Differential Effects of Denileukin Diftitox
IL-2 Immunotoxin on NK and Regulatory T
Cells in Nonhuman Primates

Yohei Yamada, Akihiro Aoyama, Georges Tocco, Svjetlan Boskovic, Ognjenka Nadazdin, Alessandro Alessandrini, Joren C. Madsen, A. Benedict Cosimi, Gilles Benichou and Tatsuo Kawai

J Immunol 2012; 188:6063-6070; Prepublished online 14 May 2012;
doi: 10.4049/jimmunol.1200656
http://www.jimmunol.org/content/188/12/6063

Supplementary Material
http://www.jimmunol.org/content/suppl/2012/05/14/jimmunol.1200656.DC1

References
This article cites 43 articles, 20 of which you can access for free at:
http://www.jimmunol.org/content/188/12/6063.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Differential Effects of Denileukin Diftitox IL-2 Immunotoxin on NK and Regulatory T Cells in Nonhuman Primates

Yohhei Yamada, Akihiro Aoyama, Georges Tocco, Svjetlan Boskovic, Ognjenka Nadazdin, Alessandro Alessandrini, Joren C. Madsen, A. Benedict Cosimi, Gilles Benichou, and Tatsuo Kawai

Denileukin diftitox (DD), a fusion protein comprising IL-2 and diphtheria toxin, was initially expected to enhance antitumor immunity by selectively eliminating regulatory T cells (Tregs) displaying the high-affinity IL-2R (α-β-γ trimers). Although DD was shown to deplete some Tregs in primates, its effects on NK cells (CD16+CD8+NKG2A+CD3γδ), which constitutively express the intermediate-affinity IL-2R (β-γ dimers) and play a critical role in antitumor immunity, are still unknown. To address this question, cynomolgus monkeys were injected i.v. with two doses of DD (8 or 18 mg/kg). This treatment resulted in a rapid, but short-term, reduction in detectable peripheral blood resting Tregs (CD4+CD45RA−Foxp3+ NKG2A−) and a transient increase in the number of activated Tregs (CD4+CD45RA−Foxp3high NKG2A−) followed by their partial depletions (50–60%). In contrast, all NK cells were deleted immediately and durably after DD administration. This difference was not due to a higher binding or internalization of DD by NK cells compared with Tregs. Coadministration of DD with IL-15, which binds to IL-2/15Rβ, alleviated NK cell depletion, whereas it did not affect Treg elimination. Taken together, these results show that DD exerts a potent cytotoxic effect on NK cells, a phenomenon that might impair its antitumoral properties. However, coadministration of IL-15 with DD could alleviate this problem by selectively protecting potentially oncolytic NK cells, while allowing the depletion of immunosuppressive Tregs in cancer patients. The Journal of Immunology, 2012, 188: 6063–6070.

Danileukin diftitox (DD) is a fusion protein composed of IL-2 and diphtheria toxin (DT), which was designed to kill cells expressing IL-2R. Because regulatory T cells (Tregs) constitutively express all three subunits of the high-affinity IL-2R (α, β, and γ), DD was expected to preferentially bind and deplete this T cell subset. Based upon this principle, DD has been administered to cancer patients to eliminate presumably immunosuppressive Tregs and to enhance antitumor immunity (1–5). DD treatment has been tested in patients exhibiting IL-2Ro cutaneous T cell lymphoma and other cancers, including renal cell carcinoma (6), melanoma (7), B cell non-Hodgkin lymphoma, and lung cancer (8–13). Limited antitumoral effects were observed in these patients, an outcome that has been attributed to incomplete and short-lasting Treg depletion (4, 14–16). However, an alternative hypothesis, that DD could also delete some effector immune cells and, thereby, impairs its antitumor efficacy, has not been thoroughly investigated.

DD is most toxic to cells expressing the high-affinity heterotrimer IL-2R (α, β, and γ), with an IC50 of 10−12 M. In contrast, other cells exhibiting the intermediate-affinity receptor, consisting of β and γ subunits (IL-2Rβ-γ), such as NK cells, are more resistant to DD-mediated depletion (IC50 = 10−10 M) (8, 17–19). Of note, however, DD is regularly found at serum concentrations of 1–5 × 10−9 M in treated patients, which is 10-fold greater than the level required to reach the IC50, even in cells displaying only IL-2Rβ-γ. This suggests that, in addition to its effect on Tregs, in vivo DD administration could eliminate some cells expressing the intermediate-affinity IL-2R.

In this study, we investigated the effects of DD in vivo and in vitro on the survival and activation of peripheral blood Tregs, effector T cells (Teffs), and NK cells in cynomolgus monkeys. Partial and transient depletion of Teffs and Tregs was observed. More strikingly, however, DD treatment resulted in complete and long-lasting elimination of NK cells. Interestingly, coadministration of DD with IL-15, which binds selectively to the IL-2/15Rβ subunit, prevented the depletion of NK cells, whereas it did not alter Treg elimination. The implications of these findings for the design of IL-2R-based immune therapies in cancer are discussed.

Materials and Methods

Animals and treatments

Five- to seven-kilogram male cynomolgus macaques (Charles River Primates, Wilmington, MA) were used. The studies were performed under protocols approved by the National Institutes of Health guidelines for the care and use of primates and the Massachusetts General Hospital Subcommittee on Animal Research. DD (Ontak; Eisai, Woodcliff Lake, NJ) was given i.v. at high doses: 18 μg/kg given twice on two consecutive days or 8 μg/kg given four times weekly. In DD–IL-15 coadministration experiments, two doses (10 or 50 μg/kg) of IL-15 (Insight Genomics, Falls Church, VA) were given to each animal i.v. with each DD infusion.

Flow cytometry analyses

PBMCs were analyzed via cell surface staining using mAbs directed against the following Abs: CD3 (SP34), CD4 (L200), CD8 (RPA-T8), CD16 (3G8), CD20 (2H7), CD45RA (5H9), CD56 (B159), CD62L (SK11), CD95 (DX-2), NKG2A (Z199); isotype-matched control mAbs were also used. To
assess intracellular protein expression of Foxp3 (PCH101), Ki67 (B56), and CD152 (BN3), cells were permeabilized using Fixation/Permeabilization solution (eBioscience, San Diego, CA), following the manufacturer’s instructions. Cells were analyzed on a FACSCalibur or Accuri Flow Cytometer using FlowJo software.

Cytotoxic and competition assays

PBMCs from nonhuman primates were cultured for 12–72 h in complete media (RPMI 1640, 10% FCS, 12 ml HEPES, 100 U/ml penicillin, 100 µg/ml streptomycin, and 2 mM glutamine) with DD (0–5 nM), followed by staining for specific populations. NK cells were sorted into CD16+CD8+NKG2A+CD32− (20), and CD4+ Tregs were sorted into resting Tregs (R-Tregs; CD45RA+CD25++) and activated Tregs (A-Tregs; CD45RA−CD25++) using a FACSaria cell sorter. Each population was cultured in complete media, with or without DD, in the presence of different concentrations of IL-2 (Invitrogen, Carlsbad, CA) or IL-15 (R&D Systems, Minneapolis, MN). Cytotoxicity was determined by 7-aminotrimethoxycin D (7-AAD; BD, San Diego, CA). The viability was analyzed as a percentage relative to the level of pre-incubation.

Binding and internalization of DD

DD was labeled using the Alexa Fluor 647 Protein Labeling Kit (Invitrogen), following the manufacturer’s instructions. Cells were analyzed on a FACSCalibur or Accuri Flow Cytometer using FlowJo software. DD-internalization analyses were performed by imaging flow cytometry using the ImageStreamX Imaging Flow Cytometer (Amnis, Seattle, WA). For these analyses, nuclei were counterstained with DAPI, and the data were analyzed with IDEAS software version 4.0 (Amnis). Only live cells were gated. For quantification of internalization, 2 × 10⁶ PBMCs were cultured with Alexa Fluor 647-labeled DD (5 nM), and cells were analyzed after 3 or 6 h. We used multiple surface markers to identify Tregs (CD45RA-FITC, CD25-PE, CD4–allophycocyanin–Cy7) and NK cells (CD16- FITC, CD8-PE) and identified the internalization of Alexa Fluor 647-labeled DD using a quantitative morphology-based feature (IDEAS software version 4.0).

Statistical analyses

Statistical significance was examined with a two-tailed Student t test, with p values < 0.05 considered significant. Statistical analysis was performed using SPSS software (SPSS, Chicago, IL).

Results

In vitro effects of DD administration on peripheral blood leukocyte subsets

Following i.v. administration of high-dose (18 µg/kg × 2) DD to cynomolgus monkeys, the total number of PBLs decreased rapidly from 3500/mm³ to 800/mm³ (day 2). This effect was transient, because the lymphocyte counts started to increase by day 5 and returned to pretreatment levels by day 10 post-DD administration (Fig. 1A). Because this population contains only 2–4% Tregs, we can conclude that this effect largely reflected the elimination of Teffs. Next, we tested a lower multiple-dose administration protocol (8 µg/kg × 4, weekly). Again, a transient reduction in the total lymphocyte count was observed, but to a much lesser degree (Fig. 1B). This prompted us to use this regimen in this study aimed at more selective Treg depletion, as previously used in clinical trials (1).

In fact, early selective depletion of Tregs was not observed, with the actual frequency initially increasing from days 2 to 10 after DD injection (Fig. 1C). Subsequently, similarly to observations reported in humans (1), both the absolute count and the percentage of Foxp3+CD4+ T cells among total CD4+ T cells gradually decreased and remained low (<50%) for several weeks (Fig. 1C). To more precisely evaluate the in vivo effects of DD on specific cell subpopulations, we applied the phenotypic definition of human Treg subpopulations proposed by Miyara et al. (21) to cynomolgus monkeys. Our preliminary studies showed that monkey Tregs can similarly be separated into A-Tregs (CD4+CD45RA+Foxp3++) and R-Tregs (CD4+CD45RA−Foxp3+) (Fig. 1D). The suppressive function of each Treg subpopulation was also similar to human Tregs: A-Tregs possess significantly greater suppressive function than do R-Tregs (data not shown). The current study revealed that the initially increased numbers of peripheral blood Tregs corresponded to A-Tregs (Fig. 1E), exhibiting a phenotype identical to that expressed by human A-Tregs: CD62L−, CD31+, CD152 (CTLA-4)+, Ki-67+, and CD95+ (Supplemental Fig. 1). In contrast, DD treatment resulted in a marked and immediate decrease in the frequency of R-Tregs (60–80%), which remained low for 2 mo (Fig. 1F).

The most striking effect observed immediately after initial DD injection was the complete depletion of NK cells (CD16+CD8+ NKG2A+CD3−). The frequency of NK cells remained low for 20 d, and it gradually returned to pretreatment levels by days 30–40 (Fig. 1G). NK cells (CD16+CD8+NKG2A+CD3+) were also depleted (data not shown). Altogether, these results show that DD administration to monkeys resulted in a significant, but very transient (2–d), depletion of Teffs following i.v. infusion. At the same time, DD triggered a profound and sustained depletion of R-Tregs and NK cells and a short-term expansion of A-Tregs. Therefore, unlike initially anticipated, DD exerts multiple and variable effects on various peripheral blood leukocytes in primates.

In vitro effects of DD treatment on NK and Treg cells

Next, we investigated the in vitro effects of DD on different monkey leukocyte subsets. A-Tregs (CD4+CD45RA−CD25++) and R-Tregs (CD4+CD45RA+CD25++) were sorted by FACS and cultured in the presence of DD (5 nM) for 72 h. The frequencies of viable cells were determined via 7-AAD staining at different time points from 12 to 72 h. As shown in Fig. 2A, the percentages of viable Teffs remained constant throughout the entire period. We could not evaluate the in vitro effect of DD on the survival of A-Tregs, because these cells die rapidly, even in the absence of DD. In the absence of DD, the frequency of live R-Tregs remained constant for 72 h, whereas DD treatment resulted in a 70% lethality among R-Tregs (Fig. 2A). In addition, exposure of R-Tregs to DD upregulated their expression of Foxp3 and CD95 for the first 12 h, indicating that these cells had been activated (data not shown). Altogether, these results show that in vitro DD treatment did not affect the survival of Teffs, whereas it activated all Tregs and caused the death of R-Tregs. The percentages of live NK cells among PBMCs treated with DD (0.5–5 nM) decreased over time, in a dose-dependent manner, while no effect was observed in controls incubated with medium alone (p < 0.001) (Fig. 2B). To determine whether DD directly affected NK cells, NK cells were sorted by FACS and incubated with 5 nM DD for up to 72 h. NK cell viability decreased significantly as early as 12 h after exposure to DD (Fig. 2C). Addition of IL-2 to the culture inhibited the effect of DD on NK cell death in a dose-dependent manner at 24 h (Fig. 2D), thereby confirming that DD mediated its effect via IL-2R. A similar cytotoxic pattern was also observed in human NK cells (data not shown).

These in vitro results recapitulate the effects observed following in vivo DD administration, including some, but minimal, depletion of Teffs, a rapid and massive cell death among NK cells and R-Tregs, and upregulation of the expression of various activation markers on Tregs. Finally, it is noteworthy that the rapid and spontaneous death of A-Tregs observed in vitro, but not in vivo, suggests that homeostatic survival of this Treg subset relies on some factors absent in our cell cultures.

Binding and internalization of DD by NK and Treg cells

In another set of experiments, we studied whether the differential effects of DD on NK and Tregs is associated with differences in its...
binding and/or uptake by these cells. To address this question, NK cells, Teffs, and each of the Treg subsets were isolated and incubated with DD (5 nM) labeled with the fluorescent dye, Alexa Fluor 647, for different periods of time ranging from 0 to 24 h. The percentages of viable cells bound to DD were evaluated by FACS. As shown in Fig. 3A, 20% of Teffs and NK cells were

FIGURE 1. In vivo effects of DD on various PBLs in monkeys. Reduction in total peripheral lymphocyte counts with high-dose DD (18 μg/kg × 2) (A) and with multiple low doses (8 μg/kg × 4, weekly) (B). (C) Absolute count of CD4+CD25+Foxp3+ Tregs slowly decreased to <50% of baseline levels over 2 mo following DD treatment. (D) Tregs were divided into CD45RA+Foxp3+ (R-Tregs) and CD45RA−Foxp3++ (A-Tregs) populations. A marked transient expansion of A-Tregs was seen in all three recipients (E), whereas R-Tregs consistently decreased (F). (G) Sequential low-dose DD treatments induced immediate and long-term depletion of NK cells from peripheral circulation. Arrows indicate the administration of DD.
bound to DD after 2 h; in contrast, 40 and 65% of R-Tregs and A-Tregs, respectively, were labeled with DD. Subsequently, the number of Teffs bound to DD remained unchanged, whereas the numbers of NK cells and R-Tregs bound to DD increased over time and reached 53 and 60%, respectively, at 6 h, 74.8 and 76.2% at 12 h, and 90% at 24 h. Finally, the number of DD-labeled A-Tregs reached 90% at 12 h and remained constant until the end of the assay. Likewise, the mean fluorescent intensity, representing the level of DD binding/individual cell, increased faster and was consistently higher in Tregs than in NK cells. Representative histograms are shown in Supplemental Fig. 2A and 2B. These results show that both Treg subsets bind DD in an accelerated fashion compared with NK cells. Therefore, the greater cytotoxic effect of DD on NK cells compared with Tregs cannot be attributed to increased binding to IL-2R by the NK cell population.

Next, we compared NK cells and Tregs for their ability to internalize DD. Monkey PBMCs (2 × 10^6) were cultured with 5 nM DD for up to 72 h. The viability of NK cells after exposure to DD decreased significantly compared with medium alone. ***p < 0.001. (D) IL-2 competitively inhibited the effects of DD on NK cells in a dose-dependent fashion at 24 h. Each experiment was performed at least three times using two animals.

FIGURE 2. In vitro effects of DD treatment on NK cells and Tregs. (A) R-Tregs and Teffs were sorted by FACS and incubated with 5 nM of DD for up to 72 h. Although Teffs were resistant, even after 72 h of exposure to DD, the viability of R-Tregs decreased to 27% after 72 h. **p < 0.005, compared with medium alone. Cell death was measured by 7-AAD. (B) Monkey PBMCs were incubated with various concentrations of DD, and the percentage of NK cells among PBMCs decreased over time in a dose-dependent manner. **p < 0.005, ***p < 0.001. (C) NK cells were sorted by FACS and incubated with 5 nM DD for up to 72 h. The viability of NK cells after exposure to DD decreased significantly compared with medium alone. ***p < 0.001. (D) IL-2 competitively inhibited the effects of DD on NK cells in a dose-dependent fashion at 24 h. Each experiment was performed at least three times using two animals.

FIGURE 3. Binding and internalization of DD by NK cells and Tregs. (A) Isolated A-Tregs, R-Tregs, and NK cells were incubated with Alexa Fluor 647-labeled DD and analyzed by FACS for DD binding. During the initial 6 h, DD bound to both A-Tregs and R-Tregs faster than to NK cells. (B) For quantification of internalization, 2 × 10^6 PBMCs were incubated with Alexa Fluor 647-labeled DD and analyzed after 3 or 6 h.
of DD for 3 or 6 h. The presence of intracellular Alexa Fluor 647-labeled DD in Tregs and NK cells was determined by imaging with an ImageStreamX Imaging Flow Cytometer using a quantitative morphology-based feature (representative figures are shown in Supplemental Fig. 3A–C). The percentages of R-Tregs/A-Tregs bound to DD were 62.9/97.4% at 3 h and 72.5/99.1% at 6 h. Among these cells, DD-internalized R-Tregs/A-Tregs accounted for 89/83% and 94/85% of the cells at 3 and 6 h, respectively (Fig. 3B). Therefore, although NK cells were more susceptible than Tregs to DD-mediated cytotoxicity, they exhibited a lower ability to bind and internalize DD.

Influence of IL-15 on DD-mediated depletion of NK cells and Tregs

IL-15 is essential to the differentiation and homeostasis of NK cells and has been used to expand NK cells and enhance their functions (22–24). At the same time, IL-15 is known to compete with IL-2 through IL-2Rβγ heterodimer, because IL-15R shares β and γ subunits with IL-2R. Alternatively, IL-15 does not bind to IL-2Rα (25–27). Based upon these considerations, we hypothesized that IL-15 could competitively suppress the lethal effect of DD on NK cells but not on Tregs.

First, we compared the ability of IL-15 to compete with DD for binding to NK cells and Tregs. Purified NK cells or R-Tregs were cultured with Alexa Fluor 647-labeled DD for 24 h in the presence of either IL-2 or IL-15. As expected, DD binding to both NK cells and Tregs was inhibited in the presence of its “natural competitor,” IL-2. Alternatively, IL-15 efficiently blocked the binding of DD to NK cells but not Tregs (Fig. 4A, 4B). It is noteworthy that IL-15 was more efficient in blocking DD binding than was IL-2 itself, a result suggesting that IL-15 displays a higher affinity for IL-2Rβγ heterodimer than its natural ligand, IL-2. These results prompted us to investigate whether IL-15 could differentially alter the cytotoxic effects of DD on NK cells and Tregs. Purified monkey NK cells or Tregs were exposed to DD for 24 h in the presence of either IL-15 or IL-2. As shown in Fig. 4C, and 4D, IL-15 effectively prevented DD-mediated NK cell death in a dose-dependent fashion. In fact, IL-15 inhibited DD-induced lethality more efficiently than did IL-2 itself (p < 0.005) (Fig. 4C). In striking contrast, IL-15 had no effect on DD-mediated death of Tregs (Fig. 4D). Finally, we evaluated whether IL-15 could selectively block DD-mediated killing of NK cells, but not Tregs, in a mixed cell population. PBMCs (2 × 10^5 cells) were cultured with labeled DD for 24 h in the presence of different doses of IL-15 or IL-2 cytokines. NK cells, R-Tregs, and A-Tregs were evaluated for their viability and binding to DD. Similarly to that observed with isolated cell subsets, IL-15 bound preferentially to NK cells and Tregs.

FIGURE 4. Influence of IL-15 on DD-mediated depletion of NK cells and Tregs. (A and B) Isolated monkey NK cells and R-Tregs were exposed to 5 nM DD labeled with Alexa Fluor 647 in the presence of various concentrations of either IL-15 or IL-2. IL-15 was more effective than was IL-2 in preventing DD from binding to NK (A), whereas IL-2 more efficiently blocked binding of DD to R-Tregs (B). As a comparison, the binding of DD to Teffs in both conditions are also shown. These analyses were performed at 24 h. (C) IL-15 was more effective than was IL-2 in preventing isolated NK cell death induced by DD at 24 h. Prevention of cell death occurred in a dose-dependent fashion. (D) Although the addition of 5 nM IL-2 prevented the cell death of purified R-Tregs exposed to DD, 5 nM IL-15 did not prevent the cell death of R-Tregs. Each experiment was performed at least three times using two animals. *p < 0.05, **p < 0.005, ***p < 0.001.
NK cells and averted their death, whereas it had no effect on Tregs (Supplemental Fig. 4A–D).

IL-15 prevents in vivo DD-mediated depletion of NK cells but not Tregs

To investigate the in vivo effects of IL-15, two monkeys were injected i.v. with DD (8 μg/kg) along with IL-15 (10 or 50 μg/kg). Two control animals were treated with IL-15 alone. As previously reported, IL-15 induced a massive leukocyte extravasation, resulting in peripheral blood lymphopenia during the first few days postinjection (28). Remarkably, IL-15 treatment resulted in a rapid and complete recovery of NK cells after DD treatment (Fig. 5A). In contrast, IL-15 did not affect in vivo depletion of Tregs induced by DD (Fig. 5B). These observations suggest that IL-15 might be a useful therapeutic agent to selectively protect NK cells from elimination in subjects being treated with DD.

Discussion

Individual IL-2R subunits are expressed on various lymphoid cell populations, whereas coexpression of CD25 (IL-2Ra), CD122 (IL-2Rb), and CD132 (IL-2Rg) subunits that form the high-affinity IL-2R, is essentially confined to CD4+Foxp3+ Tregs and a few activated “conventional” Teffs. Based upon this principle, the IL-2/DT fusion protein was expected to preferentially bind to and delete Tregs while sparing other leukocytes. Actually, our study shows that DD has multiple and distinctive effects on various leukocyte subsets in monkeys. This study confirms that DD treatment does mediate a partial (50–60%) and prolonged depletion of primate Tregs in vivo. However, our observations also show that this phenomenon is more complex than initially anticipated: DD elicited an early expansion of Tregs displaying an activated phenotype (A-Tregs), and DD-mediated Treg depletion is restricted to R-Tregs. The observation that many DD-exposed Tregs initially become activated before dying after 12–36 h is reminiscent of another study in which T cells cultured with IL-2–DT first displayed elevated levels of cytoplasmic mRNA coding for IL-2R, c-myc, and IFN-γ, followed by a reduction in these mRNA levels by 20 h (29). Following activation/expansion, it is likely that these A-Tregs ultimately succumb to the effects of the DT or via apoptosis caused by the absence of continuous exposure to exogenous IL-2 (30). Conversely, although our in vitro assays clearly show that some R-Tregs are killed via DD exposure, R-Treg reduction due to conversion to A-Tregs cannot be ruled out in this study.

In addition to its effects on Tregs, DD treatment triggered some, although partial and short-lasting, depletion of effector T lymphocytes. Most importantly, exposure of monkey PBMCs both in vitro and in vivo caused a profound and durable elimination of NK cells. The phenotypic definition of macaque NK cells has been established (20, 31, 32), and we defined cynomolgus monkey NK cells as CD16+CD8+NKG2A+CD3 in this study. Although a recent study identified the presence of a minor CD8α NK cell subpopulation among CD8−CD16−CD3−CD20−CD14− cells in rhesus monkeys (33), they are presumed to account for only <5–10% of total NK cells. Because the CD16−CD3−CD20−CD14−CD8− population also contains a substantial number of myeloid dendritic cells, we did not include CD8− NK cells in our analyses. Nevertheless, this observation might seem surprising, because only 10% of NK cells express the IL-2Ra subunit, whereas the vast majority of these cells displays IL-2Rβ-γ heterodimers (34). However, it is noteworthy that studies by Re et al. (18) showed that cells expressing the intermediate-affinity IL-2Rβ-γ could bind

FIGURE 5. IL-15 prevents DD-mediated in vivo depletion of NK cells but not of Tregs. A total of 8 μg/kg of DD was coadministered with 10 or 50 μg/kg of IL-15 on day 0. Two animals were treated with 10 μg/kg of IL-15 alone. (A) Rapid and complete recovery of NK cells was observed with coadministration of IL-15. (B) In contrast to NK cells, the addition of IL-15 had no effect on Tregs.
DD quite efficiently. Despite this, no NK cell depletion was observed in studies using the previous-generation IL-2/DT, DAB486–IL-2, at doses ranging from 1 to 10 nM (35). Subsequent re-engineering of this agent led to the development of DAB389–IL-2 (DD, which is used in the clinical market currently), which has a higher Kd and longer half-life than does the original compound (36). Nevertheless, to our knowledge, no effect of DD on human or nonhuman primate NK cells has been reported (3, 4, 9). Our study shows unambiguously that DD, delivered at doses ranging from 0.5 to 5 nM, completely and durably eliminates NK cells in monkeys, an observation that has important implications for the design of antitumor therapies using this and future IL-2R–based immunotoxins. It remains unclear why DD treatment results in a complete depletion of NK cells, whereas a significant number of Tregs is apparently not eliminated. Our results showed that this phenomenon is not the result of differences in DD binding or internalization among these cell subsets. Therefore, it is likely that DD mediates different intracellular signals to NK and Tregs or that these two cell types display different sensitivity toward DT. Additionally, the rapid homeostatic expansion of Tregs known to occur after leukopenia may account for the recovery of some Tregs. It is also conceivable that DD converts Tregs to other subpopulations that are more resistant to the cytotoxic effects of DD. Further studies are required to test these hypotheses.

Of potential importance to future DD clinical trials, we observed that IL-15 bound preferentially to IL-2R on NK cells and protected them from elimination by DD, whereas it did not impact the depletion of Tregs in monkeys. This protective effect by IL-15 is presumably the result of competition between DD and IL-15. However, it is also possible that activation of NK cells via IL-15 is presumably the result of competition between DD and IL-15. In summary, our study shows that, although DD administration depletes a significant proportion of Tregs, it rapidly and durably eliminates all NK cells in nonhuman primates. Such depletion of potentially totipotent NK细胞 may explain why DD treatment has been only modestly successful in cancer patients. To address this problem, protocols might be designed to eliminate Tregs while sparing NK cells. Our study shows that this can be achieved in monkeys via coadministration of IL-15 with DD, which maintained Treg depletion, whereas it spared and presumably potentiated NK cells. This suggests that IL-15 coadministration could be considered in future clinical treatments designed to enhance immunity against cancer and microbes by depleting Tregs in patients using IL-2R–based strategies.

Acknowledgments
We thank Amnis (Seattle, WA) for assistance regarding DD-internalization experiments.

Disclosures
The authors have no financial conflicts of interest.

References

Supplemental Figure 1. Phenotype of A-Tregs in vivo induced by DD treatment.

Transiently expanded CD45RA°Foxp3++ population on day 5 after DD treatment was further characterized to be CD62L−, CD31−, CD152 (CTLA-4)+ and Ki-67+.
Supplemental Figure 2. Uptake of Alexa-647 labeled DD in NK cells and Tregs.

A: MFI increased faster and greater in both A-Tregs and R-Tregs than that of NK cells.

B: Representative histograms are shown in NK cells (left panel) and R-Tregs (right panel) at preincubation (black lines), 12 hours (red lines) and 24 hours (blue lines). Numbers in plots indicate viable cells. These are representative of three experiments performed on two different animals.
Supplemental Figure 3. Representative images of each population at 6 hours from cells that have internalized DD.

A: NK cells, B: R-Tregs, C: A-Tregs

Multiple surface markers were used to identify A-Tregs (CD4⁺CD25⁺CD45RA⁻), R-Tregs (CD4⁺CD25⁺CD45RA⁺) and NK cells (CD16⁺CD8⁺), DAPI was used as a nuclear marker and DD-Alexa-647-DD positive events were gated as those events with high Alexa-647 max pixel and overall high intensity values. DD internalization was assessed using a quantitative morphology based feature.
Supplemental Figure 4. Selective inhibition by IL-15 in the effect of DD on NK cells in vitro.

2 × 10^5 PBMCs were plated in a 96-well culture plate with 5nM DD for 24 hours in the presence of different concentrations of either IL-2 or IL-15. A: 0.5nM of IL-15 prevented the death of NK cells significantly (**P < 0.001), even compared to IL-2 (***P < 0.005). B: IL-15 more efficiently prevented DD from binding to NK cells. C and D: DD binding to Tregs was only minimally affected by IL-15, while IL-2 prevented DD binding to Tregs more significantly (*P < 0.05, **P < 0.005, ***P < 0.001).