Selective Blockade of Herpesvirus Entry Mediator–B and T Lymphocyte Attenuator Pathway Ameliorates Acute Graft-versus-Host Reaction

Maria-Luisa del Rio, Nick D. Jones, Leo Buhler, Paula Norris, Yasushi Shintani, Carl F. Ware and Jose-Ignacio Rodriguez-Barbosa

J Immunol 2012; 188:4885-4896; Prepublished online 6 April 2012; doi: 10.4049/jimmunol.1103698
http://www.jimmunol.org/content/188/10/4885

References
This article cites 59 articles, 29 of which you can access for free at:
http://www.jimmunol.org/content/188/10/4885.full#ref-list-1

Subscription
Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Selective Blockade of Herpesvirus Entry Mediator–B and T Lymphocyte Attenuator Pathway Ameliorates Acute Graft-versus-Host Reaction

Maria-Luisa del Rio,* Nick D. Jones,† Leo Buhler, Paula Norris,§ Yasushi Shintani,¶ Carl F. Ware,‡ and Jose-Ignacio Rodriguez-Barbosa*

Attenuation of the immune response is an obligated clinical intervention in the treatment of acute graft rejection and for the maintenance of long-term allograft survival as well as for the treatment of acute relapsing episodes of autoimmunity and in chronic autoimmune diseases (1, 2). Temporal and coordinate expression of membrane-bound receptors and soluble factors modulates the course of the immune response during an inflammatory process. Costimulation blockade of receptor/ligand interactions that participate in the exchange of information between APCs and T cells leads to the attenuation of the immune response due to the impaired communication between these two cell types. This approach represents a rational and promising therapeutic intervention to mitigate the deleterious consequences of the immune response in transplanted patients, including those undergoing graft-versus-host disease (GvHD) after bone marrow transplantation, and those suffering from autoimmune diseases (3).

Two major families of molecules are involved in the control of T cell activation, differentiation, and survival of terminally differentiated T cells, Ig superfamily (Ig SF) and the TNF/TNFR superfamily (4–7). In the early phase of T cell activation, interactions between molecules of the Ig SF predominate, whereas in the late phase of T cell activation, interactions between members of the TNF/TNFR superfamily molecules become responsible for the maintenance of the T cell response (5, 8). Herpesvirus entry mediator (HVEM; TNFRSF14) is widely expressed on hematopoietic and nonhematopoietic cells (9, 10), whereas B and T lymphocyte attenuator (BTLA) expression is more restricted to the hematopoietic cellular compartment (11–14). HVEM is a type I transmembrane molecule containing an extracellular domain composed of four cysteine-rich domains (CRD) (9, 15, 16) with distinct binding sites for its ligands. BTLA and CD160 bind to CRD1 domain of HVEM and compete with HSV glycoprotein D for binding to this receptor (17, 18), whereas the binding site for lymphotxin that exhibits inducible expression and competes with HSV glycoprotein D for HVEM, a receptor expressed by T lymphocytes (LIGHT; TNFSF14) is located at CRD2 and CRD3 domains of HVEM. Topographically, BTLA/CD160 and LIGHT interact with HVEM on opposite faces of its extracellular domain (19). CRD1 is an essential domain for the inhibitory function of soluble HVEM-Ig, because its deletion results in costimulation instead (17). HVEM expresses a molecular switch depending on whether HVEM is functioning as a ligand of BTLA/CD160 (coinhibition) or LIGHT (costimulation) or a receptor of these molecules during the course of an immune response (costimulation). BTLA and CD160 engagement by HVEM expressed on the same cell (cis interaction) transmits inhibitory signals to resting lymphocytes and provides an intrinsic regulatory mechanism for T cell inhibition by impeding HVEM from receiving signals from the surrounding microenvironment (17, 18, 20), whereas engagement of HVEM by LIGHT in trans delivers T cell costimulatory signals.

Abbreviations used in this article: BM-DC, bone marrow-derived dendritic cell; BTLA, B and T lymphocyte attenuator; CHO, Chinese hamster ovary; CRD, cysteine-rich domain; GvHD, graft-versus-host disease; GvHR, graft-versus-host reaction; HVEM, herpesvirus entry mediator; Ig SF, Ig superfamily; KO, knockout; LIGHT, lymphotxin that exhibits inducible expression and competes with HSV glycoprotein D for HVEM, a receptor expressed by T lymphocytes; SA, streptavidin; sBTLA-Ig, soluble mouse B and T lymphocyte attenuator bound to mouse IgG2a Fc fragment; sLIGHT, soluble human LIGHT; smlIGHT, soluble murine LIGHT.

Copyright © 2012 by The American Association of Immunologists, Inc. 0022-1767/12S16.00
(21, 22). An extra level of complexity to this cosignaling pathway was found in the ability of BTLA and CD160 to function as activating ligands of HVEM in trans-promoting T cell survival (22, 23). These authors demonstrated that engagement of HVEM by BTLA and CD160 agonist ligands induces IkBα degradation and activation of NF-κB RelA (p65) in epithelial and T cell subsets promoting their survival (22). Likewise, engagement of LIGHT on activated T cells by HVEM expressed in other T cell types costimulates their T cell proliferation (22, 23).

The dual specificity of the soluble receptors, LTβR-Fc or HVEM-Fc, leaves the interpretation of the most significant ligand-receptor pathway ambiguous. To overcome these difficulties and dissect better the role of each interaction separately and thus determine to which extent each interaction pathway is contributing to disease outcome, anti-HVEM mAbs that disrupt individual ligand-receptor interaction were developed. We demonstrate in this study that mAbs topographically specific for HVEM/ BTLA interaction are capable of ameliorating graft-versus-host reaction (GVHR) by mitigating donor-alloreactive T cell effector function.

Materials and Methods

Mice and rats

Twelve- to 16-wk-old female Lewis rats (Harland) and 8- to 12-wk-old female C57BL/6 (B6), BALB/c (Charles River), and C6OFl mice (offspring of BALB/c × B6, H-2b) were bred at the animal facility of the University of Leon. All experiments with rodents were handled and cared for in accordance with the Ethical Committee for Animal Research of the School of Veterinary Medicine (University of Leon) and the European Guidelines for Animal Care and Use of Laboratory Animals.

Cloning and expression of membrane-bound murine HVEM and their soluble ligands

Total RNA was extracted from B6 splenocytes using the RNeasy mini kit (Qiagen). Reverse transcription from mRNA to cDNA was performed with GeneAmp RNA PCR kit (Applied Biosystems). The cloning of soluble mouse B and T lymphocyte attenuator bound to mouse IgG2aFc fragment (sBTLA.Ig) recombinant protein has been previously reported (24).

Full-length murine HVEM gene was PCR amplified with a proofreading Taq PFU polymerase and cloned into a modified pcDNA3.1+ vector (Invitrogen), upstream of the gene encoding for monomer GFP (Clontech) inserted with EcoRV and XbaI restriction flanking sites. Flag-tagged soluble human LIGHT (hereafter, Flag-shLIGHT) and Flag-Foldon–tagged soluble murine LIGHT (from now on, Flag-Foldon-smLIGHT) (provided by C.F. Ware, La Jolla, CA, and Y. Shintani, Osaka, Japan, respectively) were used for the binding experiments (25).

Cell transfection

Chinese hamster ovary (CHO) cells were seeded on 6-well plates at 2.5 × 10^5 cells/well in complete RPMI 1640 medium containing 10% FCS, 2 mM L-glutamine, 1 mM sodium pyruvate, 10 mM HEPES, 50 µg/ml gentamicin, and 5 × 10^{-5} M 2-ME, and allowed to grow until they reached 60–70% confluence. The pSecTag2 Hygro b vector (Invitrogen) containing the extracellular domain of murine BTLA, Flag-shLIGHT and Flag-Foldon-smLIGHT, and HVEM-murine GFP constructs was purified using endotoxin-free Maxi-prep kit (Qiagen) and then transfected into CHO cells with 2 µg DNA/well of each construct/liposome complex (lipectamite; Invitrogen) for 6–16 h (26).

Generation, characterization, and purification of anti-murine HVEM mAbs for in vivo use

Female Lewis rats were immunized i.p. with 0.5 ml of a 1:1 mixture of 5–10 × 10^5 HVEM stably transfected CHO cells expressing the membrane-bound murine HVEM-GFP fusion protein in IFA (Sigma-Aldrich). Six weeks after the first immunization, the animals were inoculated i.v. with 10 × 10^5 HVEM-transfected CHO cells and the hybridoma fusion protocol was carried out 3 d later, as previously described (24, 27). Twelve days after the fusion, culture supernatants from growing hybridomas were collected from 96-well plates and tested by flow cytometry against murine HVEM-GFP-transfected and control GFP-transfected CHO cells for 2 h at 37°C, washed, and subsequently incubated with an optimal dilution of Cy5-labeled polyclonal mouse anti-rat IgG (H+L; Jackson ImmunoResearch Laboratories).

Hybridomas secreting anti-HVEM mAbs and isotype control rat IgG2a (anti-plant cytokinin, clone AFR-C-MAC-157, ECACC 93090997) were purified through a protein G-Sepharose affinity chromatography, quantified, filtered through 0.45 µm, and stored frozen at 1 mg/ml.

Flow cytometry-based competition-binding assays

A flow cytometry competition assay was established to define the epitopes recognized by anti-HVEM Abs. We first compared each possible pair of anti-HVEM mAbs, in which one of the Abs, the competitor, was unlabelled, whereas the other member of the pair, the developer, was biotinylated. Thus, by comparing each possible pair combination of anti-HVEM mAbs, we could determine whether the Abs competed with each other for binding to either identical or overlapping epitopes, or alternatively were recognizing distinct epitopes located at the extracellular domain of HVEM. Each unlabelled anti-HVEM mAb was confronted to the rest of biotinylated anti-HVEM mAbs of the panel. Thus, a saturating amount (10 µg) of each unlabelled anti-HVEM mAb (competitor Ab) or rat IgG2a isotype control was first incubated with 2.5 × 10^5 HVEM-GFP–transfected CHO cells, and each of the biotinylated anti-HVEM members of the panel was added later (developer Ab) to the immunological reaction. To assess to what extent anti-HVEM mAbs generated in the present studies could interfere with the binding of murine sBTLA–mouse IgG2aFc (from hybridoma clone BTLA-1g24), Flag-Foldon-smLIGHT and Flag-shLIGHT fusion proteins to HVEM-GFP–transfected CHO cells, all transfected and unlabelled anti-HVEM mAbs were first incubated with HVEM-transfected cells at saturating concentrations (10 µg Ab per 2.5 × 10^5 cells) for 30 min at room temperature. Then, in the presence of each anti-HVEM Ab as competitor, 10 µg of each soluble recombinant fusion protein was added and incubated for 2 h at 37°C; the supernatant was washed out, and the immunostaining was developed with either a biotinylated rat anti-mouse IgG2a isotype-specific mAb (R19-15; BD Biosciences) or biotinylated anti-Flag (clone M2; BioLegend), followed by streptavidin (SA)-PE.

GM-CSF–mediated bone marrow-derived dendritic cell differentiation

Syngeneic C57BL/6 (B6) and allogeneic BALB/c bone marrow cells were harvested from tibiae and differentiated with 30 ng/ml murine GM-CSF (Peprotech), as previously described (28). Bone marrow-derived dendritic cells (BM-DC) were finally matured upon overnight exposure to 1 µg/ml LPS O111:B4 (Sigma-Aldrich).

Parental into nonirradiated F1 acute GVHR murine model of alloreactivity

Donor B6 splenocytes were harvested, red cells were lysed, and cell suspensions were washed and resuspended in Dulbecco’s PBS. Then, 70 × 10^6 cells were adoptively transferred i.v. into C6OFl recipient mice. Control mice were injected i.v. with 70 × 10^6 syngeneic F1 splenocytes. All donor cell suspensions were injected on the same day using cells processed simultaneously under the same conditions. F1 recipient mice received a single dose of 1 mg anti-HVEM mAb or isotype-matched rat IgG2a control administered i.p. Nineteen days after the adoptive transfer of donor B6 splenocytes into F1 recipients, mice were euthanized and the absolute number of hematopoietic cells was counted in each lymphoid compartment. Parental cell engraftment was assessed in distinct lymphoid compartments by flow cytometry. Single-cell suspensions were first incubated with Fc blocker (FcγRIII, clone 2.4G2) to prevent nonspecific staining, and then cells were stained with FITC-conjugated anti-H-2^d (S1F-1-1) and Alexa 647-conjugated anti-H-2^k (AF6-88.5). To further identify the different cell subsets, the following list of lineage-restricted Abs was used: anti-CD3 (145-2C11), anti-CD4 (R-46-6.2), anti-CD8 (53-6.7), anti-CD19 (1D3), anti-Ly6G (1A8), and anti-Ly6C (Mons-1; provided by E. Butter, Stanford University School of Medicine). All of these mAbs were purchased from BioLegend, except 2.4G2 and anti-Ly6C, which were purified and labeled in our laboratory.

In all flow cytometry experiments, dead cells were excluded by propidium iodide or DAPI staining. Flow cytometry acquisition was carried out on a Cya 9 cytometer (Beckman Coulter). Data analysis was performed using the WinList 3D Version 7 (Verity Software House, Topsham, ME).

CD107a degranulation assay and frequency of IFN-γ–secreting T cells

Sixteen days after GVHR induction, 2 × 10^5 splenocytes were isolated from isotype control, 1H7–, and 6C9-treated F1 mice, and were restimulated...
in vitro with 1×10^5 either syngeneic (B6) or allogeneic BALB/c mature BM-DC. PE-conjugated anti-CD107a mAb (clone 1D4B; BioLegend) was added to the MLC and incubated for 1 h at 37°C in 5% CO₂. Cells were incubated for an additional period of 4 h in the presence of 2 μM monensin and analyzed following CD107a degranulation assay gating on donor CD8⁺ T cells (29).

To determine the frequency of CD8⁺ T cells secreting IFN-γ, 2×10^5 splenocytes were restimulated in vitro with 1×10^5 either syngeneic (B6) or allogeneic BALB/c mature BM-DC in the presence of monensin. Cell cultures were then harvested, and donor CD8⁺ T cells were stained with FITC-labeled anti-CD8a and PE-labeled anti-K⁺. Cells were then fixed for 20 min at room temperature (fixation buffer; BioLegend), centrifuged, and washed twice in permeabilization buffer (BioLegend). Finally, cells were stained with allophycocyanin-labeled anti-mouse IFN-γ (clone XMG1.2; BioLegend) and washed, and collected for analysis. To confirm the specificity of the staining, cells were preincubated with unlabeled anti-mouse IFN-γ (clone XMG1.2; BioLegend) before allophycocyanin-labeled anti-mouse IFN-γ mAb was added (30).

In vivo cytotoxicity assay

Spleens from B6, BALB/c, and F₁ mice were collected, and single-cell suspensions were prepared in RPMI 1640 complete medium. Target cells were washed twice in Dulbecco’s PBS and labeled with CFSE (Molecular Probes) at 10^6 either syngeneic (B6 or BALB/c) or allogeneic (BALB/c) for 10 min at 37°C. The reaction was stopped by adding 2 vol of cold RPMI 1640 containing 10% FCS, followed by two washes in Dulbecco’s PBS. A total of 30×10^6 of each target cell (B6, BALB/c, and F₁ cells) was mixed at ratio 1:1:1 and was subsequently i.v. injected into F₁ recipients at day 16 post-GvHR induction. Three days later (day 19 post-GvHR induction), recipient F₁ mice were euthanized and target cells were analyzed in spleen and peripheral lymph nodes. The percentage of specific target lysis was calculated by comparing the survival of each target population with the survival of syngeneic population according to the following equation:

$$\text{percentage of specific killing of target cells} = \frac{\text{(absolute number of target population in F₁ recipient) - (absolute number of target population in F₁ recipient that were selected for the in vivo experiments)}}{\text{(absolute number of target population in F₁ recipient) - (absolute number of target population in F₁ recipient }] \times 100}$$

(Quantification of Th1/Th2 cytokine by cytometric bead array)

A total of 70×10^6 parental B6 splenocytes was injected i.v. into F₁ recipients, which were treated at day 0 with a single saturating dose of 1 mg either isotype-matched control (rat IgG2a) or anti-HVEM mAbs. Sixteen days after treatment, 2×10^5 splenocytes from each experimental group were harvested and cocultured with 1×10^5 syngeneic B6 or allogeneic BALB/c BM-DC. Supernatants were collected and analyzed at 48 h after in vitro restimulation. The amount of IL-2, IL-4, IL-5, IFN-γ, and TNF-α was quantified using a cytometric bead array following the manufacturer’s instructions (BD Biosciences).

Statistical analysis

Data are expressed as mean ± SD. Statistical significance was assessed using the parametric Student t test and nonparametric tests. A p value <0.05 was considered statistically significant.

Results

Specificity and in vivo nondepleting activity of anti-HVEM mAbs recognizing the extracellular domain of murine HVEM receptor

A panel of four anti-HVEM mAbs (clones 1H7, 5B7, 6C9, and 10F3, all of them rat IgG2a, κ L chain) was obtained and characterized in the initial part of this study. The specificity of anti-HVEM mAbs was demonstrated via flow cytometry by their capacity to recognize CHO-HVEM-GFP–transfected cells, but not GFP-transfected CHO cells used as negative control (Fig. 1A).

To gain further insight into the potential in vivo functional activity of the anti-HVEM mAbs and to rule out any possible depleting activity, anti-HVEM Abs used in the in vivo studies were injected i.p. into F₁ mice. This in vivo assay allowed us to determine simultaneously any depleting activity mediated by either complement- or Ab-dependent cellular cytotoxicity on T or B lymphocytes. No significant detectable decay in lymphocyte numbers 5 d after the i.p. injection of 1 mg anti-HVEM mAbs was observed, which was in agreement with the lack of depleting activity reported for the majority of rat Abs of this particular isotype (33) (Fig. 1B).

Anti-HVEM mAbs within group II exhibit competitive inhibition of sBTLA-Ig binding to HVEM-transfected cells, without preventing HVEM/LIGHT interaction

The extracellular domain of HVEM exhibits two opposite regions in its spatial conformation for the interaction with its ligands BTLA/CD160 or LIGHT (19, 34). A competitive binding assay was designed to dissect whether the panel of anti-HVEM mAb raised in our study was recognizing the same, overlapping, or different epitopes on the extracellular domain of HVEM. As shown in Fig. 2, anti-HVEM mAbs were classified into two distinct epitopes based on their competitive behavior, as follows: group I included clones 1H7 and 5B7 (Fig. 2A) and group II, 6C9, and 10F3 (Fig. 2B).

This panel of anti-HVEM mAbs showed differential competition with HVEM ligands. sBTLA-Fc construct specifically bound to HVEM-transfected cells, but not to control GFP-transfected cells (Fig. 3A) (17–19, 24, 35). Anti-HVEM Abs within group I (clones 1H7 and 5B7) did not compete with sBTLA-Fc (nonblocking Abs)
The experimental setup is shown in Figure 2. The panel of anti-HVEM mAbs defines the existence of at least two distinct epitopes on the extracellular domain of HVEM. With the purpose of mapping epitopes on HVEM receptor, HVEM-transfected cells were incubated with a saturating amount of each unlabeled anti-HVEM mAb or isotype-matched control. Anti-HVEM mAbs were classified within group I (clones 1H7 and 5B7) or group II (clones 6C9 and 10F3) based on their competition profile. Stably transfected HVEM-GFP CHO cells were incubated for 1 h at 4°C with a saturating amount of each unlabeled anti-HVEM mAb (competitor Ab). To detect competition among Abs recognizing the same molecule, each biotinylated anti-HVEM Ab (developer Ab, solid lines) was added to HVEM-transfected CHO cells, and the immunological reactions were revealed using an optimal dilution of SA-PE. Dashed lines depict HVEM-transfected cells incubated with an irrelevant competitor isotype-matched rat IgG2a control. The two first rows of dot plots display no competition profiles, whereas the third row exhibits those anti-HVEM Abs that competed with each other. One representative experiment of three with identical results is shown (Fig. 3B, upper panel), although group II, clones 6C9 and 10F3, completely abrogated sBTLA-Ig binding to HVEM on transfected cells (blocking Abs) (Fig. 3B, lower panel).

Flag-soluble human LIGHT recombinant fusion proteins bound specifically to HVEM-transfected cells in flow cytometry (Fig. 3C). Neither group I nor II anti-HVEM Abs (Fig. 3D) interfered with Flag-sLIGHT binding to HVEM. Similar results were obtained with mouse version Flag-Foldon soluble LIGHT recombinant fusion proteins (Fig. 3E, 3F).

Altogether, the data indicate that the set of anti-HVEM Abs mapped to two topographically different epitopes on the extracellular domain of HVEM. The anti-HVEM mAbs in group II that blocked HVEM-BTLA interaction may be the most suitable therapeutic tool for the in vivo evaluation of the biological consequences derived from selective Ab-mediated blockade of HVEM/BTLA interaction.

Donor antihost alloreactive T cells downmodulate HVEM receptor expression following alloantigen recognition

To monitor the impact of the alloreactive T cell response on the modulation of HVEM receptor expression, B6 splenocytes were adoptively transferred to F1 recipients (B6 × BALB/c) induces a progressive alloreactive response against host BALB/c H-2d histo-incompatible Ags (38). Flow cytometry was used to measure the loss of host hematopoietic cells in primary hematopoietic bone marrow and thymus and secondary (spleen) organs using a combination of Alexa 647-labeled anti-murine K^b^ and FITC-labeled anti-murine K^d^.

We examined the panel of mAbs to mouse HVEM to address the question of whether epitope-selective HVEM blockade will attenuate the GVHR. An increase in host H-2^d^–positive leukocytes indicated that treatment of mice with blocking anti-HVEM mAb (6C9) efficiently protected the host bone marrow compartment from donor T cell-mediated rejection in the acute phase of GVHR. In contrast, a dramatic loss of H-2^d^ cells in the bone marrow was observed in F1 mice receiving semiallogeneic splenocytes treated with either nonblocking anti-HVEM mAb (clone 1H7) or rat IgG2a isotype control (Fig. 5A). This result was a clear indication that competitive blockade of HVEM/BTLA interaction was sufficient to attenuate the course of graft rejection in host bone marrow cells. The global prevention of host bone marrow rejection nevertheless required that competitive blockade be also reflected in different host leukocyte subsets present in this compartment, when compared with isotype- or 1H7-treated F1 recipient mice receiving B6 donor allogeneic splenocytes. Thus, host granulocytes (Fig. 5B) and monocytes (Fig. 5C) were significantly more protected in 6C9-treated F1 mice than in 1H7- or isotype-treated allogeneic F1 recipients. Treatment with blocking anti-HVEM mAb (clone 6C9) conferred substantial, but incomplete protection against rejection of B cells when compared with B cells in the syngeneic F1-F1 recipients (Fig. 5D).

Host thymocytes and double-positive thymocytes were fully protected from rejection by the blocking anti-HVEM mAb (6C9) (Fig. 5E, 5F), as were lymphocytes in the spleen (Fig. 5G).

These data indicate that blockade of HVEM/BTLA interaction mitigates the acute phase of GVHR by attenuating the rejection of host hematopoietic cells.

Blockade of HVEM/BTLA interaction reduces the frequency of donor CD8^+ T cells expressing CD107a and secreting IFN-γ

To dissect the contribution of HVEM/BTLA interaction to the course of GVH development, donor T cell infiltration on distinct hematopoietic target tissues was assessed. We found that CD4^+ and expressed on host T cells of syngeneic recipients at the same time points (Fig. 4A, 4B). Interestingly, expression of HVEM on host T cells of F1 recipients adoptively transferred with allogeneic B6 splenocytes did not undergo any apparent change in HVEM expression (Fig. 4A, 4B). Indeed, the amount of HVEM expressed on host T cells of F1 recipients was similar regardless of whether they were adoptively transferred with either syngeneic F1 or allogeneic B6 splenocytes. In contrast, BTLA was reciprocally upregulated early after T cell activation, and its expression then declined gradually and more rapidly on CD8 T cells than on CD4 T cells (Fig. 4C).

These observations indicate that bystander stimulation by the inflammatory milieu created by donor alloreactive T cells reacting against host tissues did not influence HVEM expression on host T cells or B cells. More importantly, modulation of HVEM and BTLA following donor T cell activation was dependent on TCR recognition of host alloantigens. These data support the idea that HVEM/BTLA interaction mitigates the course of rejection of host hematopoietic cells during the acute phase of the GVHR.
CD8+ T cell infiltration in 6C9-treated F1 recipient mice was similar to that of isotype- or 1H7-treated F1 mice in distinct host hematopoietic compartments. Thus, in the bone marrow, thymus, and spleen, the absolute number of donor CD4+ or CD8+ T cells infiltrating this tissue was similar for all experimental groups (Fig. 6). Thus, the blockade of HVEM/BTLA interaction by anti-HVEM 6C9 did not impact in the absolute number of T cells infiltrating host hematopoietic GvHR major target organs, suggesting perhaps that the effector function was blocked. To test this idea, we measured CD107a degranulation in CD8+ T cells and expression of intracellular IFN-γ as well as soluble cytokines characteristic of differentiated Th1 and Th2 cells. Splenocytes from anti-HVEM– or rat IgG2a–treated F1 recipients (at day 16 posttransplantation) were restimulated in vitro with allogeneic BALB/c mature BM-DC to monitor donor antihost CD8+ T cell-mediated allosensitization in response to alloantigen following the CD107a degranulation assay. Donor-alloreactive and host CD8+ T cells were gated separately, and CD107a expression was analyzed in isotype control- and in anti-HVEM–treated F1 mice.

The frequency of CD8+ T cells expressing CD107a was suppressed in donor cells from mice treated with anti-HVEM 6C9 compared with mice receiving rat IgG2a control or the anti-HVEM 1H7 mAb, which were significantly elevated compared with the syngeneic F1/F1 control graft (Fig. 7A). Similarly, the frequency and absolute number of IFN-γ-secreting cells decreased in anti-HVEM 6C9-treated mice when compared with controls (Fig. 7B).

IL-2, IL-4, IL-5, IFN-γ, and TNF-α secreted by CD4+ Th1 and Th2 were also measured in supernatants of splenocytes of F1 recipients adoptively transferred with B6 splenocytes, which were restimulated in vitro with syngeneic and allogeneic mature BM-DC for 48 h. Cytokines of Th1 cells, particularly IFN-γ, were significantly augmented in F1 mice treated with rat IgG2a isotype or 1H7 mAbs compared with recipients treated with 6C9 mAb, but no significant differences were seen when IL-2, IL-4, IL-5, or TNF-α was analyzed in the same in vitro restimulation assay (Fig. 7C).

FIGURE 3. Group II anti-HVEM mAbs exhibit antagonist activity and abrogate HVEM/BTLA interaction without affecting HVEM/LIGHT binding. (A) The specificity and binding affinity of recombinant sBTLA-Ig fusion protein to membrane-bound HVEM-GFP stably transfected CHO cells or control CHO-GFP cells are shown on gated GFP-positive cells. Dashed line corresponds to binding of sBTLA-Ig to CHO-GFP control-transfected cells, and solid line depicts the binding of sBTLA-Ig to HVEM-GFP-transfected cells. (B) A total of 2.5 × 10^5 stably HVEM-GFP–transfected CHO cells was incubated with 10 μg/ml either rat IgG2a competitor control (dashed lines) or anti-HVEM mAbs (solid lines) following group I (upper panel) or group II (lower panel) for 30 min at room temperature. Then, 10 μg/ml sBTLA-Ig was added to the cells and incubated at 37°C for 2 h. The reaction was washed and further incubated with biotinylated rat anti-mouse IgG2a mAb, and the staining was finally developed with SA-PE. (C) The specificity of Flag-shLIGHT binding to HVEM-GFP–transfected cells (solid line) is shown. Dashed line displays the background binding of Flag-shLIGHT to control GFP-transfected cells. (D) Stably transfected HVEM-GFP cells were incubated with 10 μg/ml either rat IgG2a competitor Ab control (dashed lines) or anti-HVEM mAbs (solid lines) following group I (D, upper panel) or group II (D, lower panel) for 30 min at room temperature. Then, 10 μg/ml Flag-shLIGHT was added to the reaction and incubated at 37°C for 2 h. Biotinylated anti-Flag mAb followed by SA-PE was used to develop the immunological reactions. (E) The specificity of Flag-Foldon-smLIGHT binding to HVEM-GFP–transfected cells (solid line) is depicted. Dotted line represents the background binding of Flag-Foldon-smLIGHT to control GFP-transfected cells. (F) Stably transfected HVEM-GFP cells were incubated with 10 μg/ml either rat IgG2a competitor Ab control (dashed lines) or anti-HVEM mAbs (solid lines) following group I (F, upper panel) or group II (F, lower panel) for 30 min at room temperature. Then, 10 μg/ml Flag-Foldon smLIGHT was added to the reaction and incubated at 37°C for 2 h. Biotinylated anti-Flag mAb followed by SA-PE was used to develop the immunological reactions. A cartoon of the competition assay setup is shown. One representative experiment of three with identical results is shown.
These data indicate that blockade of HVEM/BTLA interaction mitigates the course of GvHR by inhibiting the frequency and cytotoxic function of donor-alloreactive CD8 and CD4 T cells. Reciprocal regulation of HVEM and BTLA expression is dependent on alloantigen recognition by donor T cells during the course of GvHR.

To investigate the consequences of in vivo donor antihost CTL response after selective HVEM/BTLA blockade, F1 recipient mice were injected with an identical number of B6, BALB/c, and F1 target cells that were differentially labeled with different amounts of CFSE, as described in Materials and Methods. A quantitative analysis of the percentage of killing of target BALB/c and F1 cells in host spleen and peripheral lymph nodes was evaluated. A significant reduction of killing of F1 and BALB/c target cells was observed in F1 mice after selective blockade of HVEM/BTLA with 6C9 mAb.
compared with either isotype- or 1H7-treated groups in spleen (Fig. 8A) and peripheral lymph nodes (Fig. 8B)\((p, 0.0005)\).

Discussion

Hematopoietic stem cell transplantation and global and long-lasting immunosuppression are associated with delayed recovery of host immunocompetence, frequent opportunistic infections, and GvHD. More specific pharmacological interventions are necessary for the treatment of hematological disorders after bone marrow transplantation and for the treatment of the GvHD-related side effects (40). Molecules of the Ig SF and molecules of TNF/TNFR superfamily play a nonredundant and complementary role in T cell activation, differentiation, and the acquisition of effector function (41, 42).

In this study, we define a panel of topographically distinct Abs to mouse HVEM that segregate into two groups, as follows: HVEM-
FIGURE 6. Ab targeting of BTLA does not reduce donor T cell number infiltrating host hematopoietic tissues during the acute phase of GvHR. Donor B6 splenocytes were adoptively transferred into allogeneic F1 recipient mice treated with irrelevant isotype rat IgG2a control (black square), nonblocking anti-HVEM mAb (clone 1H7, black triangle), or blocking anti-HVEM mAb (clone 6C9, black diamond). The absolute number of donor CD4+ cells and CD8+ cells infiltrating host bone marrow (A), thymus (B), and spleen (C) at day 19 of the acute phase of GvHR is depicted. No statistically significant differences were found between isotype- and anti-HVEM-treated F1 recipients. The experiment was repeated twice with a similar number of mice, and similar findings were recorded.

BTLA competitive group and noncompetitive group; neither group competes with the binding of LIGHT. We demonstrate that the competitive blocking HVEM Ab 6C9 suppresses the immune rejection in an allogeneic GvHR murine model. Our results indicate the effector mechanisms of CD4 and CD8 T cells require HVEM/BTLA signaling.

The importance and scientific relevance of the role of HVEM/BTLA/CD160 and HVEM/LIGHT interaction in transplantation and autoimmune disease have been evaluated in vitro and in vivo using several experimental approaches. The costimulatory function of the HVEM receptor has been revealed in transplantation experiments, in which graft rejection was attenuated, such as in allogeneic donor infusion of HVEM or LIGHT knockout (KO) T cells to lethally irradiated histoincompatible hosts, rescued with a syngeneic or allogeneic bone marrow transplant (43–45) or transplantation of MHC-mismatched tissues into HVEM or LIGHT KO recipients (46). In line with the costimulatory function of HVEM, Xu et al. (43) have provided evidence that Ab-mediated blockade of both HVEM/BTLA and HVEM/LIGHT interactions with an antagonist hamster anti-HVEM mAb (clone LBH1) in lethally irradiated mice that were rescued with allogeneic T cell-depleted bone marrow cells plus allogeneic splenocytes effectively protected host hematopoiesis from rejection in various bone marrow transplantation settings across distinct histocompatibility barriers. However, these results did not definitely elucidate the dilemma of whether HVEM/BTLA or HVEM/LIGHT blockade was the most crucial interaction for the prevention of disease and to which extent each pathway acting separately contributes to the overall protective effect of GvHD (43). In their studies, LBH1 Ab-mediated blockade of both HVEM/BTLA and HVEM/LIGHT pathways would prevent all possible signals through HVEM receptor (19, 22). In a parallel setting, these authors also adoptively transferred allogeneic HVEM KO or LIGHT KO splenocytes to semiallogeneic nonirradiated or irradiated F1 recipients (43), but HVEM deficiency precludes LIGHT and BTLA costimulatory signaling in trans through HVEM, and also prevents HVEM from delivering negative signals upon engaging BTLA. The same applies to donor LIGHT KO T cells that cannot receive signals from HVEM or LTβR or costimulate other T cells through HVEM (43, 47–50).

The use of decoy receptors and receptor-specific-deficient mice to address the role of complex pathways of interactions, in which multiple ligand/receptor cross-interactions are involved, provides limited mechanistic information. An interpretative dilemma often emerges, for instance, with the use of soluble HVEM-Ig that would interfere with both HVEM/BTLA/CD160 coinhibitory/costimulatory interactions and also HVEM/LIGHT costimulatory axis. The same occurs with the use of donor HVEM KO or LIGHT KO T cells and HVEM KO or LIGHT KO mice as recipients, because all potential bidirectional interactions of HVEM expressed on hematopoietic and nonhematopoietic cells with their ligands are completely abolished. Therefore, in vivo consequences derived from these experimental settings should be taken with caution before drawing definitive conclusions.

To overcome these difficulties and gain insight into this complex network of HVEM interactions, we propose the utilization of highly specific nondepleting mAbs against epitopes located at the extracellular domain of HVEM permitting the targeting of only one potential interaction, without perturbing other possible interactions between HVEM and its ligands. Following these premises, and taking into account that BTLA and LIGHT bind to nonoverlapping and opposite sites on HVEM molecule (LIGHT binds to CRD2/3 domains of HVEM, whereas BTLA binds to CRD1 domain of HVEM) (18, 19), it was postulated that the specific blockade of BTLA/HVEM could be accomplished specifically with an Ab-based strategy, without perturbing HVEM/LIGHT interaction. With that goal in mind, we have characterized a set of anti-HVEM Abs that followed two different patterns of HVEM recognition. Thus, anti-HVEM Abs within group II are likely recognizing an epitope located on the binding site of interaction between domain
FIGURE 7. Reduced frequency and absolute number of donor alloantigen-specific CD8\(^+\) T cells expressing CD107a and secreting IFN-\(\gamma\), and diminished Th1 cytokine production after blockade of HVEM/BTLA interaction. (A) Sixteen days after GvHR induction, 2 \times 10^5 splenocytes isolated from either isotype control or anti-HVEM-treated F1 mice were restimulated in vitro with 1 \times 10^5 allogeneic BALB/c mature BM-DC per well for 1 h in the presence of PE-conjugated anti-CD107a mAb or PE-conjugated isotype control and additional 4 h in the presence of monensin. A five-color flow cytometry panel was used to simultaneously analyze surface markers. Cells were stained with Alexa 647-labeled anti-mouse Kb and FITC-labeled anti-mouse Kd to distinguish donor and host T cells, and the percentage of each population was calculated. After gating on donor and host CD8\(^+\) T cells, the percentage and absolute number of CD8\(^+\) T cells expressing CD107a were assessed in isotype- and anti-HVEM–treated F1 recipients. PE-labeled isotype-matched nonbinding control Ig was used to set the quadrant lines. This figure is a representative experiment of two performed with similar results. (B) Splenocytes were restimulated in vitro with allogeneic APCs, as described in (A), and then stained with FITC-labeled anti-CD8\(\alpha\) and PE-labeled anti-Kd. After surface staining, splenocytes were washed, fixed, and permeabilized, and intracellular IFN-\(\gamma\) staining was performed. Quadrant lines represent appropriate negative control to confirm the specificity of the anticytokine staining that was set preincubating splenocytes with unlabeled anti-mouse IFN-\(\gamma\) (blocker), followed by allophycocyanin-labeled anti-mouse IFN-\(\gamma\). The percentage and absolute number of donor CD8\(^+\) IFN-\(\gamma\)-positive T cells in each experimental group were calculated in the absence of blocker, followed by allophycocyanin-labeled anti-mouse IFN-\(\gamma\). One representative experiment of two performed is displayed in this figure. (C) A total of 2 \times 10^5 splenocytes was collected at day 16 from isotype- or anti-HVEM–treated F1 mice undergoing GvHR and was cocultured with 1 \times 10^5 syngeneic B6 (white bars) or allogeneic BALB/c (black bars) BM-DC for 48 h. Cell culture supernatants were then harvested, and Th1/Th2 cytokines were monitored by cytometric bead array. Mean fluorescence intensity values were obtained for each given cytokine, and cytokine concentrations (pg/ml) were calculated relative to the appropriate calibration curves with standard dilutions. A significant increase of IFN-\(\gamma\) was found in isotype- or 1H7-treated F1 mice compared with F1 mice receiving blocking 6C9 mAb. No significant differences were seen between mice treated with blocking Abs against HVEM for the rest of cytokines tested in the same assay (IL-2, IL-4, IL-5, and TNF-\(\alpha\)). Bars indicate mean \(\pm\) SEM, and \(t\) test was used to compare differences between groups. The degree of significance was indicated as follows: **\(p < 0.005\), ***\(p < 0.0005\).
Statistical significance was indicated, as follows: ***

mean two independent experiments with three mice per group. Bars indicate

transferred with 70

(inguinals plus axilars) (

percentage of specific lysis in spleen (A)

tion between HVEM/BTLA. That is, both costimulatory signals

sequences in preventing GvHR development.

HVEM/LIGHT binding site and determine the biological con-

an extraordinary investigative tool to determine the functional

epitopes on the extracellular domain of HVEM provided us with

activity, whereas anti-HVEM Abs of group I would be recognizing

CRD1 of HVEM and BTLA because they exhibited blocking

activity, whereas anti-HVEM Abs of group I would be recognizing

other epitopes than those located on the HVEM binding site of

BTLA or LIGHT. The identification of blocking and nonblocking

epitopes on the extracellular domain of HVEM provided us with an

extraordinary investigative tool to determine the functional

relevance of blocking specifically HVEM/BTLA without altering

HVEM/LIGHT binding site and determine the biological con-

sequences in preventing GvHR development.

It should not be overlooked that HVEM/BTLA Ab blockade is

probably interrupting a bidirectional pathway of signal transduc-

between HVEM/BTLA. That is, both costimulatory signals transduced in trans after the engagement of HVEM on T cells by

BTLA expressed on other immune cell types as well as coinhi-

bitor signals transduced in

cis upon interaction between HVEM

and BTLA on the same cell type might be blocked (51). Because

the outcome of HVEM/BTLA blockade is disease prevention in

our experimental setting, instead of promotion of disease develop-

ment, the data support that the costimulatory function of HVEM

dominates over the coinhibitory activity. Moreover, in the context

of an allogeneic response, T cell activation upregulates HVEM expression on the same cell.

This would decompensate the stoichiometry of cis inhibitory interactions on the same cell and would promote BTLA trans costimulatory interactions with other surrounding cells expressing

HVEM, and Ab-mediated blockade of HVEM/BTLA would pre-

vent them (18).

The adoptive transfer of donor allogeneic BTLA KO, HVEM

KO, or LIGHT KO splenocytes to F1 recipients has been frequently

associated with the attenuation of rejection of host hematopoietic

target tissues due to poor survival and increased apoptosis of the
donor T cells, despite donor T cell proliferation proceeding nor-
mally (43–45, 52). The use of 6C9 Ab-mediated blockade of

HVEM/BTLA in a similar murine model of GvHR led to the same

outcome, that is, protection against rejection of host hematopoietic

target tissues. This protection was not, however, accompanied by
decreased donor T cell infiltration in host hematopoietic target

tissues in 6C9-treated mice compared with those mice receiving

nonblocking anti-HVEM mAb or isotype-treated control. To re-

oncile the results of poor survival of HVEM-deficient donor

t cells adaptively transferred to allogeneic F1 recipients (43) and

the good survival of donor T cells after Ab-mediated blockade of

HVEM/BTLA interaction, one possible explanation is that

HVEM-deficient donor T cells would not receive costimulatory

signals from both BTLA and LIGHT, whereas 6C9 Ab treatment

would only interfere with BTLA/HVEM interaction, but would

allow the transmission of LIGHT-mediated costimulatory survival

signals upon engagement with HVEM. Moreover, blockade of

HVEM/BTLA interaction did not affect the absolute number of

T cells infiltrating the graft-versus-host target tissues, but dimin-

ished the frequency and absolute number of donor alloantigen-
specific CD8 T cells secreting IFN-γ or expressing CD107a

comparable with those receiving nonblocking Abs or isotype-

matched control. Besides, the amount of IFN-γ released by do-
nor alloantigen-specific T cells was also decreased after HVEM/

BTLA blockade. These observations were in accordance with

in vivo decreased cytolytic function of donor T cells after com-

petitive blockade of HVEM/BTLA interaction. Altogether, our

data may well account for the attenuation of the cytotoxic donor

antibody response after HVEM/BTLA blockade during the course

of parental to F1, GvHR by either affecting the differentiation

of naive CD8 T cells to effector CD8 T cells due to a decreased

of T cell help or compromising the survival and maintenance of

donor alloantigen-specific effector CD8 T cells.

Parent into nonirradiated or lethally irradiated F1 recipients have

been extensively used as preclinical models for the study of allo-

reactivity and bone marrow rejection. The limitations of the non-

irradiated model are that splenocytes adaptively transferred to

allogeneic or semiallogeneic recipients undergo acute GvHD and

immunoincompetence is only transient, mimicking the situation in

humans under nonmyeloablative conditioning regimens (53). In

contrast, the irradiated model resembles more the myeloablative

conditioning regimes, in which allogeneic T cells adoptively

transferred along with T cell-depleted bone marrow cells lead to

development of different patterns of acute GvHD depending on

the differences in class I and class II MHC Ags between donor and

recipient, and involve the effector functional activity of CD4+ and

CD8+ T cells (54). The space created after irradiation is fully

permissive to alloreactive T cells to freely expand very quickly in

response to two type of stimuli; one is alloantigen, and the other is

homeostatic proliferation in response to an emptied hematopoietic

compartment, which induces a conversion of the phenotype of the

alloreactive and nonalloreactive T cell repertoire into memory-like

T cells with less costimulatory requirements (55, 56). Because of

those influences, T cells become more refractory to therapeutic

manipulation, as it has been demonstrated for CD28/B7 blockade

with CTLA-4.Ig (57). Another limitation of the nonirradiated

model is that skin pathology and weight loss are reduced com-

pared with this pathology in the irradiated model. Acute GvHD in

nonirradiated model is largely manifested as immune deficiency

and mixed chimerism, with less mortality than in irradiated model

(39, 58–60). Despite the above mentioned limitations of the

nonirradiated model, this was chosen because it does not require

FIGURE 8. Significant reduction of in vivo donor antihost cytotoxic

response after HVEM/BTLA blockade. Recipient F1 mice were adoptively

transferred with 7 × 10^6 of B6 splenocytes and treated with either isotype

control (rat IgG2a, 1 mg), anti-HVEM (nonblocking, clone 1H7, 1 mg), or

anti-HVEM (blocking, clone 6C9, 1 mg) mAbs. Sixteen days later, re-
cipient mice received 30 × 10^6 splenocytes of each CFSE-labeled target
cell, as follows: B6 (0.4 μM), BALB/c (2 μM), and F1 (10 μM). The
percentage of specific lysis in spleen (A) and peripheral lymph node

(inguinals plus axilars) (B) was calculated at 72 h, according to the

equation described in Materials and Methods. Data are representative of

two independent experiments with three mice per group. Bars indicate mean ± SEM, and t test was used to compare differences between groups.

Statistical significance was indicated, as follows: ***p < 0.0005.

Parent into nonirradiated or lethally irradiated F1 recipients have

been extensively used as preclinical models for the study of allo-

reactivity and bone marrow rejection. The limitations of the non-

irradiated model are that splenocytes adaptively transferred to

allogeneic or semiallogeneic recipients undergo acute GvHD and

immunoincompetence is only transient, mimicking the situation in

humans under nonmyeloablative conditioning regimens (53). In

contrast, the irradiated model resembles more the myeloablative

conditioning regimes, in which allogeneic T cells adoptively

transferred along with T cell-depleted bone marrow cells lead to
development of different patterns of acute GvHD depending on

the differences in class I and class II MHC Ags between donor and

recipient, and involve the effector functional activity of CD4+ and

CD8+ T cells (54). The space created after irradiation is fully

permissive to alloreactive T cells to freely expand very quickly in

response to two type of stimuli; one is alloantigen, and the other is

homeostatic proliferation in response to an emptied hematopoietic

compartment, which induces a conversion of the phenotype of the

alloreactive and nonalloreactive T cell repertoire into memory-like

T cells with less costimulatory requirements (55, 56). Because of

those influences, T cells become more refractory to therapeutic

manipulation, as it has been demonstrated for CD28/B7 blockade

with CTLA-4.Ig (57). Another limitation of the nonirradiated

model is that skin pathology and weight loss are reduced com-

pared with this pathology in the irradiated model. Acute GvHD in

nonirradiated model is largely manifested as immune deficiency

and mixed chimerism, with less mortality than in irradiated model

(39, 58–60). Despite the above mentioned limitations of the

nonirradiated model, this was chosen because it does not require
manipulation of the recipient and avoids the many variables introduced by a lymphopenic environment that affect the course of the alloreactive T cell response. Thus, we could interrogate the experimental system to assess the influence of HVEM/BTLA blockade on the initiation and progression of the cytotoxic response in a peripheral environment, in which alloreactive T cells are not homeostatically proliferating. Disease pathogenesis at day 19 after the adoptive transfer of allogeneic splenocytes is largely dependent on alloreactive effector CD8 T cells and not on cytotoxic autoreactive Abs, which appear later along with the chronic manifestations of the disease (38).

Therefore, our data favor the notion that attenuation of donor antihost cytotoxicity accounts for the reduced donor antihost reactivity in the studies, allowed us to demonstrate the contribution of HVEM/BTLA blockade on the initiation and progression of the cytotoxic response. Thus, we could interrogate the HVEM and BTLA interaction with herpesvirus entry mediator. Nat. Immunol. 9: 176–185.

