal levels, so CBMCs were cultured under standard, physiologic conditions or exposed to 6 mg/dl MgSO₄, a clinically effective maternal magnesium concentration. Magnesium supplementation significantly decreased the frequency of LPS-stimulated cord blood monocytes producing IL-6 and TNF-α (Fig. 2A); the results of multiple patients are shown in Fig. 2B \((p < 0.01, \text{ Wilcoxon signed-rank test})\). Magnesium supplementation also significantly decreased IL-6 and TNF-α expression by \(> 60\% \,(p < 0.05)\), as measured by median fluorescence intensity; these results were confirmed by measuring secreted cytokines via ELISA (data not shown). Cytokine production is much lower in unstimulated cells, but MgSO₄ also significantly reduced the frequency of neonatal monocytes producing TNF-α and IL-6 under constitutive or unstimulated conditions (Fig. 2C; \(p < 0.01\) and \(p < 0.05\), respectively; Wilcoxon signed-rank test).

To rule out the possibility that decreased cytokine production in monocytes was secondary to altered cell viability or function, we quantitated cell count and composition via flow cytometry after overnight culture under standard conditions or in the presence of magnesium supplementation. When examining T cell (CD4⁺ and CD8⁺), B cell, NK cell, and monocyte populations, no differences in cell counts or apoptosis (as assessed via annexin V staining) were found within individual donors in the presence and absence of MgSO₄ supplementation (data not shown). To evaluate an additional aspect of monocyte function, we assessed phagocytosis using FITC-labeled 0.1 and 0.5 μm latex beads and Alexa Fluor 488-conjugated albumin. No differences in fluid phase-type endocytosis or macropinocytosis were observed in the presence of magnesium supplementation (Supplemental Fig. 1), suggesting that monocyte function is intact.

FIGURE 1. MgSO₄ treatment in vivo and in vitro significantly decreases baseline and LPS-stimulated cytokine production. Heparinized maternal blood samples were obtained immediately prior (Pre Mg) and 6–12 h after the initiation of clinically indicated parenteral MgSO₄ treatment (Mg Tx). Unmanipulated whole blood was cultured in the presence or absence of LPS stimulation for 6 h with brefeldin A followed by ICS. The percentage of monocytes producing TNF-α (A) and IL-6 (B) are shown in the upper right quadrant of each dot plot; relative decreases in cytokine production for this patient are shown at the bottom of each section. Cumulatively, the frequency of monocytes producing TNF-α was reduced by 25% \((p = 0.03, n = 7)\), and the frequency of IL-6–producing monocytes was reduced by 20% \((p < 0.05, n = 7)\) following in vivo magnesium treatment. Similar reductions in cytokine expression were observed, as determined by the median fluorescence intensity within monocytes \((p < 0.05)\).
MgSO₄ reduces cytokine production in monocytes from preterm neonates

MgSO₄ has been demonstrated to have a neonatal neuroprotective effect when given to women at risk for preterm delivery (3–7). We observed that MgSO₄ supplementation decreases baseline and LPS-stimulated TNF-α and IL-6 production within CBMCs from preterm neonates who were not exposed to MgSO₄ intrapartum (Fig. 3). These findings suggest that the effect of MgSO₄ is not gestational age-dependent, and more importantly that MgSO₄ decreases cytokine production in the population at highest risk for adverse neurologic outcomes. One limitation of this assay is that MgSO₄ supplementation was provided in vitro, as ethical and technical constraints prevent obtaining human fetal blood samples prior to antepartum MgSO₄ treatment. Cumulatively, our results demonstrate that both in vivo and in vitro MgSO₄ exposure downregulates the production of cytokines associated with adverse neurologic outcomes under both constitutive and TLR ligand-stimulated conditions; moreover, MgSO₄ decreases cytokine production in patients at risk for these outcomes.

Decreased cytokine production is mediated by intracellular magnesium

To evaluate how MgSO₄ reduces cytokine production, we measured total cellular magnesium levels following MgSO₄ exposure, observing a rapid rise in cellular magnesium content. Within 1 h MgSO₄ supplementation (final concentration, 6 mg/dl or 2.5 mM), the cellular magnesium content increased and peaked at 88 nmol Mg²⁺/10⁶ cells, compared with a magnesium content of 24 nmol Mg²⁺/10⁶ in cells cultured in RPMI 1640/10% HAB (standard conditions, control). Because the possibility exists that magnesium functions extracellularly by decreasing LPS/TLR4 binding, we performed experiments where CBMCs were challenged with LPS for 15 min (to permit LPS/TLR4 binding) prior to MgSO₄ supplementation. Under these conditions cytokine production was decreased, supporting the concept that magnesium exerts its effect downstream of LPS/TLR binding (Fig. 4A; p < 0.05 for IL-6 and p < 0.01 for TNF-α). Taken together, these findings support the concept that magnesium rapidly influences cytokine production via an intracellular mechanism.

The specificity of magnesium in downregulating inflammatory cytokine production was assessed by exposing cells from a single donor to equimolar concentrations of MgSO₄, MgCl₂, or Na₂SO₄ followed by LPS stimulation. Supplementation with either MgCl₂ or MgSO₄ comparably reduced IL-6 (60–70%) and TNF-α (40–50%) production, whereas exposure to Na₂SO₄ did not decrease cytokine production, indicating that the magnesium moiety influences cytokine production (Fig. 4B; p < 0.01). Furthermore, these compounds served as osmotic controls. Hence, the ineffec-

FIGURE 2. MgSO₄ decreases LPS-stimulated cytokine production in neonates. (A) MgSO₄ supplementation decreases the percentage of stimulated monocytes producing TNF-α and IL-6. CBMCs cultured in RPMI 1640 (CTRL) or RPMI 1640 at a MgSO₄ concentration of 6 mg/dl (Mg Sup) were stimulated with 50 pg/ml LPS for 6 h with brefeldin A. Cells were stained with mAb CD14-FITC, permeabilized, stained with mAbs IL-6-PE, and TNF-α-allophycocyanin, followed by flow cytometric analysis. The percentage of monocytes (CD14⁺ cells) producing IL-6 or TNF-α is shown in the upper right corner of each plot, with monocytes comprising most of the cytokine-producing cells (>95%). MgSO₄ exposure significantly downregulates LPS-induced (B) and basal (C) cytokine production. The percentage of monocytes producing IL-6 or TNF-α is shown (n = 12, unique shapes delineate each individual), demonstrating that MgSO₄ supplementation consistently decreases cytokine production in CBMCs. Data were analyzed using a Wilcoxon signed-rank test.
tiveness of Na₂SO₄ at reducing cytokine production rules out an osmotic effect as a possible cause of altered cytokine production. Cumulatively, these data indicate that the immunomodulatory effect is mediated by magnesium and not the sulfate moiety of the compound and that magnesium functions intracellularly.

Magnesium reversibly regulates cytokine production via transcriptional regulation

To assess whether the effects of magnesium are reversible, cells were exposed (or not) to MgSO₄ for 2 h; cells were then washed and immediately challenged with LPS in the presence of control or magnesium-supplemented media. The effect of magnesium was reversible, because exposure prior to LPS challenge had minimal influence on the ability of cells to produce IL-6 and TNF-α (Fig. 5). These results are consistent with the swift rise and peak in cellular magnesium concentrations observed following MgSO₄ supplementation. By pursuing the mechanism of diminished cytokine production, cytokine gene expression within TLR-ligand stimulated cells exposed to MgSO₄ was assessed using real-time PCR (Fig. 6). At 2 and 4 h after LPS exposure there was a statistically significant decrease (*p < 0.05) in TNF-α and IL-6 mRNA levels within cells receiving MgSO₄ supplementation. These results indicate that MgSO₄ downregulates TNF-α and IL-6 production prior to transcription.

Magnesium decreases cytokine production by reducing NF-κB activation

The impact of MgSO₄ on NF-κB activation was evaluated using multiple independent methods. First, we assessed IkBα gene expression, as NF-κB activation leads to increased transcription of

FIGURE 4. MgSO₄ decreases cytokine production when added following LPS exposure, and decreased cytokine production is mediated by magnesium. *(A)* CBMCs were stimulated with LPS for 15 min prior to MgSO₄ exposure (15 min Post LPS) to permit LPS/TLR binding. Inhibition of cytokine production was observed (at levels similar to those seen when MgSO₄ and LPS are added simultaneously; n = 4) and compared with cells from the same donor not supplemented with magnesium. *(B)* CBMCs were stimulated with LPS alone, in the presence of MgSO₄ supplementation (2.5 mM), or with equimolar concentrations of related salts (MgCl₂ or Na₂SO₄). The percentage change in cytokine production for each salt was calculated based on ICS (n = 5, *p < 0.01); SEM is shown. Both MgCl₂ and MgSO₄ decrease TNF-α and IL-6 production compared with untreated cells, whereas Na₂SO₄ failed to decrease cytokine production.

FIGURE 5. MgSO₄ causes a reversible decrease in cytokine production. CBMCs were exposed or not (CTRL) to magnesium supplementation (Mg Sup) for 2 h. CBMCs were then washed and immediately challenged with LPS in the presence of control or magnesium-supplemented media. *(A)* Histogram overlays show IL-6 and TNF-α production under each of the four conditions; the condition in which Mg²⁺ was supplemented prior to and during LPS-stimulation is shaded gray. *(B)* Bar graph shows the percentage of neonatal monocytes producing either IL-6 (black) or TNF-α (gray) in the above histogram under each condition, illustrating that the effect of magnesium supplementation is reversible. Results are representative of three individual experiments.
MgSO₄ decreases IL-6 and TNF-α gene expression following LPS stimulation. CBMCs in the presence (Mg Sup) or absence (CTRL) of magnesium supplementation were stimulated with LPS; RNA was extracted and reverse transcribed at the time points shown. Analysis of real-time PCR, showing the relative abundance of mRNAs encoding for IL-6 and TNF-α normalized relative to a stably expressed housekeeping gene (Gus), is shown. To control for differences in RNA extraction and RT, PCR efficiency samples were run in triplicate; error bars (SEM) are shown. For IL-6 at 1, 2, and 4 h time points and TNF-α at the 2 and 4 h time points, p < 0.05. Data shown are representative of three individual experiments using different donors.

FIGURE 6. MgSO₄ decreases IL-6 and TNF-α gene expression following LPS stimulation. CBMCs in the presence (Mg Sup) or absence (CTRL) of magnesium supplementation were stimulated with LPS; RNA was extracted and reverse transcribed at the time points shown. Analysis of real-time PCR, showing the relative abundance of mRNAs encoding for IL-6 and TNF-α normalized relative to a stably expressed housekeeping gene (Gus), is shown. To control for differences in RNA extraction and RT, PCR efficiency samples were run in triplicate; error bars (SEM) are shown. For IL-6 at 1, 2, and 4 h time points and TNF-α at the 2 and 4 h time points, p < 0.05. Data shown are representative of three individual experiments using different donors.

Discussion

To our knowledge, this study shows for the first time that in vitro and in vivo exposure to a clinically effective MgSO₄ concentration (6 mg/dl) decreases constitutive and TLR-stimulated TNF-α and IL-6 production. Decreased cytokine production is observed in both adults and neonates and is mediated via increased constitutive IκBα levels and reduced NF-κB activation and nuclear localization. Our results define a novel immunomodulatory function for MgSO₄, whereby it regulates NF-κB activation, cytokine production, and limits systemic inflammation.

By exploring the mechanism of action of MgSO₄, we found that cellular magnesium content rapidly increased following MgSO₄ exposure, in accordance with clinical data indicating that MgSO₄ rapidly crosses the placenta, resulting in equivalent maternal and fetal concentrations. The anti-inflammatory effect was reversible,
mediated by magnesium and not the sulfate moiety of the compound, and reduced cytokine production was unrelated to osmotic changes. MgSO₄ exposure also decreased cytokine and IkBα gene expression, in addition to reducing phosphorylated NF-κB p65 levels and NF-κB nuclear localization following TLR4 stimulation, and decreased cytokine production was abrogated in the presence of NF-κB inhibitors, proving that MgSO₄ downregulates cytokine production in an NF-κB–dependent manner.

Using multiple TLR ligands, we further probed the breadth and mechanism of magnesium’s action. MgSO₄ supplementation reduced the percentage of monocytes producing TNF-α and IL-6 following TLR2/6 agonist exposure. Group B Streptococcus, Mycoplasma, and Ureaplasma express molecules recognized by TLRs 2 and 6 (28), demonstrating that our findings are applicable to pathogens prevalent within the clinical obstetrical setting. MgSO₄ also decreased cytokine production following TLR3 ligand exposure. TLR3 is expressed intracellularly, signaling via IKKε/IRF3, a MyD88-independent/Toll/IL-1R domain-containing adapter inducing IFN-β–dependent pathway. This result, combined with our observations that magnesium decreases cytokine production when added after LPS exposure and that cellular magnesium content increases following MgSO₄ exposure, persuasively indicates that magnesium acts within the cell.

NF-κB is a central regulator of inflammation-induced cytokine production and is linked to cancer, diabetes, autoimmune diseases, and is critical to the development of the adaptive immune response. TLR4 and TLR2/6 activate the classical NF-κB pathway, whereas TLR3 (TLR4 also has this capacity) utilizes a MyD88-independent/Toll/IL-1R domain-containing adapter inducing IFN-β–dependent pathway. Molecules shared by both pathways include IkBα and NF-κB. By evaluating IkBα in monocytes, we found that magnesium increases basal IkBα levels by ~25% without effecting IkBα gene expression. IkBα has a short half life secondary to its proline, glutamic acid, serine, and threonine domain, which is thought to be responsible for constitutive proteolytic degradation and protein turnover (30–32). Based on these findings, IkBα was quantitated in unstimulated cells treated with an inhibitor of protein synthesis prior to and during magnesium exposure. Magnesium enhanced preservation of IkBα levels in the absence of protein synthesis, suggesting that magnesium increases IkBα stability. This finding contrasts with observations in Hs294T cells whereby constitutive CXCL1 expression was associated with a shortened IkBα half life, without changes in IkBα mRNA levels (33); however, the overall conclusions demonstrating an inverse correlation between IkBα half life and cytokine production are analogous. Although these findings do not preclude the possibility that magnesium influences other mediators within the TLR signaling cascade, our results strongly suggest that

FIGURE 7. MgSO₄ influences NF-κB activation. (A) LPS-induced IkBα gene expression is decreased in the presence of magnesium supplementation. CBMCs were stimulated with 50 pg/ml LPS, and relative IkBα gene expression, normalized to a stably expressed housekeeping gene, was assessed using real-time PCR at various time points. Gray circles/dashed line delineate magnesium-supplemented samples; black squares/solid line delineate control samples; error bars indicate the SEM of triplicate samples. (B) Magnesium exposure decreases phosphorylated NF-κB p65 (S536) levels following TLR stimulation. CBMCs were stimulated for 30 min, lysed, and proteins resolved by SDS-PAGE followed by Western blotting. Proteins were identified with specific rabbit polyclonal Abs and detected via HRP-conjugated secondary Abs and electrochemiluminescence. Detection of β-actin demonstrates comparable protein loading; magnesium supplementation and LPS exposure are indicated at the bottom. (C) Magnesium reduces NF-κB p65 nuclear localization. Neonatal monocytes were stimulated with LPS for 30 min; nuclear extracts were prepared and analyzed via Western blotting using labeled Abs and an infrared imaging system (Odyssey; Li-Cor Biosciences). TFIIID quantitation was used as a protein loading control and the p65/TFIIID ratio, representing relative p65 abundance in the nucleus, is shown beneath the blot. Results are representative of three experiments.

FIGURE 8. MgSO₄ decreases cytokine production induced by other TLR ligands. CBMCs in the presence (Mg Sup) or absence (CTRL) of MgSO₄ supplementation were stimulated with (A) 1 ng/ml MALP-2 or (B) 1 µg/ml poly(I:C) and cytokine production was assessed via ICS. Magnesium decreased TNF-α and IL-6 production following either MALP-2 (Wilcoxon signed-rank test, n = 7) or poly(I:C) (Student t test, n = 3) stimulation; symbols identify paired samples from the same individual.
magnesium supplementation increases IκBα levels, leading to reduced NF-κB activation and cytokine production. These studies were initiated secondary to recent randomized, controlled clinical trials establishing that antepartum MgSO4 treatment reduces the risk of cerebral palsy and major motor dysfunction in preterm infants (3–8). Inflammatory cytokines are found within periventricular leukomalacia lesions (14, 34, 35); TNF-α and IL-1β exposure induce white matter glial cell death in animals (11); and epidemiologic studies associate increased neonatal serum TNF-α, IL-6, IL-8, IL-9, and RANTES levels with adverse neurologic outcomes (12–18). This knowledge led us to hypothesize that MgSO4 exerts its neuroprotective effect by downregulating inflammatory cytokine production. Our results support our hypothesis and correlate with the findings of clinical trials where MgSO4 treatment reduced the risk of cerebral palsy and major motor dysfunction in preterm infants (3–8). Importantly, we confirm the efficacy of MgSO4 at reducing inflammation in preterm neonates, the population at highest risk for the development of cerebral palsy.

MgSO4 has recently been shown to decrease maternal and fetal inflammation following LPS injection (36), whereas magnesium deficiency leads to cardiac dysfunction and inflammation, including increased TNF-α, IL-6, and IL-1 production in rats (37–39). MgSO4 also reduces inflammation-associated brain injury in fetal mice (40), supporting a link between magnesium, inflammation, and neurologic injury in rodents. In contrast, previous studies in humans have not found a correlation between magnesium levels and secreted cytokines (41, 42). These studies were limited by small samples sizes, measured serum cytokine levels in nonrandomized patients, or exposed diluted blood to a high LPS concentration. By using intracellular cytokine staining, we observed decreased cytokine production at low TLR ligand concentrations, where not all cells were induced to produce cytokines. In contrast, high TLR ligand concentrations abrogate the magnesium effect. These findings are consistent with clinical observations demonstrating that MgSO4 is not associated with increased maternal or neonatal mortality, particularly that secondary to infection (8).

In current obstetrical practice, MgSO4 is administered for seizure prophylaxis in pregnancies complicated by preeclampsia and as a tocolytic for preterm labor. The cytokines TNF-α and IL-6 are linked to both preterm birth and preeclampsia, and a recent study linked TLR4 signaling to seizure activity (23). In vivo MgSO4 exposure decreased inflammatory cytokine production, confirming clinical significance and leading us to conclude that magnesium’s functions include decreasing maternal and neonatal inflammation associated with preterm labor, preeclampsia, and the development of cerebral palsy. MgSO4 is safe and well tolerated, and our findings suggest that magnesium could be used therapeutically as a broad-spectrum anti-inflammatory agent.

Magnesium is the fourth most prevalent cation within the human body. However, >90% of total body magnesium is intracellular, compartmentalized within organelles, bound to protein, or complexed to ATP (43). Extracellular ionized magnesium is readily measurable, but intracellular magnesium, which is not measured clinically and does not correlate with extracellular magnesium levels (44), is the biologically relevant form. This limitation in our ability to accurately evaluate magnesium status has been a critical barrier to progress in understanding the prevalence and impact of magnesium deficiency. Published work also suggests that the “Western diet” contains inadequate magnesium (45), predisposing individuals to deficiency that could be exacerbated by pregnancy. Within the fetus magnesium accumulation occurs after 28 wk gestation (46, 47), leading us to speculate that preterm infants are magnesium deficient. Our observations that MgSO4 exposure increased cellular magnesium levels within CBMCs and decreased cytokine production within preterm neonatal monocytes supports this concept. However, additional studies to determine magnesium levels at birth and delineate cellular magnesium concentrations limiting basal inflammation are needed.

Demonstrating that magnesium influences human innate immune function challenges current paradigms regarding immunoregulation and the biologic function of magnesium. Likewise, a very recent study showed that magnesium influx is critical for appropriate TCR-mediated T cell activation (48). Our results showing that MgSO4 decreases cytokine production are both novel and clinically relevant, but not without precedent, as zinc deficiency increases systemic inflammation and mortality in a sepsis model, whereas zinc supplementation decreases the incidence of age-related macular degeneration (49–51). Zinc mediates its function, in part, by upregulating the zinc-finger protein A20 inhibiting TRAF-mediated NF-κB activation (51); we show that MgSO4 also decreases NF-κB activation. These findings expand our insight regarding micronutrients and molecular processes influencing immune function, potentially elucidating the mechanism by which MgSO4 mediates neuroprotection. Moreover, because maternal cytokine production is also reduced by MgSO4, our results could have far-reaching implications relevant to a wide range of inflammatory-mediated diseases, including the development of interventions inhibiting pathologic inflammation while leaving the immune system capable of responding appropriately.

Acknowledgments
We thank Method Duchon for critical reading of this manuscript, Joseph DiDonato for advice regarding IκBα studies, and members of the Skowronski, Karn, Canaday, and Carlin Laboratories for reagents and help at various stages of this project.

Disclosures
The authors have no financial conflicts of interest.
References

