Two Preferentially Expressed Proteins Protect Vascular Endothelial Cells from an Attack by Peptide-Specific CTL

Daniela S. Thommen, Heiko Schuster, Mario Keller, Sarika Kapoor, Andreas O. Weinzierl, Cuddapah S. Chennakesava, Xueya Wang, Lucia Rohrer, Arnold von Eckardstein, Stefan Stevanovic and Barbara C. Biedermann

J Immunol 2012; 188:5283-5292; Prepublished online 27 April 2012; doi: 10.4049/jimmunol.1101506
http://www.jimmunol.org/content/188/11/5283

Supplementary Material

http://www.jimmunol.org/content/suppl/2012/04/27/jimmunol.1101506.DC1

References

This article cites 40 articles, 21 of which you can access for free at:
http://www.jimmunol.org/content/188/11/5283.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Two Preferentially Expressed Proteins Protect Vascular Endothelial Cells from an Attack by Peptide-Specific CTL

Daniela S. Thommen,* Heiko Schuster,† Mario Keller,* Sarika Kapoor,* Andreas O. Weinzierl,‡ Cuddapah S. Chennakesava,* Xueya Wang,* Lucia Rohrer,‡ Arnold von Eckardstein,‡ Stefan Stevanovic,† and Barbara C. Biedermann*‡§

Vascular endothelial cells (EC) are an exposed tissue with intimate contact with circulating Ag-specific CTL. Experimental in vitro and clinical data suggested that endothelial cells present a different repertoire of MHC class I-restricted peptides compared with syngeneic leukocytes or epithelial cells. This endothelial-specific peptide repertoire might protect EC from CTL-mediated cell death. The HLA-A*02-restricted peptide profile of human EC and syngeneic B lymphoblastoid cells was biochemically analyzed and compared. For EC selective peptides, source protein expression, peptide binding affinity, and peptide–HLA-A*02 turnover were measured. The significance of abundant peptide presentation for target cell recognition by immunodominant CTL was tested by small interfering RNA treatment of EC to knock down the source proteins. High amounts of two peptides, PTRF56–64 and CD59106–114, were consistently detected in EC. This predominance of two endothelial peptides was explained by cell type-specific source protein expression that compensated for poor HLA-A*02 binding affinity and short half-life of peptide/HLA-A*02 complexes. Knocking down the source proteins containing the abundant endothelial peptide motifs led to a nearly 100-fold increase of surface expression that compensated for poor HLA-A*02 binding affinity and short half-life of peptide/HLA-A*02 complexes. We conclude that EC express and present preferentially two distinct HLA-A*02-restricted peptides at extraordinary high levels. These abundant self-peptides may protect EC from CTL-mediated lysis by competing for HLA-A*02 binding sites.

Human vascular endothelial cells (EC) form the inner lining of blood vessels and maintain organ homeostasis by several key functions; that is, undisturbed healthy EC prevent blood coagulation (1, 2), regulate vasomotion (3, 4), and actively participate in leukocyte trafficking (5, 6). EC are an exposed tissue that is in intimate contact with transmigrating effector lymphocytes in the course of immune responses (7). EC express histocompatibility Ags, that is, the molecular motifs recognized by the TCR (8), and therefore may serve as targets for Ag-specific effector lymphocytes. CD8+ MHC class I-restricted CTL are activated by professional APC (e.g., dendritic cells) and differentiate to become effector CTL (9). In the course of allo- or autoimmune disorders, effector cells could rapidly eliminate EC when they shared the MHC class I-restricted peptide profile with dendritic cells. In contrast, when EC would present a completely different peptide profile than leukocyte-derived professional APC, they might by this mechanism escape CTL-mediated injury and death. A cell-specific peptide repertoire presented by endothelial MHC class I molecules would explain tissue or organ predilection of immune-mediated injury such as seen during graft-versus-host disease (10, 11). The hypothesis that EC present a different repertoire of MHC class I-restricted peptides was supported in the past by the following in vitro observations. First, the activation of human CD8+ T lymphocytes by professional APC led to a subset of effector CTL that recognized and killed preferentially leukocyte-derived target cells but ignored EC from the same donor (12). Second, EC were poor targets for peptide-specific CTL due to an impaired capacity to present certain immunodominant Ags such as SMCY311–319, a male-specific minor histocompatibility Ag, as detected by cytotoxicity assays using SMCY311–319-specific CTL. We conclude that EC express and present preferentially two distinct HLA-A*02-restricted peptides at extraordinary high levels. These abundant self-peptides may protect EC from CTL-mediated lysis by competing for HLA-A*02 binding sites with immunodominant scarcely expressed antigenic peptides.

Abbreviations used in this article: AUC, area under the curve; BLC, EBV-immortalized B lymphoblastoid cell; EC, vascular endothelial cell; FDR, false discovery rate; LC-MS, liquid chromatography/mass spectrometry; ΔMFI, change in mean fluorescence intensity; MFI, mean fluorescence intensity; MS, mass spectrometry; siRNA, small interfering RNA; TFA, trifluoroacetic acid.

Copyright © 2012 by The American Association of Immunologists, Inc. 0022-1767/12/$16.00
expression levels of source proteins, 2) binding affinity to HLA-A*02, and 3) half-life of peptide/HLA-A*02 complexes. Finally, we used RNA interference to knock down the source proteins of the most abundant endothelial HLA-A*02-restricted peptides and tested the impact of this treatment on peptide presentation and on the susceptibility of EC and BLC to CTL-mediated killing.

Materials and Methods

Cell lines

All studies involving primary human cells were approved by the Ethical Review Board (Ethiskommission beider Basel). HUVEC (EC) were cultured in complete RPMI 1640 (Invitrogen Life Technologies, Carlsbad, CA), supplemented with fibroblast growth factors (20 ng/ml human acidic fibroblast growth factor and 20 ng/ml human basic fibroblast growth factor; both from PeproTech, London, U.K.) and heparin (0.2 mg/ml; Sigma-Aldrich, Saint Louis, MO). EBV-immortalized syngeneic BLC were grown from cord blood mononuclear cells (14). BLC were cultured in complete RPMI 1640 (Invitrogen Life Technologies) containing 10% FCS, 2 mM t-glutamine, 100 U/ml penicillin, and 100 μg/ml streptomycin (all from Invitrogen Life Technologies, Carlsbad, CA), and the colon carcinoma cell line LS174 (a gift from G. Spagnoli, Zurich, Switzerland) were cultured in complete RPMI 1640. For some experiments, Fluzes-66 and SMCY71-109-specific, HLA-A*02-restricted CTL clones were used and kept in culture as previously described (13).

Quantification of HLA surface expression

EC were detached from cell culture flasks using Accutase (PAA Laboratories, Pasching, Austria) treatment for 3 min at 37°C and subsequently transferred to centrifugation tubes. BLC were resuspended by repeated pipetting and transferred to centrifugation tubes. Cells were filtered through a 70-μm nylon mesh to avoid clumping, washed twice with PBS, and counted. For each donor 5 × 10^6 EC or BLC were transferred to microtiter plates and washed twice with ice-cold FACS buffer (PBS, 2% FCS, 2 mM EDTA). Unless noted otherwise, all further steps were performed at 4°C. Cells were stained with HLA-A*02-specific BB7.2, HLA-A/B/C–specific W6/32, or respective isotype controls (BioLegend, San Diego, CA) at saturating conditions (10 μg/ml Ab diluted in FACS buffer). After two washing steps with FACS buffer, cells were stained with secondary FITC-conjugated anti mouse Fab() fragments (Dako) diluted 1:100 in FACS buffer. Quantification beads (Quikfit; Dako) were washed twice with FACS buffer and afterward stained with the same concentration of secondary Ab. Both cells and quantification beads were finally washed twice with FACS buffer and after addition of 5 μl 7-aminoactinomycin D analyzed on a FacsSort into an L Flow cytometry analyzer (B/C Biosciences). For each sample 250,000 events were recorded and each experiment was performed in triplicate. Cells were gated on single cells based on FSC-A/FSC-H parameters and viable 7-aminoactinomycin D-negative cells using FlowJo FACS data analysis software (Treestar). Generation of standard curve for quantification and subsequent calculation of surface expression were done according to manufacturer’s instructions (Quikfit; Dako).

Isolation and sequence analysis of MHC class I-presented peptides

EC and syngeneic BLC from three different HLA-A*02-positive male donors were grown to large cell numbers and three independent peptide isolation experiments were performed. Per experiment, on average 5.2 ± 0.9 × 10^6 EC were grown on 11,000 cm^2 (Falcon/BD Biosciences, San Jose, CA) over 45 d to confluence. For nine repetitive passages, cells and reseeded finally on 64 gelatin-coated plates (Falcon/BD Biosciences, product no. 353025). At the final cell harvest, trypsinated cells were washed in complete medium 199, spun down, and 1.5 ml pelleted cells were snap frozen in liquid nitrogen. BLC were expanded as suspension cultures at an average density of 0.3 × 10^6 cells/ml to a final cell number of 1.9 ± 0.5 × 10^6 cells per donor. BLC were also collected by centrifugation and briefly treated with ice-cold trypsin-EDTA to mimic the treatment of EC. Trypsin was neutralized with complete, ice-cold complete medium 199, the cells were spun down, and 1.5 ml pelleted cells were snap frozen in liquid nitrogen until the isolation and identification of MHC class I-bound peptides. HLA-presented peptides were obtained by immune precipitation of HLA molecules using an adapted protocol developed for solid tissue analysis (15). In brief, 1 vol lysis buffer containing PBS, 0.5% CHAPS, and complete protease inhibitor (Roche) was added to snap-frozen cell pellets and the samples were homogenized by intense shaking for 1 h at 4°C. Afterward, samples were sonicated and debris was removed by centrifugation and additional passing through a 0.2-μm filter (Sartorius, Göttingen, Germany). Immune precipitation of HLA-A*02 molecules was performed using the HLA-A*02-specific Ab BB7.2 covalently coupled to cyanogen bromide-activated Sepharose 4B (GE Healthcare, Freiburg, Germany; 40 mg Sepharose/mg Ab). MHC molecules and peptides were eluted in 0.1% trifluoroacetic acid (TFA) and peptides were isolated by ultrafiltration through a centricron 10 kDa cut-off membrane (Millipore, Schwalbach, Germany). For liquid chromatography/mass spectrometry (LC-MS) analysis, 20% of each sample was desalted and concentrated using C18 Zip Tips (Millipore) according to the manufacturer’s instructions. Peptides were eluted with 0.5% acetonitrile, 98% H2O, 0.1% TFA, and identity of peptides was confirmed using MS.

Nicotinylation of peptides

Modification of synthetic peptides with deuterated nicotinic acid and peptide mixtures eluted from MHC precipitation with nicotinic acid were performed as previously described (16). In brief, peptides were first guanidinated in freshly prepared 2.5 M O-methylisourea hemisulfate at basic pH (pH 10.5) for 1 h at 65°C to protect lysine side chains. Reaction was terminated by addition of formic acid. Guanidinated peptides were then loaded on C18 Micro spin columns (Thermo Fisher Scientific) and modified by slowly passing 1 ml of a 2.2 mg/ml solution of either H2O or D2-nicotinoyloxysuccinimide (diluted in 50 mM phosphate buffer [pH 8.5]) over the column. After three washing steps with double distilled H2O, peptides were dried, tyrosine modifications were removed by hydroxylamine solution over the column. Following another three washing steps with double distilled H2O, peptides were finally eluted in 80% acetonitrile/0.1% TFA and volumes were adjusted by vacuum centrifugation. Concentration of nicotinylated peptides was assessed using UV absorbance at 261 nm on a NanoDrop UV/Vis Spectrophotometer (Peqlab, Erlangen, Germany) against a standard curve generated from different concentrations of nicotinoylphenol (Sigma-Aldrich). Detection after deuterated nicotinylation was shown to be >80% using HPLC (Waters), and identity of peptides was confirmed using MS.

Nanoflow LC-MS/MS

MS was performed on an LTQ Orbitrap XL mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) equipped with a nanoelectrospray ion source coupled to an Ultima 3000 RSLCnano UPLC system (Dionex, Sunnyvale, CA) at 120 μA flow rate. Pump system consisted of a 1 cm PepMap100 C18 Nano-Trap column (Dionex) within 10 min at a flow rate of 4 μl/min and 3% solvent B. Peptides were then separated on a 50 cm PepMap C18 column with a particle size of 2 μm (Dionex) running at 45°C with a flow rate of 300 nl/min and a gradient ranging from 3 to 30% solvent B within 140 min. For absolute quantification a different gradient was used ranging from 10 to 60% solvent B within 240 min (solvent A, H2O, 0.02% formic acid; solvent B, 100% acetonitrile). Peptides were fragmented using collision-induced dissociation (normalized collision energy, 35%; activation time, 30 ms; isolation width, 1.3 m/z) with resulting fragment ions (MS/MS scans) analyzed in the linear ion trap. Dynamic exclusion was enabled for all runs (maximum number of masses excluded at each time point [exclusion list size] 500; duration of exclusion for each mass: 40s).

Data analysis

Data analysis was performed with Proteome Discoverer 1.3. Peak lists were generated against Swissprot (date, November 2008) parameter file, Homo sapiens using Mascot software version 2.2.04 with no cleavage specificity selected. Precursor ion tolerance was set to 10 ppm and product ion tolerance to 0.6 Da. Filters used for postprocessing analysis included 5 ppm precursor ion tolerance, ionscore >20, and a maximum identification rank of 3. Peptides showing no HLA-A*02 motif were also excluded from further analysis. Percolator tool was used to evaluate peptide confidence based on p-value with a stringent false discovery rate (Peptide) of 0.01 (high confidence) and a relaxed target FDR of 0.15 (medium confidence). Fragment spectra collected from peptides used for ranking were confirmed using synthetic peptides to ensure proper identification, in particular of...
peptides showing low confidence (FDR < 0.15). Ordering of peptides according to their abundance was based on automatically calculated area under the curve (AUC) with a 2 ppm precursor ion window relying solely on identification rank 1 peptides. For absolute quantification, AUC of respective modified peptides was determined using Xcalibur Qual Browser with a mass accuracy of 2 ppm.

mRNA isolation and RT-PCR

Total RNA was isolated from 5 x 10^6 cells (EC, BLC, JY, T2, or LS174) using TRIzol reagent (Invitrogen Life Technologies) according to the manufacturer’s protocol. After reverse transcription (SuperScript; Invitrogen Life Technologies), cDNA coding for the genes of interest was amplified using the following primers (all from Microsynth, Balgach, Switzerland): 5'-ATGGGGAGGAAGGTGACTGG-3' and 5'-AGGGATGAGTGTCTG-GAGG-3' for GAPDH, 5'-CTTCCCTGCTCTCGCCGCTT-3' and 5'-AGGAATGTTGTTGTCAG-3' for F508del, 5'-TGAGAATGACACAGAGGAAT-3' and 5'-CAAGAGCAAGGAGGAAGACG-3' for CD59, and 5'-CAAGAGGCTGACACATACAG-3' and 5'-AGCCACCCCTGATACAGAG-3' for DDX5. PCR for GAPDH and F508del was performed with an initial denaturation step at 96°C for 5 min, then 35 cycles with 30 s denaturation at 96°C, 30 s annealing at 58°C, 1 min elongation at 72°C, followed by the final extension for 10 min at 72°C. Amplification of T harvested and automatically developed (Curix T; Agfa-Gevaert, Mortsel, Belgium). All incubations were performed on ice. Data acquisition was performed on a Cyan ADP FACS instrument using Summit Software (Dako). Additionally, 1 x 10^6 cells per sample were collected in the lymphocyte gate and analyzed. The change in mean fluorescence intensity (∆MFI) was calculated by subtracting the MFI with isotype control Ab from the MFI with BB7.2 mAb. The fluorescence index was calculated as ∆MFI with peptide/∆MFI without peptide (17).

Decay and half-life of the peptide/MHC class I complex

For the determination of half-life of the HLA-A*02/peptide complexes, two cells were loaded with peptide overnight at 37°C in complete RPMI 1640 (2.5% FCS). Peptide concentrations used for pulsing were adjusted to equalize the fluorescence index of T2 cells. After washing extensively, cells were again incubated at 37°C. At indicated time points (0, 2, 6, 24 h) aliquots were stained for HLA-A*02 as described above and staining intensity assessed by specific ∆MFI was determined by flow cytometry (17).

Target cell treatment by small interfering RNA

The following small interfering RNAs (40 μM stock concentrations) from Microsynth were used to knock down precursor proteins of prevalent peptides: CD59 small interfering RNA (siRNA), 5'-GAAAGCUAAAG-UUGAUGATT-3', PTFR siRNA, 5'-GAGGAAAGAUAGUUACCUAT-3', DDX5 siRNA, 5'-GCAGAAGUAAUGUCAUGUATT-3', and mock siRNA, 5'-AAGUAGUUAUGUCGCUUUGTT-3'. Early passage EC or exponentially growing JY cells were seeded 1 d before transfaction at 10^5 cells per well in complete medium 199 without penicillin/streptomycin in a gelatin-coated six-well plate. The next day, the medium was replaced with 2.5 ml prewarmed complete medium 199 without penicillin/streptomycin. RNA complexes were prepared as follows (volumes for one well of a six-well plate): 10 nM siRNA was slowly mixed with Lipofectamine RNAiMAX transfection reagent (Invitrogen) in Opti-MEM I GlutaMAX medium (Life Technologies) according to the manufacturers’ instructions. The complexes were added dropwise and gently to the cells. The medium was changed after 16 h and the cells incubated at 37°C for 24 h. Cells were either analyzed by Western blot for detecting protein levels or used for cytotoxicity assays (13) or flow cytometry.

Calcine-release–based cytotoxicity assay

CTL-mediated target cell lysis was measured by a calcine-release assay as described (13). Adherent EC grown to confluency in 96-well flat-bottom plates (Falcon) or JY cells were loaded for 30 min at 37°C with 20 μM calcein-AM (Molecular Probes/Invitrogen) in serum-free medium 199. Cells were then washed and bleached for 2 h at 37°C in complete medium 199. After washing twice with complete medium 199 and then assay medium (medium 199, 2% FCS, 5 mM HEPES, 2 mM t-glutamine, 100 μM penicillin, and 100 μg/ml streptomycin), 50 μl assay medium was added to 10,000 target cells per well. CTL were washed, counted, and added to the calcine-loaded target cells at an E:T ratio of 10:1 (final volume, 200 μl/well) and spun down. Spontaneous release was determined by adding assay medium to the target cells; maximum release was obtained by adding lysis buffer (50 mM sodium borate in 0.1% Triton X-100 [pH 9.0; both from Sigma-Aldrich]). After incubation for 2 h at 37°C, 75 μl supernatant was carefully removed and transferred to another 96-well, flat-bottom plate. Released calcine was measured in a fluorescence multwell plate reader (SPECTRAmax GEMINI-XS; Molecular Devices; excitation wavelength, 485 nm; emission wavelength, 538 nm). Percentage specific lysis was calculated as ([sample release – spontaneous release]/(maximum release – spontaneous release)) x 100%.

Statistical methods

Mean values between groups were compared using the Student t test. Unless indicated otherwise, means ± SD of triplicates are shown.
Results

HLA-A*02–restricted peptides presented by EC

We characterized the endothelial and leukocyte-derived HLA-A*02–restricted peptide profile in three independent experiments analyzing cells from three healthy HLA-A*02–positive males. EC and BLC were grown side-by-side under virtually identical conditions and harvested using the same procedure to avoid methodological bias. HLA surface expression was considerably higher in BLC compared with EC from all three donors, as determined by flow cytometry using either HLA-A*02–specific mAb BB7.2 or pan-HLA class I–specific mAb W6/32 (Fig. 1A). As expressed in median values and interquartile range (shown in parentheses), EC lines had on average 22 (16–29) × 10^3 HLA-A*02 molecules or 88 (86–137) × 10^3 HLA class I molecules per cell. Corresponding BLC expressed on average 142 (129–151) × 10^3 HLA-A*02 or 482 (436–515) × 10^3 HLA class I molecules per cell. Therefore, the total number of HLA ligands was expected to be at least 5-fold lower in EC compared with BLC.

FIGURE 1. (A) Quantification of surface HLA-A*02 molecules and total HLA class I molecules on EC and BLC. HLA-A*02 molecules represent ∼25% of all HLA class I molecules, both on EC and on BLC from positive donors. EC have ∼6-fold less HLA-A*02 or HLA class I molecules, respectively, than do BLC. (B) Quantification of HLA-A*02 ligands SLSEKTVLL (upper panel) and YLLPAIVHI (lower panel) from BLC (left) and EC (right). Synthetic peptides labeled with deuterated nicotinic acid (dNIC) were used for calibration (arrow). Ten picomoles of each spiked peptide was injected together with nicotinylated (NIC) peptide mixtures derived from HLA-A*02 ligand isolation and analyzed by LC-MS. The nicotinylated native peptide is marked by an arrow. Absolute quantification of SLSEKTVLL, the most prevailing ligand found on ECs, reveals comparable quantities (∼3 pmol) presented on EC as well as on BLC. Allotypic HLA-A*02 ligand YLLPAIVHI, which is present on EC at negligible concentrations (arrow in the lower right panel), confirms the relative predominance of SLSEKTVLL on EC. Mass spectra show the relative intensity averaged over the retention time of respective precursor ion peaks within the ion chromatogram. Shown is the result obtained from donor 1. Graphics were generated with Xcalibur 2.07 QualBrowser.
The entire pool of peptides bound to endothelial or leukocyte HLA-A*02 molecules was isolated, fractionated, and the individual components were characterized by tandem mass spectrometry. As expected by the use of the A*02-specific Ab BB7.2, most peptides encompassed the allele-specific peptide motif of HLA-A*02 characterized by aliphatic anchor amino acids in position 2 and at the C terminus. A total of 56 HLA-A*02 peptides were identified from three EC lines whereas 1400 HLA-A*02 ligands were characterized in BLC extraction experiments (Supplemental Tables I, II). Note that SMCY311–319, a male-specific, immunodominant minor histocompatibility Ag (18), was never identified in these isolates, neither in EC nor in BLC. The amino acid sequences of the isolated HLA-A*02–restricted peptides were used for sequence homology searches, and the source proteins from which these peptides derive were identified. A comprehensive listing of HLA-A*02 ligands, their source proteins, and MS-relevant parameters are given in Supplemental Tables I and II. EC and BLC shared 25 of the 56 identified peptide species, among them processing products of RNA helicase DDX5 (YLLPAIVHI) and coatamer subunit gamma, COPG (AIVDKVPSV); both peptides have been repeatedly found in HLA-A*02–extracted peptide pools obtained from human tissues. Moreover, YLLPAIVHI has been classified as an allotypic peptide presented on most HLA-A*02–mediated peptide repertoire (Table I). Although also occurring in HLA-A*02 ligand pools of BLC, they play a minor quantitative role there and are concealed by vast copy numbers of other HLA-A*02 ligands such as YLLPAIVHI (DDX5) and AIVDKVPSV (COPG) (Table II). In particular, the PTRF-derived peptide SLLDKIIGA was hardly detectable on BLC (Table I), highlighting the observation that in no other tissues or cell lines analyzed so far, SLLDKIIGA and SLEKTVLL were as dominant in EC. These two peptides were repetitively identified as the most prevalent HLA-A*02 ligands in these cells. Knowing the total EC end BLC number per donor that entered these experiments, and knowing the number of HLA-A*02 molecules per cell, we were able to calculate that SLEKTVLL and SLLDKIIGA together represent >50% of all HLA-A*02–restricted peptides per single EC but <5% of the peptides presented by BLC.

The molecular basis for abundant and endothelial cell-selective presentation of HLA-A*02–bound peptides

The most obvious explanation and logical prerequisite for the preferential presentation of MHC class I bound PTRF56–64 and CD59106–114 on EC would be the strong and cell type-specific preferential presentation of MHC class I bound PTRF(56–64) and CD59(106–114) on EC. Therefore, we compared the mRNA and protein levels of DDX5, PTRF, and CD59 in EC and syngeneic EBV-immortalized BLC from the same individual (19). Thirty-five peptides were found exclusively on EC but not on autologous BLC.

Two peptides, SLLDKIIGA and SLEKTVLL, yielded extraordinarily high signals in EC compared with other cells and were consistently identified in all three EC donors analyzed in this study, suggesting that these two peptides are constitutively processed and presented by the MHC class I pathway of EC (Table I). The proteins from which these two peptides arise are polymerase I and transcript release factor (PTRF) (20, 21) and the complement inhibitor CD59 (22). Both HLA-A*02–restricted peptides have been isolated previously from other tissues. However, the relative amounts of PTRF- and CD59-derived peptides appeared higher in EC compared with any other cell line and tissue from which these peptides have been previously isolated. Comparing the AUC values of the different peptides in LC-MS experiments, SLEKTVLL was detected with highest abundance in EC lines closely followed by SLLDKIIGA, whereas both peptides were not among the top rankings with respect to AUC values in BLC (Table I).

To achieve an exact quantitative determination of peptide amounts, stable isotope labeling experiments were performed. Natural HLA-A*02 ligands from either source were labeled with nicotinic acid, whereas synthetic calibrating peptides were labeled with deuterated nicotinic acid (16). Spiking experiments using defined amounts of calibrating peptides led to a precise quantification of HLA-A*02 ligands (Fig. 1B, Supplemental Table III) and confirmed the estimations from AUC values. Both SLEKTVLL (CD59) and SLLDKIIGA (PTRF) represented by far the most abundant peptides of EC, dominating the HLA-A*02–mediated peptide repertoire (Table II). Although also occurring in HLA-A*02 ligand pools of BLC, they play a minor quantitative role there and are concealed by vast copy numbers of other HLA-A*02 ligands such as YLLPAIVHI (DDX5) and AIVDKVPSV (COPG) (Table II). In particular, the PTRF-derived peptide SLLDKIIGA was hardly detectable on BLC (Table I), highlighting the observation that in no other tissues or cell lines analyzed so far, SLLDKIIGA and SLEKTVLL were as dominant as in EC. These two peptides were repetitively identified as the most prevalent HLA-A*02 ligands in these cells. Knowing the total EC end BLC number per donor that entered these experiments, and knowing the number of HLA-A*02 molecules per cell, we were able to calculate that SLEKTVLL and SLLDKIIGA together represent >50% of all HLA-A*02–restricted peptides per single EC but <5% of the peptides presented by BLC.

Table 1. Peptides identified in EC (top) and BLC (bottom) together with their ranking based on the relative abundance estimated by the AUC of respective precursor ions

<table>
<thead>
<tr>
<th>Sequence</th>
<th>EC Donor 1</th>
<th></th>
<th></th>
<th>EC Donor 2</th>
<th></th>
<th></th>
<th>EC Donor 3</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AUC Rank</td>
</tr>
<tr>
<td>SLLDKIIGA</td>
<td>1.57 × 10⁷</td>
<td>2</td>
<td>3.53 × 10⁷</td>
<td>3</td>
<td>4.82 × 10⁷</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLEKTVLL</td>
<td>5.48 × 10⁷</td>
<td>1</td>
<td>9.46 × 10⁷</td>
<td>1</td>
<td>9.29 × 10⁷</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YLLPAIVHI</td>
<td>ND</td>
<td>4.43 × 10⁶</td>
<td>5</td>
<td>4.19 × 10⁶</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIVDKVPSV</td>
<td>ND</td>
<td>ND</td>
<td>4.00 × 10⁵</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILMHHKLL</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLPKLPQL</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YLPEDFIRV</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIDSYICQV</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILDQKINEV</td>
<td>3.48 × 10⁶</td>
<td>6</td>
<td>3.66 × 10⁶</td>
<td>9</td>
<td>5.60 × 10⁶</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLC Donor 1</td>
<td></td>
<td></td>
<td></td>
<td>AUC Rank</td>
<td></td>
<td></td>
<td>AUC Rank</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AUC Rank</td>
</tr>
<tr>
<td>SLLDKIIGA</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLEKTVLL</td>
<td>2.87 × 10⁷</td>
<td>226</td>
<td>6.95 × 10⁶</td>
<td>80</td>
<td>ND</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YLLPAIVHI</td>
<td>2.25 × 10⁸</td>
<td>37</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIVDKVPSV</td>
<td>1.30 × 10⁹</td>
<td>3</td>
<td>1.98 × 10⁹</td>
<td>2</td>
<td>1.54 × 10⁹</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILMHHKLL</td>
<td>2.43 × 10⁸</td>
<td>31</td>
<td>5.65 × 10⁶</td>
<td>108</td>
<td>ND</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLPKLPQL</td>
<td>2.83 × 10⁸</td>
<td>1</td>
<td>7.72 × 10⁶</td>
<td>400</td>
<td>ND</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YLPEDFIRV</td>
<td>2.88 × 10⁸</td>
<td>24</td>
<td>9.50 × 10⁶</td>
<td>56</td>
<td>ND</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIDSYICQV</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILDQKINEV</td>
<td>6.99 × 10⁸</td>
<td>6</td>
<td>1.56 × 10⁸</td>
<td>4</td>
<td>ND</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Journal of Immunology
Table II. Absolute quantification of selected HLA ligands in two consecutive runs, each containing 20% of complete isolation per cell line of EC (∼10⁶ cells) and BLC (∼4 × 10⁶ cells) from donor 1 with 0.3 (run 1) or 10 pmol (run 2) of spiked calibrating peptides

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Run 1</th>
<th>Run 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC donor 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLSKETVLL</td>
<td>3396.37</td>
<td>2864.74</td>
</tr>
<tr>
<td>SLLDKIIGA</td>
<td>355.31</td>
<td>836.80</td>
</tr>
<tr>
<td>AIVDKVPSV</td>
<td>347.41</td>
<td>114.09</td>
</tr>
<tr>
<td>ILDQKINEV</td>
<td>335.29</td>
<td>121.39</td>
</tr>
<tr>
<td>YLLPAIVHI</td>
<td>11.15</td>
<td>62.07</td>
</tr>
<tr>
<td>BLC donor 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIVDKVPSV</td>
<td>369,079.91</td>
<td>128,173.75</td>
</tr>
<tr>
<td>YLLPAIVHI</td>
<td>54,923.29</td>
<td>23,609.07</td>
</tr>
<tr>
<td>ILDQKINEV</td>
<td>209,735.02</td>
<td>23,182.60</td>
</tr>
<tr>
<td>SLSKETVLL</td>
<td>10,387.56</td>
<td>2764.77</td>
</tr>
<tr>
<td>SLLDKIIGA</td>
<td>30.47</td>
<td>157.82</td>
</tr>
</tbody>
</table>

was expressed both at the RNA and protein levels exclusively in EC and was not found in any other cell line analyzed (Fig. 2). CD59 was expressed at the RNA level in all cell lines analyzed (Fig. 2A). At the protein level, CD59 was expressed at highest level in EC and faintly in the two BLC lines analyzed, but not in T2 or LS174 colon cancer cells (Fig. 2B). DDX5, the ubiquitously expressed protein that is the source of the allotypic reference peptide YLLPAIVHI (DDX5168–176), which is present at large quantities in the peptide binding groove of HLA-A*02 molecules of most tissues (19), was found in all cell lines both at the RNA as at the protein level in similar amounts (Fig. 2). Interestingly, the abundant structure protein β-actin was equally expressed in all cell lines at the protein level (Fig. 2B). According to the SYFPEITHI algorithm (http://www.syfpeithi.de) (23), β-actin contains several peptide motifs that match criteria for HLA-A*02 binding. However, none of these putative HLA-A*02–restricted β-actin peptides was ever detected in the cell isolates analyzed, neither in EC nor in BLC (Supplemental Tables I, II).

Peptide affinity for HLA-A*02

High peptide affinity for HLA-A*02 may further contribute to the dominant representation of certain peptides in EC-derived profiles. We compared the endothelial peptides PTRF56–64 and CD59106–114, as well as the ubiquitous DDX5168–176 and SMCY311–319, for binding to HLA-A*02. A functional competition assay was performed to measure possible differences in peptide affinity for HLA-A*02. In this assay, the peptide concentration was determined at which target cell killing by Fluo58–66–specific CTL in the presence of 10⁻⁸ M Fluo58–66 peptide was inhibited by 50% (Fig. 3A, 3B, Table III). SMCY311–319 required 0.3 ± 0.2 × 10⁻⁵ M peptide concentration to reduce Fluo58–66–specific killing by 50%. For DDX5168–176, 0.8 ± 0.4 × 10⁻⁵ M, for PTRF56–64 1.5 ± 0.7 × 10⁻⁵ M, and for CD59106–114 2.1 ± 1.1 × 10⁻⁵ M peptide was necessary to inhibit Fluo58–66–specific lysis by 50%. This indicates that peptide affinity for HLA-A*02 is lowest for the two most abundant endothelial peptides PTRF56–64 and CD59106–114. This unexpected result was endorsed by a second independent experimental approach, that is, a T2 binding assay (24). Surface expression of HLA-A*02 was determined by flow cytometry after overnight pulsing of T2 cells by 10⁻⁵ M peptide (Fig. 3C). SMCY311–319 and DDX5168–176 were the strongest binders, increasing the fluorescence index 3.2 ± 0.2- and 2.9 ± 0.1-fold, respectively (Fig. 3C, Table III). PTRF56–64 and CD59106–114 showed significantly weaker binding, increasing HLA-A*02 expression 2.2 ± 0.1- and 1.4 ± 0.1-fold, respectively (p = 0.002 and p = 0.003, respectively). These results confirmed the observations made in the competitive binding assay.

Peptide concentrations could be adjusted according to the findings of the competitive Fluo58–66–binding assay to similar surface levels of HLA-A*02 in T2 cells (Fig. 3D). Compared with SMCY311–319, a 2.4-fold higher concentration for DDX5168–176, a 4.4-fold higher concentration for PTRF56–64, and an 8-fold higher peptide concentration for CD59106–114 was necessary to compensate for the weaker binding of the respective peptides (Fig. 3D).

Stability of the peptide/MHC class I complex

Finally, the decay of the peptide/HLA-A*02 complexes could make a difference in surface peptide presentation of cells. Half-lives of peptide/HLA-A*02 complexes were determined by measuring the HLA-A*02 surface expression on T2 cells at indicated time points after pulsing with adjusted peptide concentrations (Fig. 4). T2 cells were loaded with the peptide of interest for 24 h, unbound peptide was washed away, and HLA-A*02 surface expression was measured by flow cytometry at different time points (0, 2, 6, 24 h). SMCY311–319, DDX5168–176, and PTRF56–64 showed similar kinetics with half-lives of 6.0, 5.8, and 7 h, respectively (Fig. 4). However, the half-life of CD59106–114 was only 2.8 h and therefore substantially shorter compared with the other peptides. Stability of HLA-A*02/peptide complexes on the cell surface does not contribute to the dominant presentation of CD59106–114.

Modulation of endothelial CTL susceptibility by source protein expression

The dominant presentation of certain cell-specific peptides on EC could also compete with the surface expression of immunodominant CTL epitopes, for example, the HLA-A*02–restricted...
minor histocompatibility Ag Smcy311–319. By this mechanism EC could be protected at least partially from CTL-mediated lysis (13). To test this speculative hypothesis, precursor proteins of the abundant EC peptides were transiently eliminated by RNA interference and EC were then used as targets in a CTL assay. siRNA designed for Ddx5, Pfrf, and cd59 using a publicly available algorithm (www.microsynth.ch) (25) were used in EC and BLC and protein levels were assessed by Western blot (Fig. 5A). In EC, Ddx5 knockdown was complete after 24 h and lasted for >96 h. Cd59 protein levels started to decrease at 48 h and were undetectable by this method after 72 h. Pfrf elimination also started after 48 h. The protein reached minimal levels (20%) by 72 h and started to increase after 96 h. Based on these protein kinetics, cells were used after 72 h as targets in cytotoxicity assays. Simultaneous knockdown of Pfrf56–64, Cd59106–114, and Ddx5168–176 on male EC should render these cells more susceptible for killing by Smcy311–319-specific CTL. We found that after treatment of EC with combined siRNAs for 72 h, specific killing raised from 14 ± 6 to 21 ± 6% (p = 0.002; Fig. 5B). Killing of the male B cell line JY treated with either specific or mock siRNA remained unchanged (Fig. 5C). The seemingly small 7% difference in specific killing translates into a 90-fold higher amount of peptide expressed by EC (0.9 ± 102 M) when the cytolytic activity on treated and untreated EC is compared with the peptide titration curve using Smcy311–319-pulsed T2 cells as targets (Fig. 5D). HLA-A*02 expression levels of target cells were not changed by siRNA treatment after up to 72 h (Fig. 5E).

Discussion

In this study, we analyzed the endothelial peptide repertoire presented by HLA-A*02 and compared it with the repertoire presented by syngeneic B lymphoblastoid cells. We demonstrate that EC present a quantitatively different peptide repertoire that may contribute to the protection of EC from CTL-mediated lysis by competition with immunogenic peptides for the MHC class I binding sites. Compared to leukocyte-derived cells, the peptide repertoire presented by EC showed a consistent prevalence of two peptides, Smcy311–319 and Ddx5168–176.

Table III. Binding affinity and half-life of various peptide/HLA-A*02 complexes

<table>
<thead>
<tr>
<th>Competitive Binding Assay (Peptide Concentration for 50% Inhibition, M)</th>
<th>T2 Binding Assay (Fold Increase of Fluorescence Index)</th>
<th>Half-Life Assessment (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flu58–66</td>
<td>Not applicable</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Smcy311–319</td>
<td>0.3 ± 0.2 × 10⁻³</td>
<td>3.2 ± 0.2</td>
</tr>
<tr>
<td>Ddx5168–176</td>
<td>0.8 ± 0.4 × 10⁻³</td>
<td>2.9 ± 0.1</td>
</tr>
<tr>
<td>Pfrf56–64</td>
<td>1.5 ± 0.7 × 10⁻³***</td>
<td>2.2 ± 0.1**</td>
</tr>
<tr>
<td>Cd59106–114</td>
<td>2.1 ± 1.1 × 10⁻³***</td>
<td>1.4 ± 0.1**</td>
</tr>
</tbody>
</table>

See also Fig. 3.

**p < 0.05, significantly different from Smcy311–319.
We found that the predominance of these two endothelial peptides was caused by the abundant expression of the source proteins PTRF and CD59. PTRF has been identified as a major caveolae-associated protein (18), and caveolae are particularly abundant in endothelial cells and adipocytes. BLC and EC both express CD59 protein, although the amount is substantially higher in EC. This may explain the vast abundance of CD59106–114 peptide on EC compared with BLC. Note that SMCY311–319, an immunodominant HLA-A*02–bound peptide originally described as minor histocompatibility Ag (19), was never identified in the isolates from male cells, neither in BLC nor in EC. Similarly, we could never find peptides derived from β-actin in these isolates, although it is a strongly expressed structure protein, contains several possible HLA-A*02 binding motifs, and although YALPHAILRL and ALAPSTMKI (both from β-actin) were identified previously on tumor tissue.

We assume that for SMCY and particularly for β-actin, rather low protein synthesis or degradation rates are involved as mechanisms for quantitatively low surface expression of these peptides on both EC and BLC (26, 27). Male BLC (but not male EC) are recognized and killed by CTL specific for SMCY311–319 (13). This confirms that the peptide isolation assay is substantially less sensitive than the calcein-release–based killing assay for the surface detection of peptide motifs. It cannot be excluded that cysteine containing peptide SMCY311–319 is more prone to chemical modifications during the isolation process, which can lead to a decreased intensity of the unmodified peptide and this may interfere with peak annotation after analysis. However, even under reducing conditions and subsequent modification of cysteinyl residues with iodoacetamide, SMCY could not be detected in any of the runs (data not shown).

We further found that the strong expression and putatively also turnover of the precursor proteins of PTRF56–64 and CD59106–114 are able to compensate for the low binding affinity of the endothelial peptides to HLA-A*02 and their short half-life. It has been shown that one important factor for the immunogenicity of a peptide is the stability of the peptide/MHC complex (28, 29).

Peptides with lower affinity for the MHC class I molecule may form less stable peptide/MHC complexes, leading to decreased immunogenicity. The presentation of particularly weak binding peptides may therefore be another mechanism to protect EC from CTL-mediated lysis. The immunological significance of cell type-specific peptide presentation has been reported previously in the context of autoimmune diseases. Cell type-specific Ag expression may play an important role in organ- or cell-specific T cell-mediated autoimmune diseases such as type 1 diabetes mellitus or multiple sclerosis.
In a murine model of type I diabetes, the insulin-producing β cells of the pancreas are selectively targeted by autoreactive CD8\(^+\) T cells (30). In murine multiple sclerosis, autoreactive CD8\(^+\) T cells responsive to myelin-derived peptides have been reported that have the potential to kill selectively MHC class I-matched oligodendrocytes (31–33). In the context of allogeneic bone marrow transplantation it has been shown that the restricted expression of minor histocompatibility Ags on hematopoietic cells, including leukemic cells, can separate the beneficial graft-versus-leukemia from the harmful graft-versus-host effect of ubiquitously expressed minor histocompatibility Ags (34, 35). However, for endothelial cells, the cell type selective peptide repertoire seems to have an opposite effect. We provide evidence that the predominant presentation of the endothelium-specific Ags PTRF\(_{56-64}\) and CD59\(_{106-114}\) can protect EC from CTL-mediated lysis by competing with the immunodominant peptide SMCY\(_{311-319}\) for the binding site on HLA-A*02 molecules. Knockdown of the abundant endothelial source proteins PTRF, CD59, and DX5 by RNA interference led to an increased presentation of endogenously processed male-specific peptide SMCY\(_{311-319}\), proving that without the abundant endothelial peptides EC become better targets for SMCY\(_{311-319}\)-specific CTL. Importantly, this mechanism does not restore EC as CTL targets to the same level as BLC. Lack of activating costimulators ever, it has been shown in previous work that different cells process and present the same peptide source proteins in quantitatively different ways (39). The immediate consequences were differences in target cell recognition of these two cell types by the same CTL.

Disclosures

The authors have no conflicts of interest.

References

Supplementary Table SI: Peptides identified on EC (high confidence FDR <0.05, medium confidence FDR <0.15)

<table>
<thead>
<tr>
<th>Confidence Level</th>
<th>Sequence</th>
<th>GeneID</th>
<th>Description</th>
<th>Also found on BLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirmed*</td>
<td>AIVDKVPSV</td>
<td>22820</td>
<td>Coatamer subunit gamma</td>
<td>yes</td>
</tr>
<tr>
<td>Confirmed*</td>
<td>NLAEDIMRL</td>
<td>7431</td>
<td>Vimentin</td>
<td>yes</td>
</tr>
<tr>
<td>Confirmed*</td>
<td>SLLDKIIGA</td>
<td>284119</td>
<td>Polymerase I and transcript release factor</td>
<td>no</td>
</tr>
<tr>
<td>Confirmed*</td>
<td>SLSEKTVLL</td>
<td>966</td>
<td>CD59 glycoprotein</td>
<td>yes</td>
</tr>
<tr>
<td>Confirmed*</td>
<td>YLLPAIVHI</td>
<td>1655</td>
<td>Probable ATP-dependent RNA helicase DDX5</td>
<td>yes</td>
</tr>
<tr>
<td>High</td>
<td>ALATLIHQV</td>
<td>50813</td>
<td>COP9 signalosome complex subunit 7a</td>
<td>yes</td>
</tr>
<tr>
<td>High</td>
<td>ALGTDAEQKV</td>
<td>6814</td>
<td>Syntaxin-binding protein 3</td>
<td>yes</td>
</tr>
<tr>
<td>High</td>
<td>ALLDRIVSV</td>
<td>23165</td>
<td>Nuclear pore complex protein Nup205</td>
<td>yes</td>
</tr>
<tr>
<td>High</td>
<td>DVIRHGADAV</td>
<td>93099</td>
<td>Dermokine</td>
<td>no</td>
</tr>
<tr>
<td>High</td>
<td>GLADASLLKKV</td>
<td>25814</td>
<td>Ataxin-10</td>
<td>yes</td>
</tr>
<tr>
<td>High</td>
<td>GLDDIKDLKV</td>
<td>4343</td>
<td>Putative helicase MOV-10</td>
<td>yes</td>
</tr>
<tr>
<td>High</td>
<td>IALNEKLVNL</td>
<td>8665</td>
<td>Eukaryotic translation initiation factor 3 subunit F</td>
<td>no</td>
</tr>
<tr>
<td>High</td>
<td>ILDQKINEV</td>
<td>4953</td>
<td>Ornithine decarboxylase</td>
<td>yes</td>
</tr>
<tr>
<td>High</td>
<td>ILTDITKGV</td>
<td>1938</td>
<td>Elongation factor 2</td>
<td>yes</td>
</tr>
<tr>
<td>High</td>
<td>KVLDFEIIFL</td>
<td>4637</td>
<td>Myosin light polypeptide 6</td>
<td>no</td>
</tr>
<tr>
<td>High</td>
<td>KVVLTQANKLG</td>
<td>22872</td>
<td>Protein transport protein Sec31A</td>
<td>no</td>
</tr>
<tr>
<td>High</td>
<td>LIGQVHEV</td>
<td>10129</td>
<td>Protein furry homolog</td>
<td>no</td>
</tr>
<tr>
<td>High</td>
<td>LLAAWTARA</td>
<td>351</td>
<td>Amyloid beta A4 protein</td>
<td>no</td>
</tr>
<tr>
<td>High</td>
<td>NMLGGKQGTT</td>
<td>1828</td>
<td>Desmoglein-1</td>
<td>no</td>
</tr>
<tr>
<td>High</td>
<td>NVINGGSHAGNK</td>
<td>2023</td>
<td>Alpha-enolase</td>
<td>no</td>
</tr>
<tr>
<td>High</td>
<td>RVVGPISGADL</td>
<td>1828</td>
<td>Desmoglein-1</td>
<td>no</td>
</tr>
<tr>
<td>High</td>
<td>SLGSALRPST</td>
<td>7431</td>
<td>Vimentin</td>
<td>no</td>
</tr>
<tr>
<td>High</td>
<td>TTGAGNPVGD</td>
<td>847</td>
<td>Catalase</td>
<td>no</td>
</tr>
<tr>
<td>High</td>
<td>VLDYQRNV</td>
<td>7514</td>
<td>Exportin-1</td>
<td>yes</td>
</tr>
<tr>
<td>High</td>
<td>VLLKARLVP</td>
<td>165215</td>
<td>Protein FAM171B</td>
<td>yes</td>
</tr>
<tr>
<td>High</td>
<td>VLSPADKTNVKA</td>
<td>3039</td>
<td>Hemoglobin subunit alpha</td>
<td>no</td>
</tr>
<tr>
<td>High</td>
<td>YLDPAQRG</td>
<td>84326</td>
<td>UPF0585 protein C16orf13</td>
<td>yes</td>
</tr>
<tr>
<td>Medium</td>
<td>ALSDDHHIYL</td>
<td>226</td>
<td>Fructose-bisphosphate aldolase A</td>
<td>yes</td>
</tr>
<tr>
<td>Medium</td>
<td>FLDNERHEV</td>
<td>5585</td>
<td>Serine/threonine-protein kinase</td>
<td>no</td>
</tr>
<tr>
<td>Medium</td>
<td>AASequence</td>
<td>Accession</td>
<td>Function</td>
<td>Presence</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------------</td>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>Medium</td>
<td>FLDPNIPKA</td>
<td>79053</td>
<td>Probable dolichyl pyrophosphate Glc1Man9GlcNAc2 alpha-1,3-glucosyltransferase</td>
<td>yes</td>
</tr>
<tr>
<td>Medium</td>
<td>FLIRESETL</td>
<td>4067</td>
<td>Tyrosine-protein kinase Lyn</td>
<td>yes</td>
</tr>
<tr>
<td>Medium</td>
<td>FLQEKSPAV</td>
<td>9898</td>
<td>Ubiquitin-associated protein 2-like</td>
<td>yes</td>
</tr>
<tr>
<td>Medium</td>
<td>FVDDYTVRV</td>
<td>10213</td>
<td>26S proteasome non-ATPase regulatory subunit 14</td>
<td>no</td>
</tr>
<tr>
<td>Medium</td>
<td>GLDIDGIYRV</td>
<td>94134</td>
<td>Rho GTPase-activating protein</td>
<td>no</td>
</tr>
<tr>
<td>Medium</td>
<td>GLGPPGRSV</td>
<td>144108</td>
<td>Protein SPT2 homolog</td>
<td>no</td>
</tr>
<tr>
<td>Medium</td>
<td>GLmKYIGEV</td>
<td>79054</td>
<td>Transient receptor potential cation channel subfamily M member 8</td>
<td>yes</td>
</tr>
<tr>
<td>Medium</td>
<td>GLRRVDDFKKA</td>
<td>284119</td>
<td>Polymerase I and transcript release factor</td>
<td>no</td>
</tr>
<tr>
<td>Medium</td>
<td>IIAVSLAVNL</td>
<td>283537</td>
<td>Solute carrier family 46 member 3</td>
<td>no</td>
</tr>
<tr>
<td>Medium</td>
<td>ILDAAGGHNV</td>
<td>5707</td>
<td>26S proteasome non-ATPase regulatory subunit 1</td>
<td>yes</td>
</tr>
<tr>
<td>Medium</td>
<td>ILDPHVLLL</td>
<td>4927</td>
<td>Nuclear pore complex protein Nup88</td>
<td>no</td>
</tr>
<tr>
<td>Medium</td>
<td>IQDITQRL</td>
<td>4478</td>
<td>Moesin</td>
<td>no</td>
</tr>
<tr>
<td>Medium</td>
<td>KILNGKILPT</td>
<td>222255</td>
<td>Ataxin-7-like protein 1</td>
<td>no</td>
</tr>
<tr>
<td>Medium</td>
<td>KTVDGPSGKL</td>
<td>2597</td>
<td>Glyceraldehyde-3-phosphate dehydrogenase</td>
<td>no</td>
</tr>
<tr>
<td>Medium</td>
<td>KVFDPVPGV</td>
<td>1660</td>
<td>ATP-dependent RNA helicase A</td>
<td>no</td>
</tr>
<tr>
<td>Medium</td>
<td>LIRGPAETAT</td>
<td>5756</td>
<td>Twinfilin-1</td>
<td>no</td>
</tr>
<tr>
<td>Medium</td>
<td>LLGPRLVLA</td>
<td>10972</td>
<td>Transmembrane emp24 domain-containing protein 10</td>
<td>no</td>
</tr>
<tr>
<td>Medium</td>
<td>LVKGHAYS1</td>
<td>14796</td>
<td>Calpain-1</td>
<td>no</td>
</tr>
<tr>
<td>Medium</td>
<td>LVQPRVEFIL</td>
<td>3837</td>
<td>Importin subunit beta-1</td>
<td>no</td>
</tr>
<tr>
<td>Medium</td>
<td>LVRPGTAL</td>
<td>1832</td>
<td>Desmoplakin</td>
<td>no</td>
</tr>
<tr>
<td>Medium</td>
<td>LVRPGTAEL</td>
<td>1832</td>
<td>Desmoplakin</td>
<td>no</td>
</tr>
<tr>
<td>Medium</td>
<td>LVVRHQLLKT</td>
<td>1350</td>
<td>Cytochrome c oxidase subunit 7C, mitochondrial</td>
<td>no</td>
</tr>
<tr>
<td>Medium</td>
<td>NQWDGTQHGTV</td>
<td>7402</td>
<td>Utrophin</td>
<td>no</td>
</tr>
<tr>
<td>Medium</td>
<td>PLKQGGAKA</td>
<td>8022</td>
<td>Putative myosin-XVB</td>
<td>no</td>
</tr>
<tr>
<td>Medium</td>
<td>RALPDFKGI</td>
<td>505403</td>
<td>Haloacid Dehalogenase-like hydrolase domain-containing protein</td>
<td>no</td>
</tr>
<tr>
<td>Medium</td>
<td>RIIDVVYNA</td>
<td>6202</td>
<td>40S ribosomal protein S8</td>
<td>no</td>
</tr>
<tr>
<td>Medium</td>
<td>TVADKIHSV</td>
<td>11072</td>
<td>Dual specificity protein</td>
<td>yes</td>
</tr>
<tr>
<td>Medium</td>
<td>Peptide</td>
<td>Spectrum ID</td>
<td>Protein Name</td>
<td>Confirmation</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>Medium</td>
<td>VLDDKLVFV</td>
<td>196527</td>
<td>Anoctamin-6</td>
<td>yes</td>
</tr>
<tr>
<td>Medium</td>
<td>VLWGETVHL</td>
<td>1326</td>
<td>Mitogen-activated protein kinase kinase 8</td>
<td>yes</td>
</tr>
<tr>
<td>Medium</td>
<td>VMDSKIVQV</td>
<td>3841</td>
<td>Importin subunit alpha-6</td>
<td>yes</td>
</tr>
<tr>
<td>Medium</td>
<td>VTSLEKSLI</td>
<td>342372</td>
<td>Polycystic kidney disease protein 1-like 3</td>
<td>no</td>
</tr>
<tr>
<td>Medium</td>
<td>YQYPVIIHL</td>
<td>64834</td>
<td>Elongation of very long chain fatty acids protein</td>
<td>yes</td>
</tr>
</tbody>
</table>

Confirmation achieved by positive matching of fragment spectra with respective spectra of synthetic peptides.
Supplementary Table SII: Peptides identified on BLC (high confidence FDR <0.05, medium confidence FDR <0.15).

<table>
<thead>
<tr>
<th>Confidence Level</th>
<th>Sequence</th>
<th>GeneID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirmed*</td>
<td>AIVDKVPSV</td>
<td>22820</td>
<td>Coatamer subunit gamma</td>
</tr>
<tr>
<td>Confirmed*</td>
<td>ILDQKINEV</td>
<td>4953</td>
<td>Ornithine decarboxylase</td>
</tr>
<tr>
<td>Confirmed*</td>
<td>ILMEHIHKL</td>
<td>6143</td>
<td>60S ribosomal protein L19</td>
</tr>
<tr>
<td>Confirmed*</td>
<td>SLSEKTVML</td>
<td>966</td>
<td>CD59 glycoprotein</td>
</tr>
<tr>
<td>Confirmed*</td>
<td>VLIPKLPQL</td>
<td>94103</td>
<td>ORM1-like protein 3</td>
</tr>
<tr>
<td>Confirmed*</td>
<td>YLLPAIVHI</td>
<td>1655</td>
<td>Probable ATP-dependent RNA helicase DDX5</td>
</tr>
<tr>
<td>Confirmed*</td>
<td>YLPEDFIRV</td>
<td>3656</td>
<td>Interleukin-1 receptor-associated kinase-like 2</td>
</tr>
<tr>
<td>High</td>
<td>AIKKKDELERA</td>
<td>6193</td>
<td>40S ribosomal protein S5</td>
</tr>
<tr>
<td>High</td>
<td>AILETAPKEV</td>
<td>6238</td>
<td>Ribosome-binding protein 1</td>
</tr>
<tr>
<td>High</td>
<td>AILTVVPKI</td>
<td>9730</td>
<td>Protein VPRBP</td>
</tr>
<tr>
<td>High</td>
<td>ALAAALAIH</td>
<td>79009</td>
<td>ATP-dependent RNA helicase DDX50</td>
</tr>
<tr>
<td>High</td>
<td>ALAALHVT</td>
<td>27173</td>
<td>Zinc transporter ZIP1</td>
</tr>
<tr>
<td>High</td>
<td>ALADGVQKV</td>
<td>8542</td>
<td>Apolipoprotein L1</td>
</tr>
<tr>
<td>High</td>
<td>ALADKELLPSV</td>
<td>84883</td>
<td>Apoptosis-inducing factor 2</td>
</tr>
<tr>
<td>High</td>
<td>ALAEIAKAEL</td>
<td>6421</td>
<td>Splicing factor, proline- and glutamine-rich</td>
</tr>
<tr>
<td>High</td>
<td>ALAGHQDGITFI</td>
<td>80344</td>
<td>DDB1- and CUL4-associated factor 11</td>
</tr>
<tr>
<td>High</td>
<td>ALAKLVEAI</td>
<td>6130</td>
<td>60S ribosomal protein L7a</td>
</tr>
<tr>
<td>High</td>
<td>ALANHLIK</td>
<td>10938/30845</td>
<td>EH domain-containing protein 1/EH domain-containing protein 3</td>
</tr>
<tr>
<td>High</td>
<td>ALAQRLLE</td>
<td>161176</td>
<td>Nesprin-3</td>
</tr>
<tr>
<td>High</td>
<td>ALATLIHQV</td>
<td>50813</td>
<td>COP9 signalosome complex subunit 7a</td>
</tr>
<tr>
<td>High</td>
<td>ALDEYNMK</td>
<td>55601</td>
<td>Probable ATP-dependent RNA helicase DDX60</td>
</tr>
<tr>
<td>High</td>
<td>ALDKALT</td>
<td>8453</td>
<td>Cullin-2</td>
</tr>
<tr>
<td>High</td>
<td>ALDKATV</td>
<td>27250</td>
<td>Programmed cell death protein 4</td>
</tr>
<tr>
<td>High</td>
<td>ALDPASLPRV</td>
<td>9473</td>
<td>Protein THEMIS2</td>
</tr>
<tr>
<td>High</td>
<td>ALDSQVPK</td>
<td>89846</td>
<td>FYVE, RhoGEF and PH domain-containing protein 3</td>
</tr>
<tr>
<td>High</td>
<td>ALEEKIPNI</td>
<td>2941</td>
<td>Glutathione S-transferase A4</td>
</tr>
<tr>
<td>High</td>
<td>ALFDQDK</td>
<td>221184</td>
<td>Copine-2</td>
</tr>
<tr>
<td>High</td>
<td>ALFQR</td>
<td>1736</td>
<td>H/ACA ribonucleoprotein complex subunit</td>
</tr>
<tr>
<td>High</td>
<td>ALGAGIERMGL</td>
<td>4670</td>
<td>Heterogeneous nuclear ribonucleoprotein M</td>
</tr>
<tr>
<td>High</td>
<td>ALGPTGRGV</td>
<td>9517</td>
<td>Serine palmitoyltransferase 2</td>
</tr>
<tr>
<td>High</td>
<td>ALGTDAEGKQKV</td>
<td>6814</td>
<td>Syntaxin-binding protein 3</td>
</tr>
<tr>
<td>High</td>
<td>ALIARVTNV</td>
<td>29108</td>
<td>Apoptosis-associated speck-like protein containing a CARD</td>
</tr>
<tr>
<td>High</td>
<td>ALIDRVMVNL</td>
<td>1649</td>
<td>DNA damage-inducible transcript 3 protein</td>
</tr>
<tr>
<td>High</td>
<td>ALIEAEKQAVQ</td>
<td>11160</td>
<td>Erlin-2</td>
</tr>
<tr>
<td>High</td>
<td>ALIEKLVVEL</td>
<td>23649</td>
<td>DNA polymerase alpha subunit B</td>
</tr>
<tr>
<td>High</td>
<td>ALITRIFGV</td>
<td>63892</td>
<td>Thyroid adenoma-associated protein</td>
</tr>
<tr>
<td>High</td>
<td>ALKDLINEA</td>
<td>5111</td>
<td>Proliferating cell nuclear antigen</td>
</tr>
<tr>
<td>High</td>
<td>ALLAGPLRPAL</td>
<td>26071</td>
<td>Protein FAM127B</td>
</tr>
<tr>
<td>High</td>
<td>ALLAGSEYKLKL</td>
<td>8664</td>
<td>Eukaryotic translation initiation factor 3 subunit D</td>
</tr>
<tr>
<td>High</td>
<td>ALLDGRLQVVV</td>
<td>2194</td>
<td>Fatty acid synthase</td>
</tr>
<tr>
<td>High</td>
<td>ALLDQLHTL</td>
<td>8202</td>
<td>Nuclear receptor coactivator 3</td>
</tr>
<tr>
<td>High</td>
<td>ALLDRIVSV</td>
<td>23165</td>
<td>Nuclear pore complex protein Nup205</td>
</tr>
<tr>
<td>High</td>
<td>ALLDQSVHLL</td>
<td>8943</td>
<td>AP-3 complex subunit delta-1</td>
</tr>
<tr>
<td>High</td>
<td>ALLEDEERVVRL</td>
<td>57488</td>
<td>Extended synaptotagmin-2</td>
</tr>
<tr>
<td>High</td>
<td>ALLEMDARL</td>
<td>54512</td>
<td>Exosome complex component RRP41</td>
</tr>
<tr>
<td>High</td>
<td>ALLGDLTKA</td>
<td>30000</td>
<td>Transportin-2</td>
</tr>
<tr>
<td>High</td>
<td>ALLGILQHV</td>
<td>23386</td>
<td>NudC domain-containing protein 3</td>
</tr>
<tr>
<td>High</td>
<td>ALLGRIUSA</td>
<td>506</td>
<td>ATP synthase subunit beta, mitochondrial</td>
</tr>
<tr>
<td>High</td>
<td>ALLQQVHSA</td>
<td>80209</td>
<td>Proline and serine-rich protein 1</td>
</tr>
<tr>
<td>High</td>
<td>ALLSQGLREA</td>
<td>23028</td>
<td>Lysine-specific histone demethylase 1A</td>
</tr>
<tr>
<td>High</td>
<td>ALMDEVVKA</td>
<td>5230</td>
<td>Phosphoglycerate kinase 1</td>
</tr>
<tr>
<td>High</td>
<td>ALMDLDVKKMPL</td>
<td>10039</td>
<td>Poly [ADP-ribose] polymerase 3</td>
</tr>
<tr>
<td>High</td>
<td>ALMEQVAHQTI</td>
<td>11140</td>
<td>Hsp90 co-chaperone Cdc37</td>
</tr>
<tr>
<td>High</td>
<td>ALNEEAGRLLL</td>
<td>27338</td>
<td>Ubiquitin-conjugating enzyme E2 S</td>
</tr>
<tr>
<td>High</td>
<td>ALNEKLVNL</td>
<td>8665</td>
<td>Eukaryotic translation initiation factor 3 subunit F</td>
</tr>
<tr>
<td>High</td>
<td>ALNELLQHV</td>
<td>7094</td>
<td>Talin-1</td>
</tr>
<tr>
<td>High</td>
<td>ALNEQIARL</td>
<td>10403</td>
<td>Kinetochore protein NDC80 homolog</td>
</tr>
<tr>
<td>High</td>
<td>ALQEKLVWNV</td>
<td>92105</td>
<td>Integrator complex subunit 4</td>
</tr>
<tr>
<td>High</td>
<td>ALQEKVQAV</td>
<td>23172</td>
<td>BRISC complex subunit Abro1</td>
</tr>
<tr>
<td>High</td>
<td>ALQEMVHQV</td>
<td>4739</td>
<td>Enhancer of filamentation 1</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
<td>------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>High</td>
<td>ALSDHHIYL</td>
<td>226</td>
<td>Fructose-bisphosphate aldolase A</td>
</tr>
<tr>
<td>High</td>
<td>ALSEKLARL</td>
<td>115106</td>
<td>HAUS augmin-like complex subunit 1</td>
</tr>
<tr>
<td>High</td>
<td>ALSKEGIVAL</td>
<td>908</td>
<td>T-complex protein 1 subunit zeta</td>
</tr>
<tr>
<td>High</td>
<td>ALSNLEVKL</td>
<td>83706</td>
<td>Fermitin family homolog 3</td>
</tr>
<tr>
<td>High</td>
<td>ALTRLHITV</td>
<td>64121</td>
<td>Ras-related GTP-binding protein C</td>
</tr>
<tr>
<td>High</td>
<td>ALVDHLNVGV</td>
<td>2647</td>
<td>Biogenesis of lysosome-related organelles complex 1 subunit 1</td>
</tr>
<tr>
<td>High</td>
<td>ALVSSLHLL</td>
<td>22820</td>
<td>Coatomer subunit gamma</td>
</tr>
<tr>
<td>High</td>
<td>ALWEDEGVRA</td>
<td>2778</td>
<td>Guanine nucleotide-binding protein G(s) subunit alpha isoforms XLas</td>
</tr>
<tr>
<td>High</td>
<td>ALWSVGGEVHV</td>
<td>115330</td>
<td>Probable G-protein coupled receptor 146</td>
</tr>
<tr>
<td>High</td>
<td>ALYASRLYL</td>
<td>29926</td>
<td>Mannose-1-phosphate guanyltransferase alpha</td>
</tr>
<tr>
<td>High</td>
<td>ALYDEVRTV</td>
<td>23347</td>
<td>Structural maintenance of chromosomes flexible hinge domain-containing protein 1</td>
</tr>
<tr>
<td>High</td>
<td>ALYDNVEKL</td>
<td>440</td>
<td>Asparagine synthetase [glutamine-hydrolyzing]</td>
</tr>
<tr>
<td>High</td>
<td>ALYHLAIKL</td>
<td>11215</td>
<td>A-kinase anchor protein 11</td>
</tr>
<tr>
<td>High</td>
<td>AMAQEGLREV</td>
<td>3071</td>
<td>Nck-associated protein 1-like</td>
</tr>
<tr>
<td>High</td>
<td>AMFDHIPVGV</td>
<td>51493</td>
<td>tRNA-splicing ligase RtcB homolog</td>
</tr>
<tr>
<td>High</td>
<td>AMFGKLMTI</td>
<td>23244</td>
<td>Sister chromatid cohesion protein PDS5 homolog A</td>
</tr>
<tr>
<td>High</td>
<td>AMLAVLHTV</td>
<td>60673</td>
<td>Autophagy-related protein 101</td>
</tr>
<tr>
<td>High</td>
<td>AMLENASDIKL</td>
<td>23</td>
<td>ATP-binding cassette sub-family F member 1</td>
</tr>
<tr>
<td>High</td>
<td>AMLTVLHEI</td>
<td>10973</td>
<td>Activating signal cointegrator 1 complex subunit 3</td>
</tr>
<tr>
<td>High</td>
<td>AMWEHPITA</td>
<td>60490</td>
<td>Phosphopantothenoylcysteine decarboxylase</td>
</tr>
<tr>
<td>High</td>
<td>AMYEHKIFV</td>
<td>2821</td>
<td>Glucose-6-phosphate isomerase</td>
</tr>
<tr>
<td>High</td>
<td>AVTKTAGPIASA</td>
<td>4134</td>
<td>Microtubule-associated protein 4</td>
</tr>
<tr>
<td>High</td>
<td>EITNVTQKI</td>
<td>10388</td>
<td>Synaptonemal complex protein 2</td>
</tr>
<tr>
<td>High</td>
<td>FASHVSPEV</td>
<td>26286</td>
<td>ADP-ribosylation factor GTPase-activating protein 3</td>
</tr>
<tr>
<td>High</td>
<td>FIFDVHVHEV</td>
<td>23654</td>
<td>Plexin-B2</td>
</tr>
<tr>
<td>High</td>
<td>FIFSDTHEL</td>
<td>143</td>
<td>Poly [ADP-ribose] polymerase 4</td>
</tr>
<tr>
<td>High</td>
<td>FIFSEKPVFV</td>
<td>6653</td>
<td>Sortilin-related receptor</td>
</tr>
<tr>
<td>High</td>
<td>FIIEKQPPQV</td>
<td>6777</td>
<td>Signal transducer and activator of transcription 5B</td>
</tr>
<tr>
<td>Gene Name</td>
<td>Accession</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>FIINGIEKV</td>
<td>84172</td>
<td>DNA-directed RNA polymerase I subunit RPA2</td>
<td></td>
</tr>
<tr>
<td>FIMEGPLTRI</td>
<td>6655</td>
<td>Son of sevenless homolog 2</td>
<td></td>
</tr>
<tr>
<td>FIMEGTLTRV</td>
<td>6654</td>
<td>Son of sevenless homolog 1</td>
<td></td>
</tr>
<tr>
<td>FINARNWTL</td>
<td>5198</td>
<td>Phosphoribosylformylglycinamidine synthase</td>
<td></td>
</tr>
<tr>
<td>FINIVVHSV</td>
<td>91010</td>
<td>Formin-like protein 3</td>
<td></td>
</tr>
<tr>
<td>FIQEIEHAL</td>
<td>60412</td>
<td>Exocyst complex component 4</td>
<td></td>
</tr>
<tr>
<td>FISEFHRV</td>
<td>5719</td>
<td>26S proteasome non-ATPase regulatory subunit 13</td>
<td></td>
</tr>
<tr>
<td>FIWENIHTL</td>
<td>667</td>
<td>Dystonin</td>
<td></td>
</tr>
<tr>
<td>FLADVDKLKL</td>
<td>9793</td>
<td>Cytoskeleton-associated protein 5</td>
<td></td>
</tr>
<tr>
<td>FLAEDPKVTL</td>
<td>200316</td>
<td>DNA dC->dU-editing enzyme APOBEC-3G</td>
<td></td>
</tr>
<tr>
<td>FLAEHDYGL</td>
<td>25962</td>
<td>Protein virilizer homolog</td>
<td></td>
</tr>
<tr>
<td>FLAEHPNVTL</td>
<td>200316</td>
<td>DNA dC->dU-editing enzyme APOBEC-3F</td>
<td></td>
</tr>
<tr>
<td>FLAHQAVRTL</td>
<td>2976</td>
<td>General transcription factor 3C polypeptide 2</td>
<td></td>
</tr>
<tr>
<td>FLASESLIKQI</td>
<td>4736</td>
<td>60S ribosomal protein L10a</td>
<td></td>
</tr>
<tr>
<td>FLAVRVQQV</td>
<td>57514</td>
<td>Rho GTPase-activating protein 31</td>
<td></td>
</tr>
<tr>
<td>FLDASGAKL</td>
<td>9689</td>
<td>Basic leucine zipper and W2 domain-containing protein 1</td>
<td></td>
</tr>
<tr>
<td>FLDDVHSL</td>
<td>221037</td>
<td>Probable JmjC domain-containing histone demethylation protein 2C</td>
<td></td>
</tr>
<tr>
<td>FLDENVHFA</td>
<td>54878</td>
<td>Dipeptidyl peptidase 8</td>
<td></td>
</tr>
<tr>
<td>FLDIHNIHV</td>
<td>4534</td>
<td>Myotubulin</td>
<td></td>
</tr>
<tr>
<td>FLDITNPKA</td>
<td>7353</td>
<td>Ubiquitin fusion degradation protein 1 homolog</td>
<td></td>
</tr>
<tr>
<td>FLDKNDHSL</td>
<td>11113</td>
<td>Citron Rho-interacting kinase</td>
<td></td>
</tr>
<tr>
<td>FLDKQGFYV</td>
<td>58513</td>
<td>Epidermal growth factor receptor substrate 15-like 1</td>
<td></td>
</tr>
<tr>
<td>FLDPGGPMKM</td>
<td>55627</td>
<td>Sphingomyelin phosphodiesterase 4</td>
<td></td>
</tr>
<tr>
<td>FLDPNNIPKA</td>
<td>79053</td>
<td>Probable dolichyl pyrophosphate Glc1Man9GlcNAc2 alpha-1,3-glucosyltransferase</td>
<td></td>
</tr>
<tr>
<td>FLDPRPLTV</td>
<td>1545</td>
<td>Cytochrome P450 1B1</td>
<td></td>
</tr>
<tr>
<td>FLDPRPLTVV</td>
<td>1545</td>
<td>Cytochrome P450 1B1</td>
<td></td>
</tr>
<tr>
<td>FLDQHGHNL</td>
<td>23499</td>
<td>Microtubule-actin cross-linking factor 1, isoform 4</td>
<td></td>
</tr>
<tr>
<td>FLDVNSHKI</td>
<td>114791</td>
<td>Gamma-tubulin complex component 5</td>
<td></td>
</tr>
<tr>
<td>FLFDRPMHV</td>
<td>50804</td>
<td>Myelin expression factor 2</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>FLFEPVVKA</td>
<td>55671</td>
<td>Serine/threonine-protein phosphatase 4 regulatory subunit 3A</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>High</td>
<td>FLFGEVHKK</td>
<td>55388</td>
<td>Protein MCM10 homolog</td>
</tr>
<tr>
<td>High</td>
<td>FLFNKVVNL</td>
<td>51646</td>
<td>Protein yippee-like 5</td>
</tr>
<tr>
<td>High</td>
<td>FLFQEPRI</td>
<td>23272</td>
<td>Protein FAM208A</td>
</tr>
<tr>
<td>High</td>
<td>FLGEKIASV</td>
<td>283635</td>
<td>Protein FAM177A1</td>
</tr>
<tr>
<td>High</td>
<td>FLHDDNMFRV</td>
<td>79591</td>
<td>UPF0668 protein C10orf76</td>
</tr>
<tr>
<td>High</td>
<td>FLHDHQAEL</td>
<td>259197</td>
<td>Natural cytotoxicity triggering receptor 3</td>
</tr>
<tr>
<td>High</td>
<td>FLHSLNIEM</td>
<td>23133</td>
<td>Histone lysine demethylase PHF8</td>
</tr>
<tr>
<td>High</td>
<td>FLIEGTISRA</td>
<td>55171</td>
<td>TBCC domain-containing protein 1</td>
</tr>
<tr>
<td>High</td>
<td>FLIEPEHVNTV</td>
<td>80124</td>
<td>Deubiquitinating protein VCIP135</td>
</tr>
<tr>
<td>High</td>
<td>FLIGPKLYEA</td>
<td>2071</td>
<td>TFIIH basal transcription factor complex helicase XPB subunit</td>
</tr>
<tr>
<td>High</td>
<td>FLIRESETL</td>
<td>4067</td>
<td>Tyrosine-protein kinase Lyn</td>
</tr>
<tr>
<td>High</td>
<td>FLKEHMDEV</td>
<td>5108</td>
<td>Pericentriolar material 1 protein</td>
</tr>
<tr>
<td>High</td>
<td>FLLDKKIGV</td>
<td>10576</td>
<td>T-complex protein 1 subunit beta</td>
</tr>
<tr>
<td>High</td>
<td>FLLDPVKGERL</td>
<td>5339</td>
<td>Plectin</td>
</tr>
<tr>
<td>High</td>
<td>FLELGIRSL</td>
<td>3071</td>
<td>Nck-associated protein 1-like</td>
</tr>
<tr>
<td>High</td>
<td>FLEKGYEV</td>
<td>2762</td>
<td>GDP-mannose 4,6 dehydratase</td>
</tr>
<tr>
<td>High</td>
<td>FLEKSRVV</td>
<td>4643</td>
<td>Unconventional myosin-Ie</td>
</tr>
<tr>
<td>High</td>
<td>FLENSSKV</td>
<td>9873</td>
<td>FCH and double SH3 domains protein 2</td>
</tr>
<tr>
<td>High</td>
<td>FLETVVRV</td>
<td>9910</td>
<td>Rab GTPase-activating protein 1-like</td>
</tr>
<tr>
<td>High</td>
<td>FLLGPEGQHLL</td>
<td>84875</td>
<td>Poly [ADP-ribose] polymerase 10</td>
</tr>
<tr>
<td>High</td>
<td>FLLGSVVHEV</td>
<td>79613</td>
<td>Transmembrane and coiled-coil domain-containing protein 7</td>
</tr>
<tr>
<td>High</td>
<td>FLLHPGLKLV</td>
<td>51062</td>
<td>Atlastin-1</td>
</tr>
<tr>
<td>High</td>
<td>FLLPKVQSI</td>
<td>23240</td>
<td>Transmembrane protein 131-like</td>
</tr>
<tr>
<td>High</td>
<td>FLLQHQTFL</td>
<td>23345</td>
<td>Nesprin-1</td>
</tr>
<tr>
<td>High</td>
<td>FLLQHVQEL</td>
<td>64127</td>
<td>Nucleotide-binding oligomerization domain-containing protein 2</td>
</tr>
<tr>
<td>High</td>
<td>FLMDFIHQV</td>
<td>55746</td>
<td>Nuclear pore complex protein Nup133</td>
</tr>
<tr>
<td>High</td>
<td>FLMEEVHMI</td>
<td>10057</td>
<td>Multidrug resistance-associated protein 5</td>
</tr>
<tr>
<td>High</td>
<td>FLMNEVIKL</td>
<td>84433</td>
<td>Caspase recruitment domain-containing protein 11</td>
</tr>
<tr>
<td>High</td>
<td>FLNGEVIRL</td>
<td>3028</td>
<td>3-hydroxyacyl-CoA dehydrogenase type-2</td>
</tr>
<tr>
<td>High</td>
<td>FLNKMKIMV</td>
<td>10575</td>
<td>T-complex protein 1 subunit delta</td>
</tr>
<tr>
<td>Accession</td>
<td>Sequence</td>
<td>Score</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>High</td>
<td>FLPETRIMTSV</td>
<td>11319</td>
<td>Protein SGT1</td>
</tr>
<tr>
<td>High</td>
<td>FLQEHNNTTL</td>
<td>440193</td>
<td>Protein Daple</td>
</tr>
<tr>
<td>High</td>
<td>FLQEKLQEII</td>
<td>5926</td>
<td>AT-rich interactive domain-containing protein 4A</td>
</tr>
<tr>
<td>High</td>
<td>FLQENTHVRLL</td>
<td>9582</td>
<td>Probable DNA dC->dU-editing enzyme APOBEC-3B</td>
</tr>
<tr>
<td>High</td>
<td>FLQELTVKL</td>
<td>2941</td>
<td>Glutathione S-transferase A4</td>
</tr>
<tr>
<td>High</td>
<td>FLQAVDKV</td>
<td>64210</td>
<td>MMS19 nucleotide excision repair protein homolog</td>
</tr>
<tr>
<td>High</td>
<td>FLQPHELVAV</td>
<td>55610</td>
<td>Coiled-coil domain-containing protein 132</td>
</tr>
<tr>
<td>High</td>
<td>FLREYFERL</td>
<td>5573</td>
<td>cAMP-dependent protein kinase type 1-alpha regulatory subunit</td>
</tr>
<tr>
<td>High</td>
<td>FLSEEGGHAV</td>
<td>5210</td>
<td>6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4</td>
</tr>
<tr>
<td>High</td>
<td>FLSEHPNTL</td>
<td>9582</td>
<td>Probable DNA dC->dU-editing enzyme APOBEC-3B</td>
</tr>
<tr>
<td>High</td>
<td>FLTDSNNIKEV</td>
<td>3735</td>
<td>Lysine--tRNA ligase</td>
</tr>
<tr>
<td>High</td>
<td>FLVDGPRVQL</td>
<td>90204</td>
<td>Zinc finger SWIM domain-containing protein 1</td>
</tr>
<tr>
<td>High</td>
<td>FLVEHVLTL</td>
<td>25800</td>
<td>Zinc transporter ZIP6</td>
</tr>
<tr>
<td>High</td>
<td>FLVQNIHTL</td>
<td>55299</td>
<td>Ribosome biogenesis protein BRX1 homolog</td>
</tr>
<tr>
<td>High</td>
<td>FLVTIHTL</td>
<td>10154</td>
<td>Plexin-C1</td>
</tr>
<tr>
<td>High</td>
<td>FLWPKEVEL</td>
<td>146206</td>
<td>Leucine-rich repeat-containing protein 16C</td>
</tr>
<tr>
<td>High</td>
<td>FLYAGHIFL</td>
<td>90379</td>
<td>DDB1- and CUL4-associated factor 15</td>
</tr>
<tr>
<td>High</td>
<td>FLYDDNQRV</td>
<td>7153</td>
<td>DNA topoisomerase 2-alpha</td>
</tr>
<tr>
<td>High</td>
<td>FMDPQKMPYL</td>
<td>79068</td>
<td>Alpha-ketoglutarate-dependent dioxygenase FTO</td>
</tr>
<tr>
<td>High</td>
<td>FMFDEKLVTV</td>
<td>5537</td>
<td>Serine/threonine-protein phosphatase 6 catalytic subunit</td>
</tr>
<tr>
<td>High</td>
<td>FMFGQKLNV</td>
<td>3191</td>
<td>Heterogeneous nuclear ribonucleoprotein L</td>
</tr>
<tr>
<td>High</td>
<td>FMIDASVHPHTL</td>
<td>221960</td>
<td>Vacuolar fusion protein CCZ1 homolog B</td>
</tr>
<tr>
<td>High</td>
<td>FMLETVDVSKL</td>
<td>11212</td>
<td>Proline synthase co-transcribed bacterial homolog protein</td>
</tr>
<tr>
<td>High</td>
<td>FMNDAIEKA</td>
<td>9129</td>
<td>U4/U6 small nuclear ribonucleoprotein Prp3</td>
</tr>
<tr>
<td>High</td>
<td>FTFNIKDHHSV</td>
<td>79772</td>
<td>Multiple C2 and transmembrane domain-containing protein 1</td>
</tr>
<tr>
<td>High</td>
<td>FVDERPEEVE</td>
<td>84811</td>
<td>BUD13 homolog</td>
</tr>
<tr>
<td>High</td>
<td>FVMGEPPKL</td>
<td>348654</td>
<td>Flap endonuclease GEN homolog 1</td>
</tr>
<tr>
<td>High</td>
<td>GIFGGHRSV</td>
<td>9100</td>
<td>Ubiquitin carboxyl-terminal hydrolase 10</td>
</tr>
<tr>
<td>High</td>
<td>GILTKELLHSV</td>
<td>9107</td>
<td>Myotubularin-related protein 6</td>
</tr>
<tr>
<td>Peptide Sequence</td>
<td>Score</td>
<td>Protein Description</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>GLADASLLKKV</td>
<td>25814</td>
<td>Ataxin-10</td>
<td></td>
</tr>
<tr>
<td>GLADKVVFL</td>
<td>790</td>
<td>CAD protein</td>
<td></td>
</tr>
<tr>
<td>GLADNTVIAKV</td>
<td>6897</td>
<td>Threonine-tRNA ligase, cytoplasmic</td>
<td></td>
</tr>
<tr>
<td>GLDDIKDLKV</td>
<td>4343</td>
<td>Putative helicase MOV-10</td>
<td></td>
</tr>
<tr>
<td>GLDHVVYKV</td>
<td>9931</td>
<td>Probable helicase with zinc finger domain</td>
<td></td>
</tr>
<tr>
<td>GLDPNPKPEL</td>
<td>57479</td>
<td>Proline-rich protein 12</td>
<td></td>
</tr>
<tr>
<td>GLDPQGDRSFL</td>
<td>57189</td>
<td>Protein LCHN</td>
<td></td>
</tr>
<tr>
<td>GLDPISARLV</td>
<td>55100</td>
<td>WD repeat-containing protein 70</td>
<td></td>
</tr>
<tr>
<td>GLDRNVT</td>
<td>3098</td>
<td>Hexokinase-1</td>
<td></td>
</tr>
<tr>
<td>GLDVGIYRV</td>
<td>55843</td>
<td>Rho GTPase-activating protein 15</td>
<td></td>
</tr>
<tr>
<td>GLFDQHLFR</td>
<td>11188</td>
<td>Nischarin</td>
<td></td>
</tr>
<tr>
<td>GLFQKTPPL</td>
<td>22974</td>
<td>Targeting protein for Xklp2</td>
<td></td>
</tr>
<tr>
<td>GLFSNDIPHV</td>
<td>134430</td>
<td>WD repeat-containing protein 36</td>
<td></td>
</tr>
<tr>
<td>GLGPTFKL</td>
<td>582</td>
<td>Bardet-Biedl syndrome 1 protein</td>
<td></td>
</tr>
<tr>
<td>GLIDQRLTI</td>
<td>9789</td>
<td>Signal peptidase complex subunit 2</td>
<td></td>
</tr>
<tr>
<td>GLIDQVTV</td>
<td>23499</td>
<td>Microtubule-actin cross-linking factor 1, isoform 4</td>
<td></td>
</tr>
<tr>
<td>GLIDVKPLG</td>
<td>134510</td>
<td>Ubiquitin-like domain-containing CTD phosphatase 1</td>
<td></td>
</tr>
<tr>
<td>GLIEIKKV</td>
<td>9141</td>
<td>Programmed cell death protein 5</td>
<td></td>
</tr>
<tr>
<td>GLLAGDRLVEV</td>
<td>9368</td>
<td>Na(+)/H(+) exchange regulatory cofactor NHE-RF1</td>
<td></td>
</tr>
<tr>
<td>GLLENIPRV</td>
<td>2618</td>
<td>Trifunctional purine biosynthetic protein adenosine-3</td>
<td></td>
</tr>
<tr>
<td>GLLETTQKV</td>
<td>9092</td>
<td>U4/U6.U5 tri-snRNP-associated protein 1</td>
<td></td>
</tr>
<tr>
<td>GLMDEKLLHV</td>
<td>23499</td>
<td>Microtubule-actin cross-linking factor 1, isoform 4</td>
<td></td>
</tr>
<tr>
<td>GLMIEKLV</td>
<td>10691</td>
<td>Glucocorticoid modulatory element-binding protein 1</td>
<td></td>
</tr>
<tr>
<td>GLMGAGIAQ</td>
<td>3033</td>
<td>Hydroxyacyl-coenzyme A dehydrogenase, mitochondrial</td>
<td></td>
</tr>
<tr>
<td>GLMKKAYEL</td>
<td>4207</td>
<td>Myocyte-specific enhancer factor 2B</td>
<td></td>
</tr>
<tr>
<td>GLMTTVHV</td>
<td>2597</td>
<td>Glyceraldehyde-3-phosphate dehydrogenase</td>
<td></td>
</tr>
<tr>
<td>GLQEGTHEL</td>
<td>6731</td>
<td>Signal recognition particle 72 kDa protein</td>
<td></td>
</tr>
<tr>
<td>GLSTEGYRV</td>
<td>2909</td>
<td>Rho GTPase-activating protein 35</td>
<td></td>
</tr>
<tr>
<td>GLTGQRLGV</td>
<td>55147</td>
<td>Probable RNA-binding protein 23</td>
<td></td>
</tr>
<tr>
<td>GLVDKIQAL</td>
<td>57019</td>
<td>Anamorsin</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>GLVGALMHV</td>
<td>7454</td>
<td>Wiskott-Aldrich syndrome protein</td>
</tr>
<tr>
<td>High</td>
<td>GLWEEDGRSTLL</td>
<td>90993</td>
<td>Cyclic AMP-responsive element-binding protein 3-like protein 1</td>
</tr>
<tr>
<td>High</td>
<td>GLWEESYRVT</td>
<td>26160</td>
<td>Intraflagellar transport protein 172 homolog</td>
</tr>
<tr>
<td>High</td>
<td>GLWGPVHEL</td>
<td>9747</td>
<td>Protein FAM115A</td>
</tr>
<tr>
<td>High</td>
<td>GLWSGPLPRV</td>
<td>10940</td>
<td>Ribonucleases P/MRP protein subunit POP1</td>
</tr>
<tr>
<td>High</td>
<td>GLYDGPVHEV</td>
<td>10570</td>
<td>Dihydropyrimidinase-related protein 4</td>
</tr>
<tr>
<td>High</td>
<td>GLYDSQNPPTV</td>
<td>23408</td>
<td>Formin-binding protein 1</td>
</tr>
<tr>
<td>High</td>
<td>GMYGKIAVMEL</td>
<td>1642</td>
<td>DNA damage-binding protein 1</td>
</tr>
<tr>
<td>High</td>
<td>GMYIFLHTV</td>
<td>94103</td>
<td>ORM1-like protein 3</td>
</tr>
<tr>
<td>High</td>
<td>GVAGGSILKGV</td>
<td>1968</td>
<td>Eukaryotic translation initiation factor 2 subunit 3</td>
</tr>
<tr>
<td>High</td>
<td>GYVGGSVHEA</td>
<td>55748</td>
<td>Cytosolic non-specific dipeptidase</td>
</tr>
<tr>
<td>High</td>
<td>HLAEVLERV</td>
<td>56254</td>
<td>E3 ubiquitin-protein ligase BRE1A</td>
</tr>
<tr>
<td>High</td>
<td>HLAIKLEQV</td>
<td>9730</td>
<td>Protein VPRBP</td>
</tr>
<tr>
<td>High</td>
<td>HLANIVERV</td>
<td>10346</td>
<td>E3 ubiquitin-protein ligase TRIM22</td>
</tr>
<tr>
<td>High</td>
<td>HLFDLTPAKV</td>
<td>55846</td>
<td>Integrin-alpha FG-GAP repeat-containing protein 2</td>
</tr>
<tr>
<td>High</td>
<td>HLEHSVEL</td>
<td>54914</td>
<td>Uncharacterized protein KIAA1797</td>
</tr>
<tr>
<td>High</td>
<td>HLLERVDQV</td>
<td>51199</td>
<td>Ninein</td>
</tr>
<tr>
<td>High</td>
<td>HLLSKLISV</td>
<td>285527</td>
<td>Protein furry homolog-like</td>
</tr>
<tr>
<td>High</td>
<td>HLMEIQVNGGT</td>
<td>6122</td>
<td>60S ribosomal protein L3</td>
</tr>
<tr>
<td>High</td>
<td>HLSLENNTKL</td>
<td>2803</td>
<td>Golgin subfamily A member 4</td>
</tr>
<tr>
<td>High</td>
<td>HLTDITLK</td>
<td>3735</td>
<td>Lysine--tRNA ligase</td>
</tr>
<tr>
<td>High</td>
<td>HLWGRGIVSI</td>
<td>79772</td>
<td>Multiple C2 and transmembrane domain-containing protein 1</td>
</tr>
<tr>
<td>High</td>
<td>HLYDIHVTV</td>
<td>390916</td>
<td>Nucleoside diphosphate-linked moiety X motif 19, mitochondrial</td>
</tr>
<tr>
<td>High</td>
<td>IIIEEGKEILV</td>
<td>1072</td>
<td>Cofilin-1</td>
</tr>
<tr>
<td>High</td>
<td>ILAAHVPTL</td>
<td>513</td>
<td>ATP synthase subunit delta, mitochondrial</td>
</tr>
<tr>
<td>High</td>
<td>ILDAAGHNVTI</td>
<td>5707</td>
<td>26S proteasome non-ATPase regulatory subunit 1</td>
</tr>
<tr>
<td>High</td>
<td>ILDDIGHGV</td>
<td>10152</td>
<td>Abl interactor 2</td>
</tr>
<tr>
<td>High</td>
<td>ILDDSPKEI</td>
<td>26269</td>
<td>F-box only protein 8</td>
</tr>
<tr>
<td>High</td>
<td>ILDDTAKNLRV</td>
<td>375056</td>
<td>Melanoma inhibitory activity protein 3</td>
</tr>
<tr>
<td>High</td>
<td>ILDEAIYKV</td>
<td>115811</td>
<td>IQ domain-containing protein D</td>
</tr>
<tr>
<td>High</td>
<td>ILDEHVQRV</td>
<td>8312</td>
<td>Axin-1</td>
</tr>
<tr>
<td>High</td>
<td>ILDEMSHKLRL</td>
<td>8443</td>
<td>Dihydroxyacetone phosphate acyltransferase</td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>High</td>
<td>ILDISEHTL</td>
<td>10926</td>
<td>Protein DBF4 homolog A</td>
</tr>
<tr>
<td>High</td>
<td>ILDKIVQKV</td>
<td>26260</td>
<td>F-box only protein 25</td>
</tr>
<tr>
<td>High</td>
<td>ILDKKVEKV</td>
<td>3326</td>
<td>HSP90AB1 heat shock protein 90kDa alpha (cytosolic), class B member 1</td>
</tr>
<tr>
<td>High</td>
<td>ILDSGIYRI</td>
<td>11234</td>
<td>Hermansky-Pudlak syndrome 5 protein</td>
</tr>
<tr>
<td>High</td>
<td>ILFGHENRNV</td>
<td>10681</td>
<td>Guanine nucleotide-binding protein subunit beta-5</td>
</tr>
<tr>
<td>High</td>
<td>ILFNRLVGV</td>
<td>5321</td>
<td>Cytosolic phospholipase A2</td>
</tr>
<tr>
<td>High</td>
<td>ILHDRLYYL</td>
<td>51449</td>
<td>Prenylcysteine oxidase 1</td>
</tr>
<tr>
<td>High</td>
<td>ILIEKEYLERV</td>
<td>8454</td>
<td>Cullin-1</td>
</tr>
<tr>
<td>High</td>
<td>ILINDAGEVRL</td>
<td>11184</td>
<td>Mitogen-activated protein kinase kinase kinase 1</td>
</tr>
<tr>
<td>High</td>
<td>ILISKLLGA</td>
<td>51284</td>
<td>Toll-like receptor 7</td>
</tr>
<tr>
<td>High</td>
<td>ILDDHHGHIRI</td>
<td>2870</td>
<td>G protein-coupled receptor kinase 6</td>
</tr>
<tr>
<td>High</td>
<td>ILLDERGQIKL</td>
<td>5609</td>
<td>Dual specificity mitogen-activated protein kinase kinase 7</td>
</tr>
<tr>
<td>High</td>
<td>ILLDNDHYAM</td>
<td>83752</td>
<td>Lon protease homolog 2, peroxisomal</td>
</tr>
<tr>
<td>High</td>
<td>ILLDQTVRV</td>
<td>25962</td>
<td>Protein virilizer homolog</td>
</tr>
<tr>
<td>High</td>
<td>ILEHNYAL</td>
<td>9739</td>
<td>Histone-lysine N-methyltransferase SETD1A</td>
</tr>
<tr>
<td>High</td>
<td>ILLNNSGQIKL</td>
<td>51755</td>
<td>Cyclin-dependent kinase 12</td>
</tr>
<tr>
<td>High</td>
<td>ILLPESIRSV</td>
<td>156</td>
<td>Beta-adrenergic receptor kinase 1</td>
</tr>
<tr>
<td>High</td>
<td>ILLQGRLYL</td>
<td>54762</td>
<td>GRAM domain-containing protein 1C</td>
</tr>
<tr>
<td>High</td>
<td>ILLSEPGLVKL</td>
<td>9344</td>
<td>Serine/threonine-protein kinase TAO2</td>
</tr>
<tr>
<td>High</td>
<td>ILMELHIHKLKA</td>
<td>6143</td>
<td>60S ribosomal protein L19</td>
</tr>
<tr>
<td>High</td>
<td>ILMHHPQV</td>
<td>222658</td>
<td>BTB/POZ domain-containing protein KCTD20</td>
</tr>
<tr>
<td>High</td>
<td>ILMISHQFI</td>
<td>10735</td>
<td>Cohesin subunit SA-2</td>
</tr>
<tr>
<td>High</td>
<td>ILNKEFFV</td>
<td>2060</td>
<td>Epidermal growth factor receptor substrate 15</td>
</tr>
<tr>
<td>High</td>
<td>ILNPKIPEA</td>
<td>80208</td>
<td>Spatacsin</td>
</tr>
<tr>
<td>High</td>
<td>ILQDRLNQV</td>
<td>990</td>
<td>Cell division control protein 6 homolog</td>
</tr>
<tr>
<td>High</td>
<td>ILQEKLOEI</td>
<td>51742</td>
<td>AT-rich interactive domain-containing protein 4B</td>
</tr>
<tr>
<td>High</td>
<td>ILQNKIDLV</td>
<td>1968</td>
<td>Eukaryotic translation initiation factor 2 subunit 3</td>
</tr>
<tr>
<td>High</td>
<td>ILQQHIATV</td>
<td>51130</td>
<td>Ankyrin repeat and SOCS box protein 3</td>
</tr>
<tr>
<td>High</td>
<td>ILQSTRLPLI</td>
<td>5591</td>
<td>DNA-dependent protein kinase catalytic</td>
</tr>
<tr>
<td>Subunit</td>
<td>Value</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Poly [ADP-ribose] polymerase 1</td>
<td>142</td>
<td>High ILSEVQQAV</td>
<td></td>
</tr>
<tr>
<td>Syntaxin-binding protein 2</td>
<td>6813</td>
<td>High ILSGVIRSV</td>
<td></td>
</tr>
<tr>
<td>Elongation factor 2</td>
<td>1938</td>
<td>High ILTDITKGV</td>
<td></td>
</tr>
<tr>
<td>Ribonucleases P/MRP protein subunit POP1</td>
<td>10940</td>
<td>High ILTEAIKAA</td>
<td></td>
</tr>
<tr>
<td>Phosphotriesterase-related protein</td>
<td>9317</td>
<td>High ILTNVVPKM</td>
<td></td>
</tr>
<tr>
<td>Rho GTPase-activating protein 10</td>
<td>79658</td>
<td>High ILVKHLTNV</td>
<td></td>
</tr>
<tr>
<td>T-complex protein 1 subunit eta</td>
<td>10574</td>
<td>High ILYDICLEKIK</td>
<td></td>
</tr>
<tr>
<td>Protein PRRC2C</td>
<td>23215</td>
<td>High ILYEHQLGQA</td>
<td></td>
</tr>
<tr>
<td>Methionine adenosyltransferase 2 subunit beta</td>
<td>27430</td>
<td>High ILYGEVEKEL</td>
<td></td>
</tr>
<tr>
<td>Chromosome transmission fidelity protein 8 homolog</td>
<td>54921</td>
<td>High ILYGKIIHL</td>
<td></td>
</tr>
<tr>
<td>Catenin alpha-1</td>
<td>1495</td>
<td>High IMAQLPQEQKA</td>
<td></td>
</tr>
<tr>
<td>Small nuclear ribonucleoprotein G-like protein</td>
<td>6637</td>
<td>High IMLEALERV</td>
<td></td>
</tr>
<tr>
<td>SH3KBP1-binding protein 1</td>
<td>92799</td>
<td>High IMLSEKHLISV</td>
<td></td>
</tr>
<tr>
<td>Staphylococcal nuclease domain-containing protein 1</td>
<td>27044</td>
<td>High ITDDLHFFYV</td>
<td></td>
</tr>
<tr>
<td>HLA class II histocompatibility antigen, DQ alpha 1 chain</td>
<td>3117</td>
<td>High IVADHVASYGV</td>
<td></td>
</tr>
<tr>
<td>Probable JmjC domain-containing histone demethylation protein 2C</td>
<td>221037</td>
<td>High IVLPAGALHQV</td>
<td></td>
</tr>
<tr>
<td>Anoctamin-5</td>
<td>203859</td>
<td>High IVMEHVVFL</td>
<td></td>
</tr>
<tr>
<td>Aurora kinase B</td>
<td>9212</td>
<td>High KIADFWSV</td>
<td></td>
</tr>
<tr>
<td>DNA topoisomerase 2-alpha</td>
<td>7153</td>
<td>High KIFDEILVNA</td>
<td></td>
</tr>
<tr>
<td>60S ribosomal protein L7-like 1</td>
<td>285855</td>
<td>High KIFSGVFVKV</td>
<td></td>
</tr>
<tr>
<td>Vam6/Vps39-like protein</td>
<td>23339</td>
<td>High KIFTEDLPEV</td>
<td></td>
</tr>
<tr>
<td>Kelch-like protein 9</td>
<td>55958</td>
<td>High KIIDFIYTA</td>
<td></td>
</tr>
<tr>
<td>Outer dense fiber protein 2</td>
<td>4957</td>
<td>High KILDLETQL</td>
<td></td>
</tr>
<tr>
<td>Interleukin-6 receptor subunit beta</td>
<td>3572</td>
<td>High KILDYEVTL</td>
<td></td>
</tr>
<tr>
<td>Ankyrin repeat domain-containing protein 17</td>
<td>26057</td>
<td>High KILEELQKV</td>
<td></td>
</tr>
<tr>
<td>Protein IWS1 homolog</td>
<td>55677</td>
<td>High KILQELPSV</td>
<td></td>
</tr>
<tr>
<td>G2/M phase-specific E3 ubiquitin-protein ligase</td>
<td>55632</td>
<td>High KILSELFITV</td>
<td></td>
</tr>
<tr>
<td>Schlafen family member 13</td>
<td>146857</td>
<td>High KIMEKIRNV</td>
<td></td>
</tr>
<tr>
<td>Nesprin-2</td>
<td>23224</td>
<td>High KIMESLPQI</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>KIMTEKELLAV</td>
<td>2319</td>
<td>Flotillin-2</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------</td>
<td>------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>High</td>
<td>KIYEGQVEV</td>
<td>6125</td>
<td>60S ribosomal protein L5</td>
</tr>
<tr>
<td>High</td>
<td>KLADFGDAVQL</td>
<td>7204</td>
<td>Triple functional domain protein</td>
</tr>
<tr>
<td>High</td>
<td>KLADFGGLARA</td>
<td>983</td>
<td>Cyclin-dependent kinase 1</td>
</tr>
<tr>
<td>High</td>
<td>KLAEGVLDV</td>
<td>253143</td>
<td>Protein PRR14L</td>
</tr>
<tr>
<td>High</td>
<td>KLAEIVKQV</td>
<td>8550</td>
<td>MAP kinase-activated protein kinase 5</td>
</tr>
<tr>
<td>High</td>
<td>KLAESVEKA</td>
<td>11198</td>
<td>FACT complex subunit SPT16</td>
</tr>
<tr>
<td>High</td>
<td>KLAKLQAQV</td>
<td>91408</td>
<td>Transcription factor BTF3 homolog 4</td>
</tr>
<tr>
<td>High</td>
<td>KLDDKDLPSV</td>
<td>51586</td>
<td>Mediator of RNA polymerase II</td>
</tr>
<tr>
<td>High</td>
<td>KLDDLTDQLTV</td>
<td>11116</td>
<td>transcription subunit 15</td>
</tr>
<tr>
<td>High</td>
<td>KLDEHIAYL</td>
<td>54821</td>
<td>FGFR1 oncogene partner</td>
</tr>
<tr>
<td>High</td>
<td>KLDETGNSLKV</td>
<td>7153</td>
<td>DNA excision repair protein ERCC-6-like</td>
</tr>
<tr>
<td>High</td>
<td>KLDQDLNEV</td>
<td>9126</td>
<td>Structural maintenance of chromosomes</td>
</tr>
<tr>
<td>High</td>
<td>KLDQVIIHV</td>
<td>80896</td>
<td>protein 3</td>
</tr>
<tr>
<td>High</td>
<td>KLFDRPQEL</td>
<td>55667</td>
<td>DENN domain-containing protein 4C</td>
</tr>
<tr>
<td>High</td>
<td>KLFDRPQELKL</td>
<td>55667</td>
<td>DENN domain-containing protein 4C</td>
</tr>
<tr>
<td>High</td>
<td>KLFEKVKKEV</td>
<td>55711</td>
<td>Fatty acyl-CoA reductase 2</td>
</tr>
<tr>
<td>High</td>
<td>KLFGHHLTSA</td>
<td>57157</td>
<td>Putative homeodomain transcription</td>
</tr>
<tr>
<td>High</td>
<td>KLGHTDILVGV</td>
<td>23016</td>
<td>factor 2</td>
</tr>
<tr>
<td>High</td>
<td>KLHDINAQL</td>
<td>162</td>
<td>AP-1 complex subunit beta-1</td>
</tr>
<tr>
<td>High</td>
<td>KLHDVELHQV</td>
<td>10681</td>
<td>Guanine nucleotide-binding protein</td>
</tr>
<tr>
<td>High</td>
<td>KLHGVNINV</td>
<td>83759</td>
<td>subunit beta-5</td>
</tr>
<tr>
<td>High</td>
<td>KLIDGQVIQL</td>
<td>7702</td>
<td>RNA-binding protein 4B</td>
</tr>
<tr>
<td>High</td>
<td>KLIDRTESL</td>
<td>4046</td>
<td>Zinc finger protein 143</td>
</tr>
<tr>
<td>High</td>
<td>KLIKLDIKL</td>
<td>1938</td>
<td>Lymphocyte-specific protein 1</td>
</tr>
<tr>
<td>High</td>
<td>KLIKLDIKL</td>
<td>1938</td>
<td>Elongation factor 2</td>
</tr>
<tr>
<td>High</td>
<td>KLILLITQV</td>
<td>23160</td>
<td>WD repeat-containing protein 43</td>
</tr>
<tr>
<td>High</td>
<td>KLIPIFLEKL</td>
<td>51496</td>
<td>CTD small phosphatase-like protein 2</td>
</tr>
<tr>
<td>High</td>
<td>KLIQNVFEI</td>
<td>10640</td>
<td>Exocyst complex component 5</td>
</tr>
<tr>
<td>High</td>
<td>KLLAVIHEL</td>
<td>25788</td>
<td>DNA repair and recombination protein</td>
</tr>
<tr>
<td>High</td>
<td>KLLDEDEIRGYKL</td>
<td>27336</td>
<td>RAD54B</td>
</tr>
<tr>
<td>High</td>
<td>KLLDIRSYL</td>
<td>5713</td>
<td>HIV Tat-specific factor 1</td>
</tr>
<tr>
<td>High</td>
<td>KLLDIRSYL</td>
<td>5713</td>
<td>26S proteasome non-ATPase regulatory</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>subunit 7</td>
</tr>
<tr>
<td>Protein</td>
<td>Accession Number</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Negative elongation factor A</td>
<td>7469</td>
<td>High KLLDISELDMV</td>
<td></td>
</tr>
<tr>
<td>Formin-like protein 3</td>
<td>91010</td>
<td>High KLLDLENENMMRV</td>
<td></td>
</tr>
<tr>
<td>Integrator complex subunit 4</td>
<td>92105</td>
<td>High KLLDLMPRL</td>
<td></td>
</tr>
<tr>
<td>Nesprin-3</td>
<td>161176</td>
<td>High KLLDLQVRV</td>
<td></td>
</tr>
<tr>
<td>Rho-associated protein kinase 1</td>
<td>6093</td>
<td>High KLLDLSDSTSV</td>
<td></td>
</tr>
<tr>
<td>E3 ISG15--protein ligase HERC5</td>
<td>51191</td>
<td>High KLLDQMPSL</td>
<td></td>
</tr>
<tr>
<td>T-complex protein 1 subunit eta</td>
<td>10574</td>
<td>High KLLDVVHPA</td>
<td></td>
</tr>
<tr>
<td>Uncharacterized protein C4orf46</td>
<td>201725</td>
<td>High KLEEATSAV</td>
<td></td>
</tr>
<tr>
<td>E3 ubiquitin-protein ligase UBR4</td>
<td>23352</td>
<td>High KLEEQGIFL</td>
<td></td>
</tr>
<tr>
<td>DNA polymerase alpha catalytic subunit</td>
<td>5422</td>
<td>High KLEIDIDGV</td>
<td></td>
</tr>
<tr>
<td>25-hydroxycholesterol 7-alpha-hydroxylase</td>
<td>9420</td>
<td>High KLLEKAFSI</td>
<td></td>
</tr>
<tr>
<td>Prolyl 4-hydroxylase subunit alpha-1</td>
<td>5033</td>
<td>High KLELEDEHPHQA</td>
<td></td>
</tr>
<tr>
<td>3-keto-steroid reductase</td>
<td>51478</td>
<td>High KLELEKHIRV</td>
<td></td>
</tr>
<tr>
<td>EH domain-binding protein 1</td>
<td>23301</td>
<td>High KLELEVQPQV</td>
<td></td>
</tr>
<tr>
<td>FYVE, RhoGEF and PH domain-containing protein 3</td>
<td>89846</td>
<td>High KLELEVYEQL</td>
<td></td>
</tr>
<tr>
<td>Hyaluronan mediated motility receptor</td>
<td>3161</td>
<td>High KLEYIEEI</td>
<td></td>
</tr>
<tr>
<td>Caspase-2</td>
<td>835</td>
<td>High KLLGYDVHV</td>
<td></td>
</tr>
<tr>
<td>Disintegrin and metalloproteinase domain-containing protein 8</td>
<td>101</td>
<td>High KLLTEVHAA</td>
<td></td>
</tr>
<tr>
<td>Conserved oligomeric Golgi complex subunit 5</td>
<td>10466</td>
<td>High KLMDHIYAV</td>
<td></td>
</tr>
<tr>
<td>E3 ubiquitin-protein ligase CBL</td>
<td>867</td>
<td>High KLMDKVVRL</td>
<td></td>
</tr>
<tr>
<td>Proliferating cell nuclear antigen</td>
<td>5111</td>
<td>High KLMDLDVEQL</td>
<td></td>
</tr>
<tr>
<td>Vps20-associated 1 homolog (S. cerevisiae)</td>
<td>51534</td>
<td>High KLMDQLEAL</td>
<td></td>
</tr>
<tr>
<td>Lysine-specific histone demethylase 1A</td>
<td>23028</td>
<td>High KLPPPPQA</td>
<td></td>
</tr>
<tr>
<td>Regulator of G-protein signaling 10</td>
<td>6001</td>
<td>High KLDQIFNL</td>
<td></td>
</tr>
<tr>
<td>Nesprin-2</td>
<td>23224</td>
<td>High KLELELENRL</td>
<td></td>
</tr>
<tr>
<td>Signal transducer and activator of transcription 1-alpha/beta</td>
<td>6772</td>
<td>High KLQELNYNL</td>
<td></td>
</tr>
<tr>
<td>Protein Jade-2</td>
<td>23338</td>
<td>High KLQEQIFHL</td>
<td></td>
</tr>
<tr>
<td>DNA-directed RNA polymerase II subunit RPB3</td>
<td>5432</td>
<td>High KLSDLQ TCL</td>
<td></td>
</tr>
<tr>
<td>Ubiquitin carboxyl-terminal hydrolase 7</td>
<td>7874</td>
<td>High KLSEVLQAV</td>
<td></td>
</tr>
<tr>
<td>Electron transfer flavoprotein subunit beta</td>
<td>2109</td>
<td>High KLVKEVIAV</td>
<td></td>
</tr>
<tr>
<td>Transcriptional protein SWT1</td>
<td>54823</td>
<td>High KLGWGSIQL</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>KLYDIDVAKV</td>
<td>6147</td>
<td>60S ribosomal protein L23a</td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
<td>------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>High</td>
<td>KLYEEINQV</td>
<td>57404</td>
<td>Cytochrome P450 20A1</td>
</tr>
<tr>
<td>High</td>
<td>KLYEQHHVV</td>
<td>1718</td>
<td>Delta(24)-sterol reductase</td>
</tr>
<tr>
<td>High</td>
<td>KLYGPEGLELV</td>
<td>3394</td>
<td>Interferon regulatory factor 8</td>
</tr>
<tr>
<td>High</td>
<td>KLYPQLPAEI</td>
<td>57724</td>
<td>Ectopic P granules protein 5 homolog</td>
</tr>
<tr>
<td>High</td>
<td>KLYQHEINL</td>
<td>10153</td>
<td>CCAAT/enhancer-binding protein zeta</td>
</tr>
<tr>
<td>High</td>
<td>KLYQRDLEV</td>
<td>10635</td>
<td>RAD51-associated protein 1</td>
</tr>
<tr>
<td>High</td>
<td>KLYTGLREV</td>
<td>8452</td>
<td>Cullin-3</td>
</tr>
<tr>
<td>High</td>
<td>KMAEEKLTHKMEA</td>
<td>3925</td>
<td>Stathmin</td>
</tr>
<tr>
<td>High</td>
<td>KMAEMLVEL</td>
<td>114932</td>
<td>MORF4 family-associated protein 1-like 1</td>
</tr>
<tr>
<td>High</td>
<td>KMDPIISRV</td>
<td>7832</td>
<td>Protein BTG2</td>
</tr>
<tr>
<td>High</td>
<td>KMFDLNGDGEV</td>
<td>10367</td>
<td>Calcium uptake protein 1, mitochondrial</td>
</tr>
<tr>
<td>High</td>
<td>KMLEKLPEL</td>
<td>55324</td>
<td>ATP-binding cassette sub-family F member 3</td>
</tr>
<tr>
<td>High</td>
<td>KMMDVTVTI</td>
<td>408050</td>
<td>Nodal modulator 3</td>
</tr>
<tr>
<td>High</td>
<td>KMPEINAKV</td>
<td>9709</td>
<td>Homocysteine-responsive endoplasmic reticulum-resident ubiquitin-like domain member 1 protein</td>
</tr>
<tr>
<td>High</td>
<td>KMSEKILLL</td>
<td>5690</td>
<td>Proteasome subunit beta type-2</td>
</tr>
<tr>
<td>High</td>
<td>KMWEEAISL</td>
<td>1794</td>
<td>Dedicator of cytokinesis protein 2</td>
</tr>
<tr>
<td>High</td>
<td>KMYEEFLSKV</td>
<td>5573</td>
<td>cAMP-dependent protein kinase type I-alpha regulatory subunit</td>
</tr>
<tr>
<td>High</td>
<td>KVANIIAEV</td>
<td>5910</td>
<td>Rap1 GTPase-GDP dissociation stimulator 1</td>
</tr>
<tr>
<td>High</td>
<td>KVGVPVPVLV</td>
<td>10952</td>
<td>Protein transport protein Sec61 subunit beta</td>
</tr>
<tr>
<td>High</td>
<td>KVIENPYL</td>
<td>5693</td>
<td>Proteasome subunit beta type-5</td>
</tr>
<tr>
<td>High</td>
<td>KVLEILHRV</td>
<td>26091</td>
<td>Probable E3 ubiquitin-protein ligase HERC4</td>
</tr>
<tr>
<td>High</td>
<td>KVLERVNAV</td>
<td>5721</td>
<td>Proteasome activator complex subunit 2</td>
</tr>
<tr>
<td>High</td>
<td>KVLGIVVGV</td>
<td>23019</td>
<td>CCR4-NOT transcription complex subunit 1</td>
</tr>
<tr>
<td>High</td>
<td>KVMDEVCAKA</td>
<td>51631</td>
<td>Putative RNA-binding protein Luc7-like 2</td>
</tr>
<tr>
<td>High</td>
<td>KVMELLVHL</td>
<td>23392</td>
<td>Proteasome-associated protein ECM29 homolog</td>
</tr>
<tr>
<td>High</td>
<td>LADETLLKV</td>
<td>4001</td>
<td>Lamin-B1</td>
</tr>
<tr>
<td>High</td>
<td>LLADLLHNV</td>
<td>1677</td>
<td>DNA fragmentation factor subunit beta</td>
</tr>
<tr>
<td>High</td>
<td>LLADRSWLL</td>
<td>55732</td>
<td>Uncharacterized protein C1orf112</td>
</tr>
<tr>
<td>High</td>
<td>LLAEAKYYL</td>
<td>83892</td>
<td>BTB/POZ domain-containing adapter for CUL3-mediated RhoA degradation protein</td>
</tr>
<tr>
<td>High</td>
<td>LLAEKIYKI</td>
<td>1387</td>
<td>CREB-binding protein</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td>------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>High</td>
<td>LLAETHYQL</td>
<td>4678</td>
<td>Nuclear autoantigenic sperm protein</td>
</tr>
<tr>
<td>High</td>
<td>LLAILPEAARA</td>
<td>51282</td>
<td>SCAN domain-containing protein 1</td>
</tr>
<tr>
<td>High</td>
<td>LLAKEVQLV</td>
<td>57724</td>
<td>Ectopic P granules protein 5 homolog</td>
</tr>
<tr>
<td>High</td>
<td>LLDATQHTL</td>
<td>9744</td>
<td>Arf-GAP with coiled-coil, ANK repeat and PH domain-containing protein 1</td>
</tr>
<tr>
<td>High</td>
<td>LLDEEISRV</td>
<td>9444</td>
<td>Protein quaking</td>
</tr>
<tr>
<td>High</td>
<td>LLDEPTNHL</td>
<td>10061/55324</td>
<td>ATP-binding cassette sub-family F member 2/3</td>
</tr>
<tr>
<td>High</td>
<td>LLDIIKSTV</td>
<td>9896</td>
<td>Polyphosphoinositide phosphatase</td>
</tr>
<tr>
<td>High</td>
<td>LLDKKIGV</td>
<td>10576</td>
<td>T-complex protein 1 subunit beta</td>
</tr>
<tr>
<td>High</td>
<td>LLDPNVKSIFV</td>
<td>79033</td>
<td>ERII1 exoribonuclease 3</td>
</tr>
<tr>
<td>High</td>
<td>LLDQTKTLA</td>
<td>7094</td>
<td>Talin-1</td>
</tr>
<tr>
<td>High</td>
<td>LLDRFLATV</td>
<td>10983</td>
<td>Cyclin-I</td>
</tr>
<tr>
<td>High</td>
<td>LLDSQSHHL</td>
<td>56905</td>
<td>Uncharacterized protein C15orf39</td>
</tr>
<tr>
<td>High</td>
<td>LLDVTPKAV</td>
<td>9414</td>
<td>Tight junction protein ZO-2</td>
</tr>
<tr>
<td>High</td>
<td>LLFDRPMHV</td>
<td>4670</td>
<td>Heterogeneous nuclear ribonucleoprotein M</td>
</tr>
<tr>
<td>High</td>
<td>LLFEGEKITI</td>
<td>548644</td>
<td>DNA-directed RNA polymerase II subunit RPB11-b1</td>
</tr>
<tr>
<td>High</td>
<td>LLFEGIAI</td>
<td>25839</td>
<td>Conserved oligomeric Golgi complex subunit 4</td>
</tr>
<tr>
<td>High</td>
<td>LLGPPPVGV</td>
<td>25792</td>
<td>Cip1-interacting zinc finger protein</td>
</tr>
<tr>
<td>High</td>
<td>LLIASGANLLA</td>
<td>84988</td>
<td>Protein phosphatase 1 regulatory subunit 16A</td>
</tr>
<tr>
<td>High</td>
<td>LLIDDENKTIKL</td>
<td>983</td>
<td>Cyclin-dependent kinase 1</td>
</tr>
<tr>
<td>High</td>
<td>LLIGHLERV</td>
<td>23165</td>
<td>Nuclear pore complex protein Nup205</td>
</tr>
<tr>
<td>High</td>
<td>LLIKQVVEV</td>
<td>55213</td>
<td>RCC1 and BTB domain-containing protein 1</td>
</tr>
<tr>
<td>High</td>
<td>LLKVDVQGEI</td>
<td>9179</td>
<td>AP-4 complex subunit mu-1</td>
</tr>
<tr>
<td>High</td>
<td>LLLDRIASV</td>
<td>79675</td>
<td>FAST kinase domain-containing protein 1</td>
</tr>
<tr>
<td>High</td>
<td>LLLPEHVLVKI</td>
<td>23403</td>
<td>F-box only protein 46</td>
</tr>
<tr>
<td>High</td>
<td>LLLPGELAKHAV</td>
<td>8348</td>
<td>Histone H2B</td>
</tr>
<tr>
<td>High</td>
<td>LLLQHSPAL</td>
<td>51239</td>
<td>Ankyrin repeat domain-containing protein 39</td>
</tr>
<tr>
<td>High</td>
<td>LLMDRVDEM</td>
<td>8667</td>
<td>Eukaryotic translation initiation factor 3 subunit H</td>
</tr>
<tr>
<td>High</td>
<td>LLMEHIFKL</td>
<td>7181</td>
<td>Nuclear receptor subfamily 2 group C member 1</td>
</tr>
<tr>
<td>High</td>
<td>LLMEHIQEI</td>
<td>55755</td>
<td>CDK5 regulatory subunit-associated protein 2</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>High</td>
<td>LLNSEVHML</td>
<td>5433</td>
<td>DNA-directed RNA polymerase II subunit RPB4</td>
</tr>
<tr>
<td>High</td>
<td>LLQDAIREV</td>
<td>9181</td>
<td>Rho guanine nucleotide exchange factor 2</td>
</tr>
<tr>
<td>High</td>
<td>LLQDKQFEL</td>
<td>23339</td>
<td>Vam6/Vps39-like protein</td>
</tr>
<tr>
<td>High</td>
<td>LLQEVEHQL</td>
<td>4591</td>
<td>E3 ubiquitin-protein ligase TRIM37</td>
</tr>
<tr>
<td>High</td>
<td>LLQPHLERV</td>
<td>55635</td>
<td>DEP domain-containing protein 1A</td>
</tr>
<tr>
<td>High</td>
<td>LLVDVEPKV</td>
<td>6632</td>
<td>Small nuclear ribonucleoprotein Sm D1</td>
</tr>
<tr>
<td>High</td>
<td>LLVGCTECELLA</td>
<td>120775</td>
<td>Olfactory receptor 2D3</td>
</tr>
<tr>
<td>High</td>
<td>LLYDGKLSSA</td>
<td>987</td>
<td>Lipopolysaccharide-responsive and beige-like anchor protein</td>
</tr>
<tr>
<td>High</td>
<td>LLYDLADQLHA</td>
<td>2108</td>
<td>Electron transfer flavoprotein subunit alpha, mitochondrial</td>
</tr>
<tr>
<td>High</td>
<td>LMAEMGVHSV</td>
<td>54963</td>
<td>Uridine-cytidine kinase-like 1</td>
</tr>
<tr>
<td>High</td>
<td>LMIENLPKL</td>
<td>54536</td>
<td>Exocyst complex component 6</td>
</tr>
<tr>
<td>High</td>
<td>LMQTEVHHV</td>
<td>23370</td>
<td>Rho guanine nucleotide exchange factor 18</td>
</tr>
<tr>
<td>High</td>
<td>LMVDHVTEV</td>
<td>10011</td>
<td>Steroid receptor RNA activator 1</td>
</tr>
<tr>
<td>High</td>
<td>LVIDVIHEV</td>
<td>57140</td>
<td>Arginyl aminopeptidase-like 1</td>
</tr>
<tr>
<td>High</td>
<td>MLANDIARL</td>
<td>10938</td>
<td>EH domain-containing protein 1</td>
</tr>
<tr>
<td>High</td>
<td>MLATRVFSL</td>
<td>1327</td>
<td>Cytochrome c oxidase subunit 4 isoform 1, mitochondrial</td>
</tr>
<tr>
<td>High</td>
<td>MLFGHPLLVL</td>
<td>8237</td>
<td>Ubiquitin carboxyl-terminal hydrolase 11</td>
</tr>
<tr>
<td>High</td>
<td>MLLDTVQKV</td>
<td>54892</td>
<td>Condensin-2 complex subunit G2</td>
</tr>
<tr>
<td>High</td>
<td>MLEKLPQV</td>
<td>10211</td>
<td>Flotillin-1</td>
</tr>
<tr>
<td>High</td>
<td>MLNEHDFEV</td>
<td>672</td>
<td>Breast cancer type 1 susceptibility protein</td>
</tr>
<tr>
<td>High</td>
<td>MLQDSIHVV</td>
<td>4999</td>
<td>Origin recognition complex subunit 2</td>
</tr>
<tr>
<td>High</td>
<td>MLQEKLKEL</td>
<td>66008</td>
<td>Trafficking kinesin-binding protein 2</td>
</tr>
<tr>
<td>High</td>
<td>NIIELVHQV</td>
<td>6850</td>
<td>Tyrosine-protein kinase SYK</td>
</tr>
<tr>
<td>High</td>
<td>NLAELKLIGV</td>
<td>57148</td>
<td>Ral GTPase-activating protein subunit beta</td>
</tr>
<tr>
<td>High</td>
<td>NLAENISRV</td>
<td>5836</td>
<td>Glycogen phosphorylase, liver form</td>
</tr>
<tr>
<td>High</td>
<td>NLFNRYPAL</td>
<td>3936</td>
<td>Plastin-2</td>
</tr>
<tr>
<td>High</td>
<td>NLEIAPHL</td>
<td>2820</td>
<td>Glycerol-3-phosphate dehydrogenase, mitochondrial</td>
</tr>
<tr>
<td>High</td>
<td>NLLSFTYKL</td>
<td>79172</td>
<td>Centromere protein O</td>
</tr>
<tr>
<td>High</td>
<td>NLMDDIERA</td>
<td>10694</td>
<td>T-complex protein 1 subunit theta</td>
</tr>
<tr>
<td>High</td>
<td>NLYPFVKTV</td>
<td>471</td>
<td>Bifunctional purine biosynthesis protein PURH</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Protein Name</td>
<td>Function</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>NMVAKVDEV</td>
<td>60S ribosomal protein L10a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMVDIIHSV</td>
<td>Propionyl-CoA carboxylase beta chain, mitochondrial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QILENELQI</td>
<td>FAS-associated factor 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QLAEDIEALKV</td>
<td>Transmembrane and coiled-coil domains protein 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QLAQFVHEV</td>
<td>Putative ATP-dependent RNA helicase DDX11-like protein 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QLDDLKVEL</td>
<td>Ribosomal protein L35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QLIDIIHTA</td>
<td>Testis-expressed sequence 10 protein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QLIDKVWQL</td>
<td>SEC14-like protein 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QLLQHVQAV</td>
<td>HEAT repeat-containing protein 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QLEQGKNVIGL</td>
<td>Transgelen-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QLQGYLRSV</td>
<td>60S ribosomal protein L6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QLVDIEEKFV</td>
<td>Proteasome activator complex subunit 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QLVESLHKV</td>
<td>Nucleoparin p54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QLVQRVASV</td>
<td>Proteasome subunit alpha type-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QMISRIEYI</td>
<td>Casein kinase I isoform delta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QMLDVAIRV</td>
<td>AP-3 complex subunit delta-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QMLEAIKALEV</td>
<td>Zinc finger protein 131</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QVFPGILLERV</td>
<td>Ataxin-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLAEVGQYEIQ</td>
<td>CCR4-NOT transcription complex subunit 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLADEVHEL</td>
<td>Cyclin-D-binding Myb-like transcription factor 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLAQHITYV</td>
<td>DNA replication licensing factor MCM7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLAVYIDKV</td>
<td>Lamin-B1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLAVYIDRV</td>
<td>Prelamin-A/C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLDDNIRT</td>
<td>Vacuolar protein sorting-associated protein 53 homolog</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLFGLAHV</td>
<td>Leucine-rich repeat-containing protein 49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLFNHPNILRL</td>
<td>Serine/threonine-protein kinase 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLGEAEGLMK</td>
<td>Putative sodium-coupled neutral amino acid transporter 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLLDEEEISRV</td>
<td>Protein quaking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLLDGAFKL</td>
<td>CLIP-associating protein 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLLDSEIKI</td>
<td>26S protease regulatory subunit 6A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLLDSVRAI</td>
<td>Gem-associated protein 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>RLLDYVVNI</td>
<td>25959</td>
<td>KN motif and ankyrin repeat domain-containing protein 2</td>
</tr>
<tr>
<td>High</td>
<td>RLLEEGVLRQI</td>
<td>23024</td>
<td>Pyridoxal-dependent decarboxylase domain-containing pro</td>
</tr>
<tr>
<td>High</td>
<td>RLLEGYEIYV</td>
<td>9656</td>
<td>Mediator of DNA damage checkpoint protein 1</td>
</tr>
<tr>
<td>High</td>
<td>RLLEIDPYL</td>
<td>2632</td>
<td>1,4-alpha-glucan branching enzyme</td>
</tr>
<tr>
<td>High</td>
<td>RLLEQLQE</td>
<td>56850</td>
<td>GRIP1-associated protein 1</td>
</tr>
<tr>
<td>High</td>
<td>RLMGSILGV</td>
<td>9321</td>
<td>Thyroid receptor-interacting protein 11</td>
</tr>
<tr>
<td>High</td>
<td>RLMNLPLHSV</td>
<td>116496</td>
<td>Protein Niban</td>
</tr>
<tr>
<td>High</td>
<td>RLQDAIAKV</td>
<td>23384</td>
<td>Cytospin-A</td>
</tr>
<tr>
<td>High</td>
<td>RLQEDPPAGV</td>
<td>7319</td>
<td>Ubiquitin-conjugating enzyme E2 A</td>
</tr>
<tr>
<td>High</td>
<td>RLQEDPPVGV</td>
<td>7320</td>
<td>Ubiquitin-conjugating enzyme E2 B</td>
</tr>
<tr>
<td>High</td>
<td>RLQEEINEV</td>
<td>121457</td>
<td>Inhibitor of nuclear factor kappa-B kinase-interacting protein</td>
</tr>
<tr>
<td>High</td>
<td>RLSELGITQA</td>
<td>79801</td>
<td>SHC SH2 domain-binding protein 1</td>
</tr>
<tr>
<td>High</td>
<td>RLTDYISKV</td>
<td>10550</td>
<td>PRA1 family protein 3</td>
</tr>
<tr>
<td>High</td>
<td>RLVQGSILKKV</td>
<td>5111</td>
<td>Proliferating cell nuclear antigen</td>
</tr>
<tr>
<td>High</td>
<td>RLYDGLFKV</td>
<td>1642</td>
<td>DNA damage-binding protein 1</td>
</tr>
<tr>
<td>High</td>
<td>RLYDPASGTISL</td>
<td>23456</td>
<td>ATP-binding cassette sub-family B member 10, mitochondrial</td>
</tr>
<tr>
<td>High</td>
<td>RLYPEGLAQL</td>
<td>9114</td>
<td>V-type proton ATPase subunit d 1</td>
</tr>
<tr>
<td>High</td>
<td>RLYPWGVVEV</td>
<td>4735</td>
<td>Septin-2</td>
</tr>
<tr>
<td>High</td>
<td>RMFDGKFVVA</td>
<td>127933</td>
<td>Serine/threonine-protein kinase Kist</td>
</tr>
<tr>
<td>High</td>
<td>RMLSDEVEKL</td>
<td>3071</td>
<td>Nck-associated protein 1-like</td>
</tr>
<tr>
<td>High</td>
<td>RVTIEEEKNFKA</td>
<td>6137</td>
<td>60S ribosomal protein L13</td>
</tr>
<tr>
<td>High</td>
<td>RVLEVGAQAV</td>
<td>25885</td>
<td>DNA-directed RNA polymerase I subunit RPA1</td>
</tr>
<tr>
<td>High</td>
<td>RVLPPQALQSV</td>
<td>9212</td>
<td>Aurora kinase B</td>
</tr>
<tr>
<td>High</td>
<td>RVPPPPQS</td>
<td>6464</td>
<td>SHC-transforming protein 1</td>
</tr>
<tr>
<td>High</td>
<td>SIIRQLLEV</td>
<td>5501</td>
<td>Serine/threonine-protein phosphatase PP1-gamma catalytic subunit</td>
</tr>
<tr>
<td>High</td>
<td>SILRHVAEV</td>
<td>1965</td>
<td>Eukaryotic translation initiation factor 2 subunit 1</td>
</tr>
<tr>
<td>High</td>
<td>SLADLYFRA</td>
<td>51434</td>
<td>Anaphase-promoting complex subunit 7</td>
</tr>
<tr>
<td>High</td>
<td>SLAEGLRTV</td>
<td>4940</td>
<td>2'-5'-oligoadenylate synthase 3</td>
</tr>
<tr>
<td>High</td>
<td>SLAEKIQAL</td>
<td>140459</td>
<td>Ankyrin repeat and SOCS box protein 6</td>
</tr>
<tr>
<td>High</td>
<td>SLAELKGFEV</td>
<td>5426</td>
<td>DNA polymerase epsilon catalytic subunit A</td>
</tr>
<tr>
<td>High</td>
<td>SLAELVHAV</td>
<td>27244</td>
<td>Sestrin-1</td>
</tr>
<tr>
<td>High</td>
<td>SLAETDKITL</td>
<td>523</td>
<td>V-type proton ATPase catalytic subunit A</td>
</tr>
<tr>
<td>High</td>
<td>SLAQYNPKL</td>
<td>8503</td>
<td>Phosphatidylinositol 3-kinase regulatory subunit gamma</td>
</tr>
<tr>
<td>High</td>
<td>SLASHVPL</td>
<td>23163</td>
<td>ADP-ribosylation factor-binding protein GGA3</td>
</tr>
<tr>
<td>High</td>
<td>SLASLLAKV</td>
<td>57448</td>
<td>Baculoviral IAP repeat-containing protein 6</td>
</tr>
<tr>
<td>High</td>
<td>SLATSLPRL</td>
<td>9675</td>
<td>TEL2-interacting protein 1 homolog</td>
</tr>
<tr>
<td>High</td>
<td>SLDESGEHMGV</td>
<td>27072</td>
<td>Vacuolar protein sorting-associated protein 41 homolog</td>
</tr>
<tr>
<td>High</td>
<td>SLDSTLHAV</td>
<td>85444</td>
<td>Leucine-rich repeat and coiled-coil domain-containing protein 1</td>
</tr>
<tr>
<td>High</td>
<td>SFFAGGMLRV</td>
<td>54732</td>
<td>Transmembrane emp24 domain-containing protein 9</td>
</tr>
<tr>
<td>High</td>
<td>SLFDLDGPKV</td>
<td>79142</td>
<td>PHD finger protein 23</td>
</tr>
<tr>
<td>High</td>
<td>SLFEKGLKNV</td>
<td>26234</td>
<td>F-box/LRR-repeat protein 5</td>
</tr>
<tr>
<td>High</td>
<td>SLFERLKVK</td>
<td>57169</td>
<td>NFX1-type zinc finger-containing protein 1</td>
</tr>
<tr>
<td>High</td>
<td>SLFAGGMLRV</td>
<td>9873</td>
<td>Programmed cell death 6-interacting protein</td>
</tr>
<tr>
<td>High</td>
<td>SLFQSRISL</td>
<td>9873</td>
<td>FCH and double SH3 domains protein 2</td>
</tr>
<tr>
<td>High</td>
<td>SLFRVITEV</td>
<td>2132</td>
<td>Exostosin-2</td>
</tr>
<tr>
<td>High</td>
<td>SLGKVFGV</td>
<td>641</td>
<td>Bloom syndrome protein</td>
</tr>
<tr>
<td>High</td>
<td>SLGRFEITV</td>
<td>10947</td>
<td>AP-3 complex subunit mu-2</td>
</tr>
<tr>
<td>High</td>
<td>SLIAGVIRV</td>
<td>79735</td>
<td>TBC1 domain family member 17</td>
</tr>
<tr>
<td>High</td>
<td>SLIEKIPITA</td>
<td>58517</td>
<td>RNA-binding protein 25</td>
</tr>
<tr>
<td>High</td>
<td>SLIEKLIWT</td>
<td>5991</td>
<td>Transcription factor RFX3</td>
</tr>
<tr>
<td>High</td>
<td>SLIEKYSV</td>
<td>3838</td>
<td>Importin subunit alpha-2</td>
</tr>
<tr>
<td>High</td>
<td>SLIQLMSV</td>
<td>9736</td>
<td>Ubiquitin carboxyl-terminal hydrolase 34</td>
</tr>
<tr>
<td>High</td>
<td>SLLEDKGLAEV</td>
<td>59342</td>
<td>Retinoid-inducible serine carboxypeptidase</td>
</tr>
<tr>
<td>High</td>
<td>SLLEHLSHV</td>
<td>27102</td>
<td>Eukaryotic translation initiation factor 2-alpha kinase 1</td>
</tr>
<tr>
<td>High</td>
<td>SLLEKQPYL</td>
<td>23370</td>
<td>Rho guanine nucleotide exchange factor 18</td>
</tr>
<tr>
<td>High</td>
<td>SLLEKSLGL</td>
<td>9521</td>
<td>Eukaryotic translation elongation factor 1 epsilon-1</td>
</tr>
<tr>
<td>High</td>
<td>SLENIAKA</td>
<td>9968</td>
<td>Mediator of RNA polymerase II transcription subunit 12</td>
</tr>
<tr>
<td>High</td>
<td>SLENLEKI</td>
<td>343069</td>
<td>Heterogeneous nuclear ribonucleoprotein C-like 1</td>
</tr>
<tr>
<td>High</td>
<td>SLLGGDVVSVKL</td>
<td>1831</td>
<td>TSC22 domain family protein 3</td>
</tr>
<tr>
<td>High</td>
<td>SLLKEPQKVQL</td>
<td>23154</td>
<td>Neurochondrin</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>---------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>High</td>
<td>SLLPTEQPRL</td>
<td>65057</td>
<td>Adrenocortical dysplasia protein homolog</td>
</tr>
<tr>
<td>High</td>
<td>SLLQTLYKV</td>
<td>5905</td>
<td>Ran GTPase-activating protein 1</td>
</tr>
<tr>
<td>High</td>
<td>SLLQTQHAL</td>
<td>23647</td>
<td>Arfaptin-2</td>
</tr>
<tr>
<td>High</td>
<td>SLLRVGWSV</td>
<td>221092</td>
<td>Heterogeneous nuclear ribonucleoprotein U-like protein 2</td>
</tr>
<tr>
<td>High</td>
<td>SLLTSTVQV</td>
<td>3431</td>
<td>Sp110 nuclear body protein</td>
</tr>
<tr>
<td>High</td>
<td>SLMEKISKL</td>
<td>23268</td>
<td>Dynamin-binding protein</td>
</tr>
<tr>
<td>High</td>
<td>SLMEKVRNMAL</td>
<td>57706</td>
<td>DENN domain-containing protein 1A</td>
</tr>
<tr>
<td>High</td>
<td>SLMGPVVHEV</td>
<td>5116</td>
<td>Pericentrin</td>
</tr>
<tr>
<td>High</td>
<td>SLNGLEVHL</td>
<td>89781</td>
<td>Hermansky-Pudlak syndrome 4 protein</td>
</tr>
<tr>
<td>High</td>
<td>SLPDHLPSV</td>
<td>1120</td>
<td>Choline/ethanolamine kinase</td>
</tr>
<tr>
<td>High</td>
<td>SLPKKLALL</td>
<td>28974</td>
<td>Leydig cell tumor 10 kDa protein homolog</td>
</tr>
<tr>
<td>High</td>
<td>SLQEKLWAI</td>
<td>11264</td>
<td>Peroxisomal membrane protein 4</td>
</tr>
<tr>
<td>High</td>
<td>SLSFMNPRPL</td>
<td>26985</td>
<td>AP-3 complex subunit mu-1</td>
</tr>
<tr>
<td>High</td>
<td>SLVNQVPKI</td>
<td>8665</td>
<td>Eukaryotic translation initiation factor 3 subunit F</td>
</tr>
<tr>
<td>High</td>
<td>SLWANPKYV</td>
<td>586</td>
<td>Branched-chain-amino-acid aminotransferase, cytosolic</td>
</tr>
<tr>
<td>High</td>
<td>SLYDWNVKL</td>
<td>55585</td>
<td>Ubiquitin-conjugating enzyme E2 Q1</td>
</tr>
<tr>
<td>High</td>
<td>SLYSQVHQI</td>
<td>9968</td>
<td>Mediator of RNA polymerase II transcription subunit 12</td>
</tr>
<tr>
<td>High</td>
<td>SMLDDLRLNV</td>
<td>3689</td>
<td>Integrin beta-2</td>
</tr>
<tr>
<td>High</td>
<td>SMLLEDVQRA</td>
<td>55131</td>
<td>RNA-binding protein 28</td>
</tr>
<tr>
<td>High</td>
<td>SMLQKTWLL</td>
<td>26015</td>
<td>RNA polymerase II-associated protein 1</td>
</tr>
<tr>
<td>High</td>
<td>SMMDRMFAL</td>
<td>51015</td>
<td>Isochorismatase domain-containing protein 1</td>
</tr>
<tr>
<td>High</td>
<td>SMYDKVLML</td>
<td>9328</td>
<td>General transcription factor 3C polypeptide 5</td>
</tr>
<tr>
<td>High</td>
<td>STLHLVLRL</td>
<td>7316</td>
<td>Polyubiquitin-C</td>
</tr>
<tr>
<td>High</td>
<td>SVLGKIWKL</td>
<td>30845</td>
<td>EH domain-containing protein 3</td>
</tr>
<tr>
<td>High</td>
<td>TIAQLVHAV</td>
<td>23076</td>
<td>Ribosomal RNA processing protein 1 homolog B</td>
</tr>
<tr>
<td>High</td>
<td>TLAAAAPKI</td>
<td>3064</td>
<td>Huntingtin</td>
</tr>
<tr>
<td>High</td>
<td>TLADLVHHV</td>
<td>8295</td>
<td>Transformation/transcription domain-associated protein</td>
</tr>
<tr>
<td>High</td>
<td>TLADVLYHV</td>
<td>9070</td>
<td>Set1/Ash2 histone methyltransferase complex subunit ASH2</td>
</tr>
<tr>
<td>High</td>
<td>TLAEIAKVEL</td>
<td>4841</td>
<td>Non-POU domain-containing octamer-binding protein</td>
</tr>
<tr>
<td>High</td>
<td>TLAQRVKEV</td>
<td>550</td>
<td>Ancient ubiquitous protein 1</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>-------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>High</td>
<td>TLDDKKVYL</td>
<td>54520</td>
<td>Coiled-coil domain-containing protein 93</td>
</tr>
<tr>
<td>High</td>
<td>TLDEKIEKV</td>
<td>55661</td>
<td>Probable ATP-dependent RNA helicase DDX27</td>
</tr>
<tr>
<td>High</td>
<td>TLDITPHTV</td>
<td>2177</td>
<td>Fanconi anemia group D2 protein</td>
</tr>
<tr>
<td>High</td>
<td>TLFDYEVRL</td>
<td>29128</td>
<td>E3 ubiquitin-protein ligase UHRF1</td>
</tr>
<tr>
<td>High</td>
<td>TLHRETFYL</td>
<td>9134</td>
<td>G1/S-specific cyclin-E2</td>
</tr>
<tr>
<td>High</td>
<td>TLIDLPGITKV</td>
<td>26052</td>
<td>Dynamin-3</td>
</tr>
<tr>
<td>High</td>
<td>TLIDLPGITRV</td>
<td>4599</td>
<td>Interferon-induced GTP-binding protein Mx1</td>
</tr>
<tr>
<td>High</td>
<td>TLLIEELKTL</td>
<td>466</td>
<td>Cyclic AMP-dependent transcription factor ATF-1</td>
</tr>
<tr>
<td>High</td>
<td>TLIGLSIKV</td>
<td>51647</td>
<td>Mitotic spindle-associated MMXD complex subunit MIP18</td>
</tr>
<tr>
<td>High</td>
<td>TLLDRMVHL</td>
<td>51497</td>
<td>Negative elongation factor C/D</td>
</tr>
<tr>
<td>High</td>
<td>TLLEDGFKVK</td>
<td>57407</td>
<td>NmrA-like family domain-containing protein 1</td>
</tr>
<tr>
<td>High</td>
<td>TLLERAFSL</td>
<td>79809</td>
<td>Tetrasricopeptide repeat protein 21B</td>
</tr>
<tr>
<td>High</td>
<td>TLLNVKSV</td>
<td>3709</td>
<td>Inositol 1,4,5-trisphosphate receptor type 2</td>
</tr>
<tr>
<td>High</td>
<td>TLLSNIQGV</td>
<td>123</td>
<td>Perilipin-2</td>
</tr>
<tr>
<td>High</td>
<td>TLLVVPKL</td>
<td>528</td>
<td>V-type proton ATPase subunit C 1</td>
</tr>
<tr>
<td>High</td>
<td>TLMERTVSL</td>
<td>92689</td>
<td>Protein NOXP20</td>
</tr>
<tr>
<td>High</td>
<td>TLNEKLFLL</td>
<td>7220</td>
<td>Short transient receptor potential channel 1</td>
</tr>
<tr>
<td>High</td>
<td>TLQEQUEEKA</td>
<td>5411</td>
<td>Pinin</td>
</tr>
<tr>
<td>High</td>
<td>TLQKEGVIGV</td>
<td>25777</td>
<td>SUN domain-containing protein 2</td>
</tr>
<tr>
<td>High</td>
<td>TLSDLRVL</td>
<td>140809</td>
<td>Sulfiredoxin-1</td>
</tr>
<tr>
<td>High</td>
<td>TLYHYHVGV</td>
<td>23450</td>
<td>Splicing factor 3B subunit 3</td>
</tr>
<tr>
<td>High</td>
<td>TLYDIAHTPGV</td>
<td>4191</td>
<td>Malate dehydrogenase, mitochondrial</td>
</tr>
<tr>
<td>High</td>
<td>TLYEAVREV</td>
<td>4736</td>
<td>60S ribosomal protein L10a</td>
</tr>
<tr>
<td>High</td>
<td>TMAKESSIIGV</td>
<td>1429</td>
<td>Quinone oxidoreductase</td>
</tr>
<tr>
<td>High</td>
<td>TMVDRIEEVE</td>
<td>5927</td>
<td>Lysine-specific demethylase 5A</td>
</tr>
<tr>
<td>High</td>
<td>TVADKIHSHV</td>
<td>11072</td>
<td>Dual specificity protein phosphatase 14</td>
</tr>
<tr>
<td>High</td>
<td>TVMDEIHTV</td>
<td>55749</td>
<td>Cell division cycle and apoptosis regulator protein 1</td>
</tr>
<tr>
<td>High</td>
<td>VIEKTYSL</td>
<td>219988</td>
<td>Protein PAT1 homolog 1</td>
</tr>
<tr>
<td>High</td>
<td>VIPLLHHTV</td>
<td>146850</td>
<td>Phosphoinositide 3-kinase regulatory subunit 6</td>
</tr>
<tr>
<td>High</td>
<td>VILEGELERA</td>
<td>7171</td>
<td>Tropomyosin alpha-4 chain</td>
</tr>
<tr>
<td>High</td>
<td>VIMDRAPSV</td>
<td>64397</td>
<td>Zinc finger protein 106 homolog</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>High</td>
<td>VIWGKVTRA</td>
<td>6165</td>
<td>60S ribosomal protein L35a</td>
</tr>
<tr>
<td>High</td>
<td>VLADLKVQL</td>
<td>5203</td>
<td>Prefoldin subunit 4</td>
</tr>
<tr>
<td>High</td>
<td>VLADQEVRL</td>
<td>10636</td>
<td>Regulator of G-protein signaling 14</td>
</tr>
<tr>
<td>High</td>
<td>VLAEQLHQCA</td>
<td>23218</td>
<td>Neurobeachin-like protein 2</td>
</tr>
<tr>
<td>High</td>
<td>VLAHTILGV</td>
<td>55325</td>
<td>Ufm1-specific protease 2</td>
</tr>
<tr>
<td>High</td>
<td>VLDKDYFL</td>
<td>3336</td>
<td>10 kDa heat shock protein, mitochondrial</td>
</tr>
<tr>
<td>High</td>
<td>VLDKLVFV</td>
<td>196527</td>
<td>Anoctamin-6</td>
</tr>
<tr>
<td>High</td>
<td>VLDNVKMNL</td>
<td>55027</td>
<td>HEAT repeat-containing protein</td>
</tr>
<tr>
<td>High</td>
<td>VLDSVDVRL</td>
<td>113189</td>
<td>Carbohydrate sulfotransferase 14</td>
</tr>
<tr>
<td>High</td>
<td>VLFKEKEVNEV</td>
<td>116496</td>
<td>Protein Niban</td>
</tr>
<tr>
<td>High</td>
<td>VLFENTDSVHL</td>
<td>23029</td>
<td>RNA-binding protein 34</td>
</tr>
<tr>
<td>High</td>
<td>VLFGVETHV</td>
<td>51015</td>
<td>Isochorismatase domain-containing protein 1</td>
</tr>
<tr>
<td>High</td>
<td>VLFNKLTYL</td>
<td>9910</td>
<td>Rab GTPase-activating protein 1-like</td>
</tr>
<tr>
<td>High</td>
<td>VLFTGVKEV</td>
<td>27131</td>
<td>Sorting nexin-5</td>
</tr>
<tr>
<td>High</td>
<td>VLGCAFLEHL</td>
<td>79959</td>
<td>Centrosomal protein of 76 kDa</td>
</tr>
<tr>
<td>High</td>
<td>VLFHELPEV</td>
<td>11343</td>
<td>Monoglyceride lipase</td>
</tr>
<tr>
<td>High</td>
<td>VLIDYQRNV</td>
<td>7514</td>
<td>Exportin-1</td>
</tr>
<tr>
<td>High</td>
<td>VLKEIVERV</td>
<td>4076</td>
<td>Caprin-1</td>
</tr>
<tr>
<td>High</td>
<td>VLLDGIHRV</td>
<td>23078</td>
<td>Uncharacterized protein KIAA0564</td>
</tr>
<tr>
<td>High</td>
<td>VLENQQQHL</td>
<td>64764</td>
<td>Cyclic AMP-responsive element-binding protein 3-like protein 2</td>
</tr>
<tr>
<td>High</td>
<td>VLLGESAVGKSSL</td>
<td>5868</td>
<td>Ras-related protein Rab-5A</td>
</tr>
<tr>
<td>High</td>
<td>VLLGHIFYV</td>
<td>23383</td>
<td>MAU2 chromatin cohesion factor homolog</td>
</tr>
<tr>
<td>High</td>
<td>VLLSDSNLHDA</td>
<td>57019</td>
<td>Anamorsin</td>
</tr>
<tr>
<td>High</td>
<td>VLLSIYPRV</td>
<td>6890</td>
<td>Antigen peptide transporter 1</td>
</tr>
<tr>
<td>High</td>
<td>VLLTGLHAV</td>
<td>29799</td>
<td>Protein yippee-like 1</td>
</tr>
<tr>
<td>High</td>
<td>VLLTRLENV</td>
<td>22893</td>
<td>Bromo adjacent homology domain-containing 1 protein</td>
</tr>
<tr>
<td>High</td>
<td>VLMHLINL</td>
<td>1147</td>
<td>Inhibitor of nuclear factor kappa-B kinase subunit alpha</td>
</tr>
<tr>
<td>High</td>
<td>VLMRLPSL</td>
<td>9875</td>
<td>Nucleolar pre-ribosomal-associated protein 1</td>
</tr>
<tr>
<td>High</td>
<td>VLMKPDV</td>
<td>54606</td>
<td>Probable ATP-dependent RNA helicase DDX56</td>
</tr>
<tr>
<td>High</td>
<td>VLMEMSYRL</td>
<td>55159</td>
<td>E3 ubiquitin-protein ligase RFWD3</td>
</tr>
<tr>
<td>High</td>
<td>Sequence</td>
<td>Protein Name</td>
<td>Gene ID</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>High</td>
<td>VLMNEYIRSL</td>
<td>Uncharacterized protein C18orf8</td>
<td>29919</td>
</tr>
<tr>
<td>High</td>
<td>VLMKDQVEI</td>
<td>Protein LLP homolog</td>
<td>84298</td>
</tr>
<tr>
<td>High</td>
<td>VLMQDSRLYL</td>
<td>Cyclin-dependent kinase 1</td>
<td>983</td>
</tr>
<tr>
<td>High</td>
<td>VLMTEDIKL</td>
<td>Eukaryotic translation initiation factor 4 gamma 1</td>
<td>1981</td>
</tr>
<tr>
<td>High</td>
<td>VLNHEYFHNV</td>
<td>AP-2 complex subunit sigma</td>
<td>1175</td>
</tr>
<tr>
<td>High</td>
<td>VLNJVVIHL</td>
<td>Huntingtin</td>
<td>3064</td>
</tr>
<tr>
<td>High</td>
<td>VLQEKVPEI</td>
<td>HEAT repeat-containing protein 7A</td>
<td>727957</td>
</tr>
<tr>
<td>High</td>
<td>VLQGRLPAV</td>
<td>Transferrin receptor protein 2</td>
<td>7036</td>
</tr>
<tr>
<td>High</td>
<td>VLQNLKGIQYV</td>
<td>Pumilio domain-containing protein C14orf21</td>
<td>161424</td>
</tr>
<tr>
<td>High</td>
<td>VLSLEAARL</td>
<td>Uncharacterized protein CXorf38</td>
<td>159013</td>
</tr>
<tr>
<td>High</td>
<td>VLSRSLAFA</td>
<td>HLA class II histocompatibility antigen, DR beta 3 chain</td>
<td>3125</td>
</tr>
<tr>
<td>High</td>
<td>VLTEFREV</td>
<td>Importin-9</td>
<td>55705</td>
</tr>
<tr>
<td>High</td>
<td>VLTSEVHSV</td>
<td>Cell cycle regulator Mat89Bb homolog</td>
<td>55726</td>
</tr>
<tr>
<td>High</td>
<td>VLVDDDDGIKV</td>
<td>Transmembrane protein 106C</td>
<td>79022</td>
</tr>
<tr>
<td>High</td>
<td>VLVDQTTGL</td>
<td>ELAV-like protein 1</td>
<td>1994</td>
</tr>
<tr>
<td>High</td>
<td>VLVDRRTYG</td>
<td>Ribonuclease UK114</td>
<td>10247</td>
</tr>
<tr>
<td>High</td>
<td>VLVDSNHHHL</td>
<td>Zinc finger BED domain-containing protein 1</td>
<td>9189</td>
</tr>
<tr>
<td>High</td>
<td>VLVPGHLQSV</td>
<td>POU domain, class 2, transcription factor 3</td>
<td>25833</td>
</tr>
<tr>
<td>High</td>
<td>VLVDRRTYFL</td>
<td>Signal transducer and activator of transcription 1-alpha/beta</td>
<td>6772</td>
</tr>
<tr>
<td>High</td>
<td>VLVGETVHL</td>
<td>Mitogen-activated protein kinase kinase 8</td>
<td>1326</td>
</tr>
<tr>
<td>High</td>
<td>VLYDQPRHV</td>
<td>Mediator of RNA polymerase II transcription subunit 12</td>
<td>9968</td>
</tr>
<tr>
<td>High</td>
<td>VLYEKDJQL</td>
<td>AKT-interacting protein</td>
<td>64400</td>
</tr>
<tr>
<td>High</td>
<td>VLYPKIDRA</td>
<td>Intercellular adhesion molecule 3</td>
<td>3385</td>
</tr>
<tr>
<td>High</td>
<td>VLYHVETEV</td>
<td>Set1/Ash2 histone methyltransferase complex subunit ASH2</td>
<td>9070</td>
</tr>
<tr>
<td>High</td>
<td>VLYPHEPTAV</td>
<td>Protein downstream neighbor of Son</td>
<td>29980</td>
</tr>
<tr>
<td>High</td>
<td>VLYFDFRFL</td>
<td>Protein artemis</td>
<td>64421</td>
</tr>
<tr>
<td>High</td>
<td>VLYTGDFRFL</td>
<td>Anaphase-promoting complex subunit 1</td>
<td>64682</td>
</tr>
<tr>
<td>High</td>
<td>VMDSKIVQV</td>
<td>Importin subunit alpha-6</td>
<td>3841</td>
</tr>
<tr>
<td>High</td>
<td>VMFGKQVVV</td>
<td>Putative adenosylhomocysteinase 2</td>
<td>10768</td>
</tr>
<tr>
<td>High</td>
<td>VMFNGKVL</td>
<td>Ligand-dependent nuclear receptor-interacting factor 1</td>
<td>55791</td>
</tr>
<tr>
<td>High</td>
<td>VMFRTPLASV</td>
<td>26271</td>
<td>F-box only protein 5</td>
</tr>
<tr>
<td>High</td>
<td>VMGKIFAV</td>
<td>57563</td>
<td>Kelch-like protein 8</td>
</tr>
<tr>
<td>High</td>
<td>VMLEYVERA</td>
<td>8453</td>
<td>Cullin-2</td>
</tr>
<tr>
<td>High</td>
<td>VMYGKVYRI</td>
<td>5437</td>
<td>DNA-directed RNA polymerases I, II, and III subunit RPABC3</td>
</tr>
<tr>
<td>High</td>
<td>VTLNKPQGL</td>
<td>285367</td>
<td>RNA pseudouridylate synthase domain-containing protein 3</td>
</tr>
<tr>
<td>High</td>
<td>WLAEKLPTL</td>
<td>9793</td>
<td>Cytoskeleton-associated protein 5</td>
</tr>
<tr>
<td>High</td>
<td>WLEENVHEV</td>
<td>22980</td>
<td>Transcription factor 25</td>
</tr>
<tr>
<td>High</td>
<td>WLIEDGKVVTV</td>
<td>10726</td>
<td>Nuclear migration protein nudC</td>
</tr>
<tr>
<td>High</td>
<td>WLVDHVYAI</td>
<td>5518</td>
<td>Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform</td>
</tr>
<tr>
<td>High</td>
<td>YALNHTLSV</td>
<td>5450</td>
<td>POU domain class 2-associating factor 1</td>
</tr>
<tr>
<td>High</td>
<td>YAYDGKDYIAL</td>
<td>3105</td>
<td>HLA class I histocompatibility antigen, A-23 alpha chain</td>
</tr>
<tr>
<td>High</td>
<td>YAYEKPHVV</td>
<td>8925</td>
<td>Probable E3 ubiquitin-protein ligase HERC1</td>
</tr>
<tr>
<td>High</td>
<td>YIFDNVAKV</td>
<td>5954</td>
<td>Reticulocalbin-1</td>
</tr>
<tr>
<td>High</td>
<td>YIMDNKLAQI</td>
<td>6596</td>
<td>Helicase-like transcription factor</td>
</tr>
<tr>
<td>High</td>
<td>YLADPAKFPEA</td>
<td>29088</td>
<td>39S ribosomal protein L15, mitochondrial</td>
</tr>
<tr>
<td>High</td>
<td>YLAERIPTL</td>
<td>7135</td>
<td>Troponin I, slow skeletal muscle</td>
</tr>
<tr>
<td>High</td>
<td>YLAHAIHQV</td>
<td>2806</td>
<td>Aspartate aminotransferase, mitochondrial</td>
</tr>
<tr>
<td>High</td>
<td>YLAKHIENI</td>
<td>22890</td>
<td>Zinc finger and BTB domain-containing protein 1</td>
</tr>
<tr>
<td>High</td>
<td>YLAPFLRNV</td>
<td>23019</td>
<td>CCR4-NOT transcription complex subunit 1</td>
</tr>
<tr>
<td>High</td>
<td>YLAPHVRTL</td>
<td>2873</td>
<td>COP9 signalosome complex subunit 1</td>
</tr>
<tr>
<td>High</td>
<td>YLASLIRSV</td>
<td>5713</td>
<td>26S proteasome non-ATPase regulatory subunit 7</td>
</tr>
<tr>
<td>High</td>
<td>YLDEDTIYHL</td>
<td>4144</td>
<td>S-adenosylmethionine synthase isoform type-2</td>
</tr>
<tr>
<td>High</td>
<td>YLDEIVKEV</td>
<td>7175</td>
<td>Nucleoprotein TPR</td>
</tr>
<tr>
<td>High</td>
<td>YLDEYIARM</td>
<td>7249</td>
<td>Tuberin</td>
</tr>
<tr>
<td>High</td>
<td>YLDFTNPKV</td>
<td>2595</td>
<td>Neutral alpha-glucosidase C</td>
</tr>
<tr>
<td>High</td>
<td>YLDLSNNRRL</td>
<td>81793</td>
<td>Toll-like receptor 10</td>
</tr>
<tr>
<td>High</td>
<td>YLDPAQRGV</td>
<td>84326</td>
<td>UPF0585 protein C16orf13</td>
</tr>
<tr>
<td>High</td>
<td>YLDQTLPRA</td>
<td>1663</td>
<td>Putative ATP-dependent RNA helicase DDX11-like protein 8</td>
</tr>
<tr>
<td>High</td>
<td>YLDRFLAGV</td>
<td>894</td>
<td>G1/S-specific cyclin-D2</td>
</tr>
<tr>
<td>High</td>
<td>YLDVSVGKIVA</td>
<td>9277</td>
<td>WD repeat-containing protein 46</td>
</tr>
<tr>
<td>High YLDWTIERV</td>
<td>51133</td>
<td>BTB/POZ domain-containing protein KCTD3</td>
<td></td>
</tr>
<tr>
<td>High YLEDKSYKL</td>
<td>57683</td>
<td>DBF4-type zinc finger-containing protein 2</td>
<td></td>
</tr>
<tr>
<td>High YLEEYKFQV</td>
<td>8835</td>
<td>Suppressor of cytokine signaling 2</td>
<td></td>
</tr>
<tr>
<td>High YLEPYLKEV</td>
<td>7381</td>
<td>Cytochrome b-c1 complex subunit 7</td>
<td></td>
</tr>
<tr>
<td>High YLFERIKEL</td>
<td>84928</td>
<td>Transmembrane protein 209</td>
<td></td>
</tr>
<tr>
<td>High YLFREPATI</td>
<td>4728</td>
<td>NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, mitochondrial</td>
<td></td>
</tr>
<tr>
<td>High YLGPHIASV</td>
<td>81671</td>
<td>Vacuole membrane protein 1</td>
<td></td>
</tr>
<tr>
<td>High YLGQVTTTI</td>
<td>10054</td>
<td>SUMO-activating enzyme subunit 2</td>
<td></td>
</tr>
<tr>
<td>High YLHNLQGIGV</td>
<td>701</td>
<td>Mitotic checkpoint serine/threonine-protein kinase BUB1 beta</td>
<td></td>
</tr>
<tr>
<td>High YLIDGTHKI</td>
<td>2946</td>
<td>Glutathione S-transferase Mu 2</td>
<td></td>
</tr>
<tr>
<td>High YLINEIDRI</td>
<td>667</td>
<td>Dystonin</td>
<td></td>
</tr>
<tr>
<td>High YLISQVEGHQV</td>
<td>51002</td>
<td>TP53RK-binding protein</td>
<td></td>
</tr>
<tr>
<td>High YLITHPLAV</td>
<td>85440</td>
<td>Deducator of cytokinesis protein 7</td>
<td></td>
</tr>
<tr>
<td>High YLKDLIEEV</td>
<td>468</td>
<td>Cyclic AMP-dependent transcription factor ATF-4</td>
<td></td>
</tr>
<tr>
<td>High YLLDHAPPEI</td>
<td>8525</td>
<td>Diacylglycerol kinase zeta</td>
<td></td>
</tr>
<tr>
<td>High YLLDKETLRL</td>
<td>10444</td>
<td>Protein zer-1 homolog</td>
<td></td>
</tr>
<tr>
<td>High YLLDQHILI</td>
<td>3635</td>
<td>Phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase 1</td>
<td></td>
</tr>
<tr>
<td>High YLLEKSRAI</td>
<td>4629</td>
<td>Myosin-11</td>
<td></td>
</tr>
<tr>
<td>High YLLEKSRAV</td>
<td>4628</td>
<td>Myosin-10</td>
<td></td>
</tr>
<tr>
<td>High YLLEKSRVI</td>
<td>4625</td>
<td>Myosin-7</td>
<td></td>
</tr>
<tr>
<td>High YLLESVNNKL</td>
<td>5055</td>
<td>Plasminogen activator inhibitor 2</td>
<td></td>
</tr>
<tr>
<td>High YLLGHDRI</td>
<td>4249</td>
<td>Alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase A</td>
<td></td>
</tr>
<tr>
<td>High YLLHEKLNL</td>
<td>55010</td>
<td>PCNA-interacting partner</td>
<td></td>
</tr>
<tr>
<td>High YLLKGVEAV</td>
<td>51428</td>
<td>Probable ATP-dependent RNA helicase DDX41</td>
<td></td>
</tr>
<tr>
<td>High YLLLKHTMLL</td>
<td>55795</td>
<td>PCI domain-containing protein 2</td>
<td></td>
</tr>
<tr>
<td>High YLLPSKSI</td>
<td>148870</td>
<td>Coiled-coil domain-containing protein 27</td>
<td></td>
</tr>
<tr>
<td>High YLLPKDQGITL</td>
<td>23582</td>
<td>Cyclin-D1-binding protein 1</td>
<td></td>
</tr>
<tr>
<td>High YLLQEEPRTV</td>
<td>5074</td>
<td>PRKC apoptosis WT1 regulator protein</td>
<td></td>
</tr>
<tr>
<td>High YLLQRAVEV</td>
<td>6894</td>
<td>Probable methyltransferase TARBP1</td>
<td></td>
</tr>
<tr>
<td>High YLLRSLDYV</td>
<td>55915</td>
<td>LanC-like protein 2</td>
<td></td>
</tr>
<tr>
<td>High YLLTESSKL</td>
<td>51122</td>
<td>COMM domain-containing protein 2</td>
<td></td>
</tr>
<tr>
<td>High YLTTTHPPPM</td>
<td>10075</td>
<td>E3 ubiquitin-protein ligase HUWE1</td>
<td></td>
</tr>
<tr>
<td>High YLLTRNPHL</td>
<td>4199</td>
<td>NADP-dependent malic enzyme</td>
<td></td>
</tr>
<tr>
<td>High YLMEGSYNKV</td>
<td>5714</td>
<td>26S proteasome non-ATPase regulatory subunit 8</td>
<td></td>
</tr>
<tr>
<td>High YLMEQNVTKL</td>
<td>55209</td>
<td>SET domain-containing protein 5</td>
<td></td>
</tr>
<tr>
<td>High YLMEVTHDL</td>
<td>51520</td>
<td>Leucine-tRNA ligase, cytoplasmic</td>
<td></td>
</tr>
<tr>
<td>High YLMVENIRL</td>
<td>57464</td>
<td>Protein FAM40B</td>
<td></td>
</tr>
<tr>
<td>High YLNDFTHEI</td>
<td>64376</td>
<td>Zinc finger protein Pegasus</td>
<td></td>
</tr>
<tr>
<td>High YLNKLHTHSV</td>
<td>11216</td>
<td>A-kinase anchor protein 10, mitochondrial</td>
<td></td>
</tr>
<tr>
<td>High YLNDRVDEL</td>
<td>51251</td>
<td>Cytosolic 5'-nucleotidase 3</td>
<td></td>
</tr>
<tr>
<td>High YLNKEIEEE</td>
<td>9150</td>
<td>RNA polymerase II subunit A C-terminal domain phosphatase</td>
<td></td>
</tr>
<tr>
<td>High YLNQHIEHV</td>
<td>2073</td>
<td>DNA repair protein complementing XP-G cells</td>
<td></td>
</tr>
<tr>
<td>High YLNTRLFTV</td>
<td>79068</td>
<td>Alpha-ketoglutarate-dependent dioxygenase FTO</td>
<td></td>
</tr>
<tr>
<td>High YLPDIKDQKA</td>
<td>5496</td>
<td>Protein phosphatase 1G</td>
<td></td>
</tr>
<tr>
<td>High YLQEKHAL</td>
<td>80184</td>
<td>Centrosomal protein of 290 kDa</td>
<td></td>
</tr>
<tr>
<td>High YLQQVNHKL</td>
<td>6721</td>
<td>Sterol regulatory element-binding protein 2</td>
<td></td>
</tr>
<tr>
<td>High YLSAVRATL</td>
<td>10093</td>
<td>Actin-related protein 2/3 complex subunit 4</td>
<td></td>
</tr>
<tr>
<td>High YLSDNVHLV</td>
<td>11140</td>
<td>Hsp90 co-chaperone Cdc37</td>
<td></td>
</tr>
<tr>
<td>High YLSPDLSKV</td>
<td>673</td>
<td>Serine/threonine-protein kinase B-raf</td>
<td></td>
</tr>
<tr>
<td>High YLSVKVWDL</td>
<td>55844</td>
<td>Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B delta isoform</td>
<td></td>
</tr>
<tr>
<td>High YLTDVMTV</td>
<td>8841</td>
<td>Histone deacetylase 3</td>
<td></td>
</tr>
<tr>
<td>High YLTNEGQYVL</td>
<td>6204</td>
<td>40S ribosomal protein S10</td>
<td></td>
</tr>
<tr>
<td>High YLVAEKVT</td>
<td>3320</td>
<td>Heat shock protein HSP 90-alpha</td>
<td></td>
</tr>
<tr>
<td>High YLVEDIQHI</td>
<td>9985</td>
<td>Meiotic recombination protein REC8 homolog</td>
<td></td>
</tr>
<tr>
<td>High YLWQGVRVA</td>
<td>8893</td>
<td>Translation initiation factor eIF-2B subunit epsilon</td>
<td></td>
</tr>
<tr>
<td>High YLWRTSLYL</td>
<td>5250</td>
<td>Phosphate carrier protein, mitochondrial</td>
<td></td>
</tr>
<tr>
<td>High YLYDLNHTL</td>
<td>81622</td>
<td>Protein unc-93 homolog B1</td>
<td></td>
</tr>
<tr>
<td>High YLYGIRVEV</td>
<td>10554</td>
<td>1-acyl-sn-glycerol-3-phosphate acyltransferase alpha</td>
<td></td>
</tr>
<tr>
<td>High YLYPDITRL</td>
<td>6533</td>
<td>Sodium- and chloride-dependent taurine transporter</td>
<td></td>
</tr>
<tr>
<td>High YLYTKEQLL</td>
<td>10939</td>
<td>AFG3-like protein 2</td>
<td></td>
</tr>
<tr>
<td>High YMADRLLLGV</td>
<td>9820</td>
<td>Cullin-7</td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>Protein Sequence</td>
<td>Proportion</td>
<td>Function</td>
</tr>
<tr>
<td>-------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>High</td>
<td>YMAELIERL</td>
<td>51053</td>
<td>Geminin</td>
</tr>
<tr>
<td>High</td>
<td>YMGEEKLIASV</td>
<td>23404</td>
<td>Exosome complex component RRP4</td>
</tr>
<tr>
<td>High</td>
<td>YMIAHITGL</td>
<td>7298</td>
<td>Thymidylate synthase</td>
</tr>
<tr>
<td>High</td>
<td>YMLEHVITL</td>
<td>9735</td>
<td>Kinetochore-associated protein 1</td>
</tr>
<tr>
<td>High</td>
<td>YMLGLEARL</td>
<td>22926</td>
<td>Cyclic AMP-dependent transcription factor ATF-6 alpha</td>
</tr>
<tr>
<td>High</td>
<td>YTYDEAIHSV</td>
<td>134957</td>
<td>Syntaxin-binding protein 5</td>
</tr>
<tr>
<td>High</td>
<td>YVFEGKMLEA</td>
<td>6305</td>
<td>Myotubularin-related protein 5</td>
</tr>
<tr>
<td>High</td>
<td>YVIDPIKGLKL</td>
<td>5339</td>
<td>Plectin</td>
</tr>
<tr>
<td>High</td>
<td>YVLEGLKSV</td>
<td>26098</td>
<td>Erythroid differentiation-related factor 1</td>
</tr>
<tr>
<td>High</td>
<td>YVLPEVSKV</td>
<td>8890</td>
<td>Translation initiation factor eIF-2B subunit delta</td>
</tr>
<tr>
<td>High</td>
<td>YVVYDKDIEQI</td>
<td>389856</td>
<td>Ubiquitin carboxyl-terminal hydrolase 27</td>
</tr>
<tr>
<td>Medium</td>
<td>AIVRSLSV</td>
<td>487</td>
<td>Sarcoplasmic/endoplasmic reticulum calcium ATPase 1</td>
</tr>
<tr>
<td>Medium</td>
<td>ALAKEIDSV</td>
<td>5880</td>
<td>Ras-related C3 botulinum toxin substrate 2</td>
</tr>
<tr>
<td>Medium</td>
<td>ALFDSGLHPA</td>
<td>55247</td>
<td>Endonuclease 8-like 3</td>
</tr>
<tr>
<td>Medium</td>
<td>ALFEGKVQL</td>
<td>57728</td>
<td>WD repeat-containing protein 19</td>
</tr>
<tr>
<td>Medium</td>
<td>ALFKAWAL</td>
<td>3662</td>
<td>Interferon regulatory factor 4</td>
</tr>
<tr>
<td>Medium</td>
<td>ALFQPHLINV</td>
<td>10097</td>
<td>Actin-related protein 2</td>
</tr>
<tr>
<td>Medium</td>
<td>ALLKGLAAV</td>
<td>57558</td>
<td>Ubiquitin carboxyl-terminal hydrolase 35</td>
</tr>
<tr>
<td>Medium</td>
<td>ALLKQVEI</td>
<td>84070</td>
<td>Protein FAM186B</td>
</tr>
<tr>
<td>Medium</td>
<td>ALMSRPAQV</td>
<td>23005</td>
<td>Mitogen-activated protein kinase-binding protein 1</td>
</tr>
<tr>
<td>Medium</td>
<td>ALNGKLYIV</td>
<td>10625</td>
<td>Influenza virus NS1A-binding protein</td>
</tr>
<tr>
<td>Medium</td>
<td>ALQSLIPS L</td>
<td>57614</td>
<td>LisH domain and HEAT repeat-containing protein KIAA1468</td>
</tr>
<tr>
<td>Medium</td>
<td>ALRDVSEEL</td>
<td>200081</td>
<td>Alpha-taxilin</td>
</tr>
<tr>
<td>Medium</td>
<td>ALREENEQL</td>
<td>114826</td>
<td>SET and MYND domain-containing protein 4</td>
</tr>
<tr>
<td>Medium</td>
<td>ALRGEIETV</td>
<td>10128</td>
<td>Leucine-rich PPR motif-containing protein, mitochondrial</td>
</tr>
<tr>
<td>Medium</td>
<td>ALSSLIHAL</td>
<td>7520</td>
<td>X-ray repair cross-complementing protein 5</td>
</tr>
<tr>
<td>Medium</td>
<td>ALWEGPSKA</td>
<td>9855</td>
<td>FERM, RhoGEF and pleckstrin domain-containing protein 2</td>
</tr>
<tr>
<td>Medium</td>
<td>ALYGKLLLKL</td>
<td>157680</td>
<td>Vacuolar protein sorting-associated protein 13B</td>
</tr>
<tr>
<td>Medium</td>
<td>ALYGRAEAAEVE</td>
<td>3090</td>
<td>Hypermethylated in cancer 1 protein</td>
</tr>
<tr>
<td>Medium</td>
<td>ALYNDISHMKI</td>
<td>135112</td>
<td>Nuclear receptor coactivator 7</td>
</tr>
<tr>
<td>Protein Name</td>
<td>Accession Number</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>AMNGHVPAV</td>
<td>54882</td>
<td>Ankyrin repeat and KH domain-containing protein 1</td>
<td></td>
</tr>
<tr>
<td>ATMQRIPVEV</td>
<td>2650</td>
<td>Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglcosaminyltransferase</td>
<td></td>
</tr>
<tr>
<td>AVIDVGINRV</td>
<td>10797</td>
<td>Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial</td>
<td></td>
</tr>
<tr>
<td>DLKDQIQQDV</td>
<td>9209</td>
<td>Leucine-rich repeat flightless-interacting protein 2</td>
<td></td>
</tr>
<tr>
<td>EMEKKLKEI</td>
<td>701</td>
<td>Mitotic checkpoint serine/threonine-protein kinase BUB1 beta</td>
<td></td>
</tr>
<tr>
<td>EVGGEALGRL</td>
<td>3043</td>
<td>Hemoglobin subunit beta</td>
<td></td>
</tr>
<tr>
<td>FAYDGKDYI</td>
<td>3107</td>
<td>HLA class I histocompatibility antigen, Cw-4 alpha chain</td>
<td></td>
</tr>
<tr>
<td>FIFEEKLAQA</td>
<td>23141</td>
<td>Ankyrin repeat and LEM domain-containing protein 2</td>
<td></td>
</tr>
<tr>
<td>FIYHGEVPQA</td>
<td>4261</td>
<td>MHC class II transactivator</td>
<td></td>
</tr>
<tr>
<td>FLANIGTSV</td>
<td>26060</td>
<td>DCC-interacting protein 13-alpha</td>
<td></td>
</tr>
<tr>
<td>FLAVKPDGV</td>
<td>4832</td>
<td>Nucleoside diphosphate kinase 3</td>
<td></td>
</tr>
<tr>
<td>FLDEPTNHNL</td>
<td>10061</td>
<td>ATP-binding cassette sub-family F member 2</td>
<td></td>
</tr>
<tr>
<td>FLDHIASV</td>
<td>51780</td>
<td>Lysine-specific demethylase 3B</td>
<td></td>
</tr>
<tr>
<td>FLDSGTIRGV</td>
<td>2268</td>
<td>Tyrosine-protein kinase Fgr</td>
<td></td>
</tr>
<tr>
<td>FLEEKIPSI</td>
<td>85476</td>
<td>Elongation factor G, mitochondrial</td>
<td></td>
</tr>
<tr>
<td>FLEPVNPRL</td>
<td>11176</td>
<td>Bromodomain adjacent to zinc finger domain protein 2A</td>
<td></td>
</tr>
<tr>
<td>FLGEINDRL</td>
<td>80345</td>
<td>Zinc finger and SCAN domain-containing protein 16</td>
<td></td>
</tr>
<tr>
<td>FLGSFIDHV</td>
<td>91147</td>
<td>Meckelin</td>
<td></td>
</tr>
<tr>
<td>FLIEEQQIVV</td>
<td>6164</td>
<td>60S ribosomal protein L34</td>
<td></td>
</tr>
<tr>
<td>FLEKPSV</td>
<td>10196</td>
<td>Protein arginine N-methyltransferase 3</td>
<td></td>
</tr>
<tr>
<td>FLLGKEVSL</td>
<td>23061</td>
<td>TBC1 domain family member 9B</td>
<td></td>
</tr>
<tr>
<td>FLLHIQQOV</td>
<td>10802</td>
<td>Protein transport protein Sec24A</td>
<td></td>
</tr>
<tr>
<td>FLLPIKTVGV</td>
<td>8833</td>
<td>GMP synthase [glutamine-hydrolyzing]</td>
<td></td>
</tr>
<tr>
<td>FLMKNSDLYGA</td>
<td>79801</td>
<td>SHC SH2 domain-binding protein 1</td>
<td></td>
</tr>
<tr>
<td>FLNKEITSV</td>
<td>8890</td>
<td>Translation initiation factor eIF-2B subunit delta</td>
<td></td>
</tr>
<tr>
<td>FLPRKFPFSL</td>
<td>23246</td>
<td>Ribosome biogenesis protein BOP1</td>
<td></td>
</tr>
<tr>
<td>FLQEKSPA</td>
<td>9898</td>
<td>Ubiquitin-associated protein 2-like</td>
<td></td>
</tr>
<tr>
<td>FLQPELVLK</td>
<td>23198</td>
<td>Proteasome activator complex subunit 4</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>Sequence</td>
<td>Accession</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Medium</td>
<td>FLTKQEILL</td>
<td>10519</td>
<td>Calcium and integrin-binding protein 1</td>
</tr>
<tr>
<td>Medium</td>
<td>FLVEHNLVL</td>
<td>55818</td>
<td>Lysine-specific demethylase 3A</td>
</tr>
<tr>
<td>Medium</td>
<td>FLYDTHQNL</td>
<td>5336</td>
<td>1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase gamma-2</td>
</tr>
<tr>
<td>Medium</td>
<td>FLYFEDHGL</td>
<td>55255</td>
<td>WD repeat-containing protein 41</td>
</tr>
<tr>
<td>Medium</td>
<td>FLYQRLVVGA</td>
<td>4074</td>
<td>Cation-dependent mannose-6-phosphate receptor</td>
</tr>
<tr>
<td>Medium</td>
<td>FMMPRIVNV</td>
<td>23269</td>
<td>MAX gene-associated protein</td>
</tr>
<tr>
<td>Medium</td>
<td>FMVDRLESL</td>
<td>51324</td>
<td>Maspardin</td>
</tr>
<tr>
<td>Medium</td>
<td>FVDGLTFKV</td>
<td>4343</td>
<td>Putative helicase MOV-10</td>
</tr>
<tr>
<td>Medium</td>
<td>GILSHINTV</td>
<td>2983</td>
<td>Guanylate cyclase soluble subunit beta-1</td>
</tr>
<tr>
<td>Medium</td>
<td>GLAPHLEQI</td>
<td>79711</td>
<td>Importin-4</td>
</tr>
<tr>
<td>Medium</td>
<td>GLAPLEVRV</td>
<td>2317</td>
<td>Filamin-B</td>
</tr>
<tr>
<td>Medium</td>
<td>GLDRNAPSV</td>
<td>1479</td>
<td>Cleavage stimulation factor subunit 3</td>
</tr>
<tr>
<td>Medium</td>
<td>GLHFVVPSS</td>
<td>6873</td>
<td>Transcription initiation factor TFIID subunit 2</td>
</tr>
<tr>
<td>Medium</td>
<td>GLLREQVAQL</td>
<td>3726</td>
<td>Transcription factor jun-B</td>
</tr>
<tr>
<td>Medium</td>
<td>GLMDNEIKV</td>
<td>8795</td>
<td>Tumor necrosis factor receptor superfamily member 10B</td>
</tr>
<tr>
<td>Medium</td>
<td>GLMQEKIYI</td>
<td>1786</td>
<td>DNA (cytosine-5)-methyltransferase 1</td>
</tr>
<tr>
<td>Medium</td>
<td>GLNEEIAKV</td>
<td>10403</td>
<td>Kinetochore protein NDC80 homolog</td>
</tr>
<tr>
<td>Medium</td>
<td>GLPRFGIEMV</td>
<td>64397</td>
<td>Zinc finger protein 106 homolog</td>
</tr>
<tr>
<td>Medium</td>
<td>GLSNHIAAL</td>
<td>29028</td>
<td>ATPase family AAA domain-containing protein 2</td>
</tr>
<tr>
<td>Medium</td>
<td>GLVGGLQEV</td>
<td>64682</td>
<td>Anaphase-promoting complex subunit 1</td>
</tr>
<tr>
<td>Medium</td>
<td>GLWGPEEEPHL</td>
<td>84726</td>
<td>Protein PRRC2B</td>
</tr>
<tr>
<td>Medium</td>
<td>GLYEFPLNKV</td>
<td>51605</td>
<td>tRNA (adenine(58)-N(1))-methyltransferase non-catalytic subunit T</td>
</tr>
<tr>
<td>Medium</td>
<td>GMAERIPHEL</td>
<td>2181</td>
<td>Long-chain-fatty-acid--CoA ligase 3</td>
</tr>
<tr>
<td>Medium</td>
<td>GVAESIHLWEV</td>
<td>57418</td>
<td>WD repeat-containing protein 18</td>
</tr>
<tr>
<td>Medium</td>
<td>HLAEALHQA</td>
<td>66005</td>
<td>Chitinase domain-containing protein 1</td>
</tr>
<tr>
<td>Medium</td>
<td>HlavKkanqa</td>
<td>55616</td>
<td>Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 3</td>
</tr>
<tr>
<td>Medium</td>
<td>HDATKLLL</td>
<td>55761</td>
<td>Tetraptratricopeptide repeat protein 17</td>
</tr>
<tr>
<td>Medium</td>
<td>HLDIEMEKV</td>
<td>22824</td>
<td>Heat shock 70 kDa protein 4L</td>
</tr>
<tr>
<td>Medium</td>
<td>HLDTNKIQL</td>
<td>55619</td>
<td>Dedicator of cytokinesis protein 10</td>
</tr>
<tr>
<td>Medium</td>
<td>HLHAPPEV</td>
<td>5287</td>
<td>Phosphatidylinositol-4-phosphate 3-kinase C2 domain-containing subunit beta</td>
</tr>
<tr>
<td>Protein Name</td>
<td>Accession Number</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Protein syndesmos</td>
<td>84309</td>
<td>Medium HLYARQLTL</td>
<td></td>
</tr>
<tr>
<td>Probable helicase senataxin</td>
<td>23064</td>
<td>Medium HLYSEVKEV</td>
<td></td>
</tr>
<tr>
<td>Importin-9</td>
<td>55705</td>
<td>Medium IAAQDLLLAV</td>
<td></td>
</tr>
<tr>
<td>Folliculin-interacting protein 1</td>
<td>96459</td>
<td>Medium IIADMDKWTV</td>
<td></td>
</tr>
<tr>
<td>Olfactory receptor 4C15</td>
<td>81309</td>
<td>Medium IINFSLLLV</td>
<td></td>
</tr>
<tr>
<td>F-box only protein 28</td>
<td>23219</td>
<td>Medium ILAAVETRL</td>
<td></td>
</tr>
<tr>
<td>Ras GTPase-activating-like protein IQGAP1</td>
<td>8826</td>
<td>Medium ILAPVVKEI</td>
<td></td>
</tr>
<tr>
<td>26S proteasome non-ATPase regulatory subunit 1</td>
<td>5707</td>
<td>Medium ILDAGGHNV</td>
<td></td>
</tr>
<tr>
<td>Cold shock domain-containing protein E1</td>
<td>7812</td>
<td>Medium ILDGNQLHI</td>
<td></td>
</tr>
<tr>
<td>Gamma-enolase</td>
<td>2026</td>
<td>Medium ILDSRGNPTV</td>
<td></td>
</tr>
<tr>
<td>Cofilin-1</td>
<td>1072</td>
<td>Medium ILEEBUGKEIL</td>
<td></td>
</tr>
<tr>
<td>Heat shock protein HSP 90-alpha</td>
<td>3320</td>
<td>Medium ILEKKEVKV</td>
<td></td>
</tr>
<tr>
<td>Translational activator GCN1</td>
<td>10985</td>
<td>Medium ILGDRFSWNV</td>
<td></td>
</tr>
<tr>
<td>60S acidic ribosomal protein P1</td>
<td>6176</td>
<td>Medium ILHDEVTV</td>
<td></td>
</tr>
<tr>
<td>Cytochrome b5</td>
<td>1528</td>
<td>Medium ILHHKVKYDL</td>
<td></td>
</tr>
<tr>
<td>ATP-binding cassette sub-family B member 7, mitochondrial</td>
<td>22</td>
<td>Medium ILIRPLVSV</td>
<td></td>
</tr>
<tr>
<td>Superkiller viralicidic activity 2-like 2</td>
<td>23517</td>
<td>Medium ILLPDNVHYV</td>
<td></td>
</tr>
<tr>
<td>Transmembrane protein 175</td>
<td>84286</td>
<td>Medium ILLPYVSKV</td>
<td></td>
</tr>
<tr>
<td>Membrane protein FAM174B</td>
<td>400451</td>
<td>Medium ILLRDLPLTL</td>
<td></td>
</tr>
<tr>
<td>Putative pre-mRNA-splicing factor ATP-dependent RNA helicase DHX15</td>
<td>1665</td>
<td>Medium ILMGVLKEV</td>
<td></td>
</tr>
<tr>
<td>Transcription activator BRG1</td>
<td>6597</td>
<td>Medium ILQEREYRL</td>
<td></td>
</tr>
<tr>
<td>Translin-associated protein X</td>
<td>7257</td>
<td>Medium ILTESEIKL</td>
<td></td>
</tr>
<tr>
<td>WD repeat- and FYVE domain-containing protein 4</td>
<td>57705</td>
<td>Medium ILWDLDHNLTHV</td>
<td></td>
</tr>
<tr>
<td>Ras GTPase-activating-like protein IQGAP1</td>
<td>8826</td>
<td>Medium IMDDKSLNI</td>
<td></td>
</tr>
<tr>
<td>LIM/homeobox protein Lhx4</td>
<td>89884</td>
<td>Medium ITAKQLETL</td>
<td></td>
</tr>
<tr>
<td>Galectin-9</td>
<td>3965</td>
<td>Medium ITQTVIHTV</td>
<td></td>
</tr>
<tr>
<td>Splicing factor 3A subunit 1</td>
<td>10291</td>
<td>Medium IVDKTASFV</td>
<td></td>
</tr>
<tr>
<td>Serine/threonine-protein kinase B-raf</td>
<td>673</td>
<td>Medium KIGDFGLATV</td>
<td></td>
</tr>
<tr>
<td>Targeting protein for Xklp2</td>
<td>22974</td>
<td>Medium KILEDVVGV</td>
<td></td>
</tr>
<tr>
<td>Adenomatous polyposis coli protein</td>
<td>324</td>
<td>Medium KIMDQVQQA</td>
<td></td>
</tr>
<tr>
<td>Calpastatin</td>
<td>831</td>
<td>Medium KLAAAIASEV</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>Sequence</td>
<td>Accession</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------------</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>Medium</td>
<td>KLADDVDLEQV</td>
<td>7415</td>
<td>Transitional endoplasmic reticulum ATPase</td>
</tr>
<tr>
<td>Medium</td>
<td>KLADISINYV</td>
<td>26046</td>
<td>E3 ubiquitin-protein ligase listerin</td>
</tr>
<tr>
<td>Medium</td>
<td>KLADKLYNL</td>
<td>374659</td>
<td>Guanosine-3',5'-bis(diphosphate) 3'-pyrophosphohydrolase MESH1</td>
</tr>
<tr>
<td>Medium</td>
<td>KLAELKLTL</td>
<td>3071</td>
<td>Nck-associated protein 1-like</td>
</tr>
<tr>
<td>Medium</td>
<td>KLAENIDAQL</td>
<td>23636</td>
<td>Nuclear pore glycoprotein p62</td>
</tr>
<tr>
<td>Medium</td>
<td>KLDVPATSAVTV</td>
<td>55709</td>
<td>Kelch repeat and BTB domain-containing protein 4</td>
</tr>
<tr>
<td>Medium</td>
<td>KLFEDELTL</td>
<td>3954</td>
<td>LETM1 and EF-hand domain-containing protein 1, mitochondrial</td>
</tr>
<tr>
<td>Medium</td>
<td>KLFSELPLA</td>
<td>51650</td>
<td>28S ribosomal protein S33, mitochondrial</td>
</tr>
<tr>
<td>Medium</td>
<td>KLGELEMTQL</td>
<td>124944</td>
<td>Chromatin complexes subunit BAP18</td>
</tr>
<tr>
<td>Medium</td>
<td>KLGLKPLEV</td>
<td>9092</td>
<td>Signal recognition particle receptor subunit alpha</td>
</tr>
<tr>
<td>Medium</td>
<td>KLIEELITL</td>
<td>1390</td>
<td>cAMP-responsive element modulator</td>
</tr>
<tr>
<td>Medium</td>
<td>KLIPQLPTL</td>
<td>64121</td>
<td>Ras-related GTP-binding protein C</td>
</tr>
<tr>
<td>Medium</td>
<td>KLLPVPVSV</td>
<td>51321</td>
<td>Archaemetzinic-2</td>
</tr>
<tr>
<td>Medium</td>
<td>KLLELLEPA</td>
<td>5980</td>
<td>DNA polymerase zeta catalytic subunit</td>
</tr>
<tr>
<td>Medium</td>
<td>KLLERVSAI</td>
<td>25920</td>
<td>Negative elongation factor B</td>
</tr>
<tr>
<td>Medium</td>
<td>KLMKDLPEL</td>
<td>27250</td>
<td>Programmed cell death protein 4</td>
</tr>
<tr>
<td>Medium</td>
<td>KLMDEVAGI</td>
<td>11332</td>
<td>Cytosolic acyl coenzyme A thioester hydrolase</td>
</tr>
<tr>
<td>Medium</td>
<td>KLNPQQFEV</td>
<td>3703</td>
<td>Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit STT3A</td>
</tr>
<tr>
<td>Medium</td>
<td>KLPEKWESV</td>
<td>26156</td>
<td>Ribosomal L1 domain-containing protein 1</td>
</tr>
<tr>
<td>Medium</td>
<td>KLVALPYTV</td>
<td>55644</td>
<td>Probable tRNA threonylcarbamoyladenosine biosynthesis protein OSGEP</td>
</tr>
<tr>
<td>Medium</td>
<td>KLMWEIUKL</td>
<td>23064</td>
<td>Probable helicase senataxin</td>
</tr>
<tr>
<td>Medium</td>
<td>KLWWEAESKL</td>
<td>54069</td>
<td>Protein Mis18-alpha</td>
</tr>
<tr>
<td>Medium</td>
<td>KLYDGFQYL</td>
<td>5298</td>
<td>Phosphatidylinositol 4-kinase beta</td>
</tr>
<tr>
<td>Medium</td>
<td>KMDEVLYSI</td>
<td>10907</td>
<td>Thioredoxin-like protein 4A</td>
</tr>
<tr>
<td>Medium</td>
<td>KMGLIFVEF</td>
<td>10959</td>
<td>Transmembrane emp24 domain-containing protein 2</td>
</tr>
<tr>
<td>Medium</td>
<td>KVLEPSSTLVC</td>
<td>6651</td>
<td>Protein SON</td>
</tr>
<tr>
<td>Medium</td>
<td>LIEECCGGEI</td>
<td>3840</td>
<td>Importin subunit alpha-4</td>
</tr>
<tr>
<td>Medium</td>
<td>LLAPRPVA</td>
<td>1028</td>
<td>Cyclin-dependent kinase inhibitor 1C</td>
</tr>
<tr>
<td>Medium</td>
<td>LLDVVEHPAA</td>
<td>10574</td>
<td>T-complex protein 1 subunit eta</td>
</tr>
<tr>
<td>Identifier</td>
<td>Accession</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Medium LLFDKFNAV</td>
<td>60412</td>
<td>Exocyst complex component 4</td>
<td></td>
</tr>
<tr>
<td>Medium LLFSGNIQEA</td>
<td>57560</td>
<td>Intraflagellar transport protein 80 homolog</td>
<td></td>
</tr>
<tr>
<td>Medium LLGRVYDV</td>
<td>124936</td>
<td>Neuferricin</td>
<td></td>
</tr>
<tr>
<td>Medium LLLGERVAL</td>
<td>23475</td>
<td>Nicotinate-nucleotide pyrophosphorylase [carboxylating]</td>
<td></td>
</tr>
<tr>
<td>Medium LLLLGHVAQV</td>
<td>4686</td>
<td>Alpha-N-acetylgalactosaminidase</td>
<td></td>
</tr>
<tr>
<td>Medium LLNDRIWLA</td>
<td>90204</td>
<td>Zinc finger SWIM domain-containing protein 1</td>
<td></td>
</tr>
<tr>
<td>Medium LLLQRKVEEV</td>
<td>23636</td>
<td>Nuclear pore glycoprotein p62</td>
<td></td>
</tr>
<tr>
<td>Medium LLSDTVQHL</td>
<td>6778</td>
<td>Signal transducer and activator of transcription 6</td>
<td></td>
</tr>
<tr>
<td>Medium LLYEKGISL</td>
<td>29015</td>
<td>Solute carrier family 43 member 3</td>
<td></td>
</tr>
<tr>
<td>Medium LLYQGPHNTL</td>
<td>3676</td>
<td>Integrin alpha-4</td>
<td></td>
</tr>
<tr>
<td>Medium LMAHAMEEV</td>
<td>10657</td>
<td>KH domain-containing, RNA-binding, signal transduction-associated protein 1</td>
<td></td>
</tr>
<tr>
<td>Medium LmLAGGQITGL</td>
<td>5451</td>
<td>POU domain, class 2, transcription factor 1</td>
<td></td>
</tr>
<tr>
<td>Medium LTAAQLLDTL</td>
<td>286077</td>
<td>Protein FAM83H</td>
<td></td>
</tr>
<tr>
<td>Medium MAAELKGYNL</td>
<td>55567</td>
<td>Dynein heavy chain 3, axonemal</td>
<td></td>
</tr>
<tr>
<td>Medium MLKEAHIEL</td>
<td>64850</td>
<td>Alanine--glyoxylate aminotransferase 2-like 1</td>
<td></td>
</tr>
<tr>
<td>Medium MLLEGREL</td>
<td>8409</td>
<td>Protein UXT</td>
<td></td>
</tr>
<tr>
<td>Medium NILEKGGDPL</td>
<td>9169</td>
<td>Protein SCAF11</td>
<td></td>
</tr>
<tr>
<td>Medium NIVEKLRREV</td>
<td>85363</td>
<td>Tripartite motif-containing protein 5</td>
<td></td>
</tr>
<tr>
<td>Medium NIVERVKEV</td>
<td>10346</td>
<td>E3 ubiquitin-protein ligase TRIM22</td>
<td></td>
</tr>
<tr>
<td>Medium NLAEKPKTV</td>
<td>23392</td>
<td>Proteasome-associated protein ECM29 homolog</td>
<td></td>
</tr>
<tr>
<td>Medium NLAEVVERV</td>
<td>26263</td>
<td>F-box only protein 22</td>
<td></td>
</tr>
<tr>
<td>Medium NLASRIPAA</td>
<td>23524</td>
<td>Serine/arginine repetitive matrix protein 2</td>
<td></td>
</tr>
<tr>
<td>Medium NLVEKTPAL</td>
<td>267020</td>
<td>ATP synthase subunit g 2, mitochondrial</td>
<td></td>
</tr>
<tr>
<td>Medium NMYGKVVTW</td>
<td>6829</td>
<td>Transcription elongation factor SPT5</td>
<td></td>
</tr>
<tr>
<td>Medium QLDSHVHAV</td>
<td>23557</td>
<td>SNARE-associated protein Snapin</td>
<td></td>
</tr>
<tr>
<td>Medium QLLEKVIEL</td>
<td>55862</td>
<td>Enoyl-CoA hydratase domain-containing protein 1</td>
<td></td>
</tr>
<tr>
<td>Medium QLTVNVILHL</td>
<td>54471</td>
<td>Mitochondrial dynamic protein MID51</td>
<td></td>
</tr>
<tr>
<td>Medium RLAGADVVLGV</td>
<td>790</td>
<td>CAD protein</td>
<td></td>
</tr>
<tr>
<td>Medium RLFHYRITV</td>
<td>29102</td>
<td>Ribonuclease 3</td>
<td></td>
</tr>
<tr>
<td>Medium RLIDLHTNV</td>
<td>23256</td>
<td>Sec1 family domain-containing protein 1</td>
<td></td>
</tr>
<tr>
<td>Medium RLLEQKVEL</td>
<td>5411</td>
<td>Pinin</td>
<td></td>
</tr>
<tr>
<td>Protein Name</td>
<td>Accession</td>
<td>Function</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>ADP-dependent glucokinase</td>
<td>RLLEVVTISI 83440</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RING finger protein 213</td>
<td>RLLQEQHQL 57674</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V-type proton ATPase subunit H</td>
<td>RLNEKNYEL 51606</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double-strand-break repair protein rad21 homolog</td>
<td>RLQESVMEA 5885</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interferon-induced protein with tetratricopeptide repeats 2</td>
<td>RLSDVQIYV 3433</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eukaryotic translation initiation factor 3 subunit H</td>
<td>RLTPKLMEEV 8667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEP domain-containing protein 1B</td>
<td>RLWNETVEL 55789</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serine/threonine-protein kinase Kist</td>
<td>RMFDGKFVV 127933</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histone deacetylase 1</td>
<td>RMLPHAPGV 3065</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serine/threonine-protein phosphatase PP1-alpha catalytic subunit</td>
<td>SIIGRLELEV 5499</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TATA-binding protein-associated factor 172</td>
<td>SLADVHIEV 9044</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LisH domain-containing protein ARMC9</td>
<td>SLAEGRLYL 80210</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trinucleotide repeat-containing gene 6A protein</td>
<td>SLAHELWKV 27327</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNFAIP3-interacting protein 2</td>
<td>SLANETHQL 79155</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage-dependent L-type calcium channel subunit beta-4</td>
<td>SLAPIIVHV 785</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATP-binding cassette sub-family A member 10</td>
<td>SLDNRINEV 10349</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein flightless-1 homolog</td>
<td>SLFPGBKLEV 2314</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ribosome production factor 1</td>
<td>SLPFHNPQFI 80135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U1 small nuclear ribonucleoprotein C</td>
<td>SLIDKTTAA 6631</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dual specificity protein phosphatase 5</td>
<td>SLIGHLQTL 1847</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNA polymerase-associated protein CTR9 homolog</td>
<td>SLIGNLHLA 9646</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rho GTPase-activating protein 11A</td>
<td>SLKNRIESV 9824</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Developmentally-regulated GTP-binding protein 2</td>
<td>SLLEKELESV 1819</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serine/threonine-protein kinase ATR</td>
<td>SLLESVQQKL 545</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probable ATP-dependent RNA helicase DDX5</td>
<td>SLLKRDFGA 1655</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vacuolar protein sorting-associated protein 13B</td>
<td>SLLQKQIML 157680</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small glutamine-rich tetratricopeptide repeat-containing protein alpha</td>
<td>SLNKHVEA 6449</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulator of G-protein signaling 14</td>
<td>SLPDKVYL 10636</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WD repeat-containing protein 3</td>
<td>SLQDEIQRV 10885</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>Protein Name</td>
<td>Uniprot ID</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Mitogen-activated protein kinase kinase 5</td>
<td>SLREACETV</td>
<td>4217</td>
<td></td>
</tr>
<tr>
<td>HMG domain-containing protein 3</td>
<td>SLSDKTPSV</td>
<td>22993</td>
<td></td>
</tr>
<tr>
<td>Dynactin subunit 1</td>
<td>SLSDTVEKL</td>
<td>1639</td>
<td></td>
</tr>
<tr>
<td>Alsin</td>
<td>SLSSFLHG</td>
<td>57679</td>
<td></td>
</tr>
<tr>
<td>Tripartite motif-containing protein 26</td>
<td>SLVENIERLKV</td>
<td>7726</td>
<td></td>
</tr>
<tr>
<td>FACT complex subunit SSRP1</td>
<td>SLYEMVSRV</td>
<td>6749</td>
<td></td>
</tr>
<tr>
<td>Ribosome biogenesis protein BMS1 homolog</td>
<td>SLYGYLRIA</td>
<td>9790</td>
<td></td>
</tr>
<tr>
<td>ZMYM3 zinc finger, MYM-type 3</td>
<td>SMLNRILAV</td>
<td>9203</td>
<td></td>
</tr>
<tr>
<td>Sphingolipid delta(4)-desaturase DES1</td>
<td>SMTLAIHEI</td>
<td>8560</td>
<td></td>
</tr>
<tr>
<td>Pre-mRNA-processing factor 40 homolog A</td>
<td>TLDAGNIKL</td>
<td>55660</td>
<td></td>
</tr>
<tr>
<td>Nuclear respiratory factor 1</td>
<td>TLDEYTTRV</td>
<td>4899</td>
<td></td>
</tr>
<tr>
<td>Staphylococcal nuclease domain-containing protein 1</td>
<td>TLFTKELVL</td>
<td>27044</td>
<td></td>
</tr>
<tr>
<td>CPSF1 cleavage and polyadenylation specific factor 1</td>
<td>TLITDGMRSV</td>
<td>29894</td>
<td></td>
</tr>
<tr>
<td>HEAT repeat-containing protein 5B</td>
<td>TLLDSPYARV</td>
<td>54497</td>
<td></td>
</tr>
<tr>
<td>Cell division cycle protein 27 homolog</td>
<td>TLLGHEFVL</td>
<td>996</td>
<td></td>
</tr>
<tr>
<td>Coatamer subunit alpha</td>
<td>TLLGLDYI</td>
<td>1314</td>
<td></td>
</tr>
<tr>
<td>Protein kintoun</td>
<td>TLLIQVPRI</td>
<td>55172</td>
<td></td>
</tr>
<tr>
<td>CAD protein</td>
<td>TLNDREYQL</td>
<td>790</td>
<td></td>
</tr>
<tr>
<td>Mitochondrial import receptor subunit TOM22 homolog</td>
<td>TLSERLWGL</td>
<td>56993</td>
<td></td>
</tr>
<tr>
<td>AP-3 complex subunit mu-2</td>
<td>TLSFMNPRL</td>
<td>10947</td>
<td></td>
</tr>
<tr>
<td>Nucleolar GTP-binding protein 1</td>
<td>TLTEEGVIKV</td>
<td>23560</td>
<td></td>
</tr>
<tr>
<td>Olfactory receptor 2G2</td>
<td>TLVQSTLTQL</td>
<td>81470</td>
<td></td>
</tr>
<tr>
<td>EH domain-containing protein 1</td>
<td>TVLGKIKWL</td>
<td>10938</td>
<td></td>
</tr>
<tr>
<td>Acyloxyacyl hydrolase</td>
<td>VIDKFSDII</td>
<td>313</td>
<td></td>
</tr>
<tr>
<td>Chromatin accessibility complex protein 1</td>
<td>VIMKSSPEV</td>
<td>54108</td>
<td></td>
</tr>
<tr>
<td>40S ribosomal protein S15a</td>
<td>VLADALKSI</td>
<td>6210</td>
<td></td>
</tr>
<tr>
<td>E3 ubiquitin-protein ligase RNF130</td>
<td>VAPAPLPLG</td>
<td>55819</td>
<td></td>
</tr>
<tr>
<td>Calmodulin-regulated spectrin-associated protein 1</td>
<td>VLDASVKEV</td>
<td>157922</td>
<td></td>
</tr>
<tr>
<td>Cytosolic carboxypeptidase 1</td>
<td>VLFEGRTVQL</td>
<td>23287</td>
<td></td>
</tr>
<tr>
<td>Leukocyte surface antigen CD53</td>
<td>VLFHNPLRS</td>
<td>963</td>
<td></td>
</tr>
<tr>
<td>Abhydrolase domain-containing protein 8</td>
<td>VLIGHTSYGV</td>
<td>79575</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>Sequence</td>
<td>PDB ID</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>Medium</td>
<td>VLLDTANKKVFL</td>
<td>440</td>
<td>Asparagine synthetase [glutamine-hydrolyzing]</td>
</tr>
<tr>
<td>Medium</td>
<td>VLLGKVYVVV</td>
<td>54800</td>
<td>Kelch-like protein 24</td>
</tr>
<tr>
<td>Medium</td>
<td>VLLKARLVPMSA</td>
<td>165215</td>
<td>Protein FAM171B</td>
</tr>
<tr>
<td>Medium</td>
<td>VLLSTIHEL</td>
<td>80145</td>
<td>THO complex subunit 7 homolog</td>
</tr>
<tr>
<td>Medium</td>
<td>VLQQHLETLSA</td>
<td>10363</td>
<td>High mobility group protein 20A</td>
</tr>
<tr>
<td>Medium</td>
<td>VLTEHSEEL</td>
<td>8874</td>
<td>Rho guanine nucleotide exchange factor 7</td>
</tr>
<tr>
<td>Medium</td>
<td>VLVESEHQV</td>
<td>3716</td>
<td>Tyrosine-protein kinase JAK1</td>
</tr>
<tr>
<td>Medium</td>
<td>VLYDRPLKI</td>
<td>64783</td>
<td>Putative RNA-binding protein 15</td>
</tr>
<tr>
<td>Medium</td>
<td>VLYENKVAV</td>
<td>54468</td>
<td>WD repeat-containing protein mio</td>
</tr>
<tr>
<td>Medium</td>
<td>VLYGKLVEA</td>
<td>7486</td>
<td>Werner syndrome ATP-dependent helicase</td>
</tr>
<tr>
<td>Medium</td>
<td>VMIAGKVAVV</td>
<td>191</td>
<td>Adenosylhomocysteinase</td>
</tr>
<tr>
<td>Medium</td>
<td>YGVKAGPGV</td>
<td>170954</td>
<td>Phostensin</td>
</tr>
<tr>
<td>Medium</td>
<td>YIAKITEGV</td>
<td>55293</td>
<td>Ubiquitin-conjugating enzyme E2 variant 3</td>
</tr>
<tr>
<td>Medium</td>
<td>YIMSYISRV</td>
<td>4643</td>
<td>Unconventional myosin-1</td>
</tr>
<tr>
<td>Medium</td>
<td>YIWDRHYNI</td>
<td>54461</td>
<td>F-box/WD repeat-containing protein 5</td>
</tr>
<tr>
<td>Medium</td>
<td>YLDLSENRL</td>
<td>2314</td>
<td>Protein flightless-1 homolog</td>
</tr>
<tr>
<td>Medium</td>
<td>YLFAHAVDFV</td>
<td>55720</td>
<td>Pre-rRNA-processing protein TSR1 homolog</td>
</tr>
<tr>
<td>Medium</td>
<td>YLFERTFNL</td>
<td>9394</td>
<td>Heparan-sulfate 6-O-sulfotransferase 1</td>
</tr>
<tr>
<td>Medium</td>
<td>YLFTSPQRV</td>
<td>25972</td>
<td>Protein unc-50 homolog</td>
</tr>
<tr>
<td>Medium</td>
<td>YLHRQVAAV</td>
<td>6890</td>
<td>Antigen peptide transporter 1</td>
</tr>
<tr>
<td>Medium</td>
<td>YLPSQVSRAV</td>
<td>9276</td>
<td>Coatomer subunit beta'</td>
</tr>
<tr>
<td>Medium</td>
<td>YLPYPIHQV</td>
<td>1196</td>
<td>Dual specificity protein kinase CLK2</td>
</tr>
<tr>
<td>Medium</td>
<td>YLQAHTQSV</td>
<td>2077</td>
<td>ETS domain-containing transcription factor ERF</td>
</tr>
<tr>
<td>Medium</td>
<td>YLQEHAQEYV</td>
<td>9933</td>
<td>Pumilio domain-containing protein KIAA0020</td>
</tr>
<tr>
<td>Medium</td>
<td>YLPKLLGIGV</td>
<td>545</td>
<td>Serine/threonine-protein kinase ATR</td>
</tr>
<tr>
<td>Medium</td>
<td>YLRPQDGDETV</td>
<td>4904</td>
<td>Nuclease-sensitive element-binding protein 1</td>
</tr>
<tr>
<td>Medium</td>
<td>YLSDIPLHDA</td>
<td>2983</td>
<td>Guanylate cyclase soluble subunit beta-1</td>
</tr>
<tr>
<td>Medium</td>
<td>YLSKIIIPAL</td>
<td>5985</td>
<td>Replication factor C subunit 5</td>
</tr>
<tr>
<td>Medium</td>
<td>YLSPLWAL</td>
<td>55323</td>
<td>La-related protein 6</td>
</tr>
<tr>
<td>Medium</td>
<td>YLSLQPRL</td>
<td>8563</td>
<td>THO complex subunit 5 homolog</td>
</tr>
<tr>
<td>Medium</td>
<td>YLVDFTQKI</td>
<td>51244</td>
<td>Uncharacterized protein C3orf19</td>
</tr>
<tr>
<td>Medium</td>
<td>Sequence</td>
<td>Score</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>Medium</td>
<td>YMNHIMVSV</td>
<td>2120</td>
<td>Transcription factor ETV6</td>
</tr>
<tr>
<td>Medium</td>
<td>YMYEKESEEL</td>
<td>22806</td>
<td>Zinc finger protein Aiolos</td>
</tr>
<tr>
<td>Medium</td>
<td>YTTDRVMTV</td>
<td>3065</td>
<td>Histone deacetylase 1</td>
</tr>
<tr>
<td>Medium</td>
<td>YVFPGVTRL</td>
<td>84221</td>
<td>Uncharacterized protein C21orf56</td>
</tr>
<tr>
<td>Medium</td>
<td>YVVPFVAKV</td>
<td>23019</td>
<td>CCR4-NOT transcription complex subunit 1</td>
</tr>
</tbody>
</table>

Confirmation achieved by positive matching of fragment spectra with respective spectra of synthetic peptides
Supplementary Table SIII: AUC and retention time of peaks originating from calibrating peptides labeled with deuterated nicotinic acid (dNIC) and corresponding nicotinylated peptides isolated from EC and BLC (both from donor 1). Two LC-MS/MS runs were performed. To run #1, 0.3 pmol of dNIC peptides were spiked for calibration, to run #2, 10 pmol of dNIC peptides were spiked.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>EC 0.3 pmol</th>
<th>10 pmol</th>
<th>run #1</th>
<th>run #2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dNIC (AUC)</td>
<td>RT [min]</td>
<td>NIC (AUC)</td>
<td>RT [min]</td>
</tr>
<tr>
<td>SLSEKTVLL</td>
<td>1.28 x 10^6</td>
<td>92.13</td>
<td>5.68 x 10^6</td>
<td>91</td>
</tr>
<tr>
<td>SLLDKIIGA</td>
<td>7.20 x 10^6</td>
<td>134.58</td>
<td>1.14 x 10^8</td>
<td>133.37</td>
</tr>
<tr>
<td>AIVDKVPSV</td>
<td>5.76 x 10^5</td>
<td>84.77</td>
<td>1.59 x 10^8</td>
<td>130.31</td>
</tr>
<tr>
<td>ILDQKINEV</td>
<td>1.02 x 10^6</td>
<td>90.76</td>
<td>9.32 x 10^7</td>
<td>89.72</td>
</tr>
<tr>
<td>YLPEDFIRV</td>
<td>7.77 x 10^6</td>
<td>131.63</td>
<td>9.01 x 10^7</td>
<td>83.74</td>
</tr>
<tr>
<td>YLLPAIVHI</td>
<td>4.54 x 10^7</td>
<td>149.73</td>
<td>4.14 x 10^8</td>
<td>148.09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sequence</th>
<th>BLC 0.3 pmol</th>
<th>10 pmol</th>
<th>run #1</th>
<th>run #2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dNIC (AUC)</td>
<td>RT [min]</td>
<td>NIC (AUC)</td>
<td>RT [min]</td>
</tr>
<tr>
<td>AIVDKVPSV</td>
<td>5.72 x 10^5</td>
<td>84.37</td>
<td>9.04 x 10^7</td>
<td>83.86</td>
</tr>
<tr>
<td>YLLPAIVHI</td>
<td>5.19 x 10^6</td>
<td>148.98</td>
<td>4.97 x 10^8</td>
<td>146.46</td>
</tr>
<tr>
<td>ILDQKINEV</td>
<td>3.72 x 10^5</td>
<td>90.4</td>
<td>1.27 x 10^8</td>
<td>89.79</td>
</tr>
<tr>
<td>YLPEDFIRV</td>
<td>1.52 x 10^6</td>
<td>130.38</td>
<td>1.45 x 10^8</td>
<td>130.02</td>
</tr>
<tr>
<td>SLSEKTVLL</td>
<td>4.13 x 10^6</td>
<td>91.61</td>
<td>6.34 x 10^7</td>
<td>91.06</td>
</tr>
<tr>
<td>SLLDKIIGA</td>
<td>2.28 x 10^7</td>
<td>133.57</td>
<td>1.83 x 10^8</td>
<td>133.19</td>
</tr>
</tbody>
</table>