Invariant NKT Cell Defects in Vitamin D Receptor Knockout Mice Prevents Experimental Lung Inflammation

Sanhong Yu, Jun Zhao and Margherita T. Cantorna

J Immunol 2011; 187:4907-4912; Prepublished online 23 September 2011;
doi: 10.4049/jimmunol.1101519
http://www.jimmunol.org/content/187/9/4907

References
This article cites 31 articles, 12 of which you can access for free at:
http://www.jimmunol.org/content/187/9/4907.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Invariant NKT Cell Defects in Vitamin D Receptor Knockout Mice Prevents Experimental Lung Inflammation

Sanhong Yu, Jun Zhao, and Margherita T. Cantorna

Vitamin D receptor (VDR) deficiency (knockout [KO]) results in a failure of mice to generate an airway hyperreactivity (AHR) response on both the BALB/c and C57BL/6 background. The cause of the failed AHR response is the defective population of invariant NKT (iNKT) cells in the VDR KO mice because wild-type (WT) iNKT cells rescued the AHR response. VDR KO mice had significantly fewer iNKT cells and normal numbers of T cells in the spleen compared with WT mice. In BALB/c VDR KO mice, the reduced frequencies of iNKT cells were not apparent in the liver or thymus. VDR KO and WT Th2 cells produced similar levels of IFN-γ and IL-5. On the BALB/c background, Th2 cells from VDR KO mice produced less IL-13, whereas on the C57BL/6 background, Th2 cells from VDR KO mice produced less IL-4. Conversely, VDR KO iNKT cells were defective for the production of multiple cytokines (BALB/c: IL-4, IL-5, and IL-13; C57BL/6: IL-4 and IL-17). Despite relatively normal Th2 responses, BALB/c and C57BL/6 VDR KO mice failed to develop AHR responses. The defect in iNKT cells as a result of the VDR KO was more important than the highly susceptible Th2 background of the BALB/c mice. Defective iNKT cell responses in the absence of the VDR result in the failure to generate AHR responses in the lung. The implication of these mechanistic findings for human asthma requires further investigation. The Journal of Immunology, 2011, 187: 4907–4912.
velop AHR following induction of experimental allergic asthma using OVA and aluminum hydroxide (Alum) (18). The C57BL/6 VDR KO mice have very few iNKT cells (16). To determine whether a requirement of the VDR for Th2 and/or iNKT cells was responsible for the failure of C57BL/6 VDR KO mice to develop experimental asthma, experiments were done to evaluate the roles of these two cell types.

C57BL/6 VDR KO mice were backcrossed onto the Th2-biased and experimental allergic asthma-susceptible BALB/c background. Consistent with the finding from the C57BL/6 VDR KO mice, BALB/c VDR KO mice failed to develop OVA-induced experimental allergic asthma. AHR responses were low in VDR KO mice in the OVA model and also when α-GaICer was administered i.n. to either the BALB/c or C57BL/6 VDR KO mice. In vitro, VDR KO and WT Th2 cell responses were very similar to each other, whereas VDR KO iNKT cell responses were lower than WT for several different cytokines. The ability of iNKT cells to produce IL-4, IL-5, and IL-13 in response to α-GaICer was 2–19-fold less in VDR KO than WT cells. iNKT cells from C57BL/6 WT mice produced high amounts of IL-17, and VDR deficiency reduced iNKT cell production of IL-17. The failure of VDR KO mice to develop AHR was due to impaired function of iNKT cells because adoptive transfer with WT iNKT cells reconstituted AHR development in VDR KO mice. The ability of VDR KO CD4+ T cells to become Th2 cells was largely intact. Conversely, VDR KO iNKT cells produced less of the asthma-inducing cytokines compared with WT iNKT cells. The data demonstrate that the failure of VDR KO mice to develop AHR is not strain specific and due to impaired iNKT cell function in the mice.

Materials and Methods

Mice

The C57BL/6 VDR KO mice were backcrossed onto the BALB/c background (seven generations, 99.2% BALB/c. The mice were a gift of Dr. Mary Ann McDowell (University of Notre Dame, South Bend, IN). For experiments, age- and sex-matched VDR KO and WT mice on C57BL/6 and BALB/c were produced at The Pennsylvania State University (University Park, PA). Experimental procedures received approval from the Office of Research Protection Institutional Animal Care and Use Committee at The Pennsylvania State University.

Flow cytometry

Single-cell suspensions of thymus, spleen, and liver were isolated. Mononuclear cells from liver were prepared as described previously (17). Cells were stained with PE-labeled CD1d-PBS57 tetramers (PBS57 is a synthetic iNKT cell agonist; gift of the National Institutes of Health Tetramer Facility, Atlanta, GA), CD4, CD8, and PE-Cy5–labeled anti-TCRβ tetramers (H57-597) (BD Pharmingen, San Diego, CA). Empty tetramers (National Institutes of Health Tetramer Facility) and isotype control Abs (BD Pharmingen) for each cell-surface marker and cytometry were used to establish specificity. For sorting, liver mononuclear cells were stained with PE-labeled CD1d-PBS57 tetramer PE-Cy5–labeled anti-TCRβ. T cells (TCRβ+ tetramer+), and iNKT cells (TCRβ+ tetramer+) were then sorted by Cytopeia influx (BD Biosciences). Purity of both T cells and iNKT cells was >98%.

Cell culture and cytokine analysis

WT and VDR KO splenocytes were isolated and cultured in RPMI 1640. Cells were cultured in RPMI 1640 supplemented with 10% FCS (HyClone, Logan, UT), 2 mM L-glutamine, 100 μg/ml streptomycin, and 5 mM 2-ME (Invitrogen, Carlsbad, CA). For Th2 induction, 2 × 106 splenocytes were stimulated with 5 μg/ml anti-CD3 (2C11; BD Pharmingen) for 3 d in six-well plates in the presence of IL-4 (5000 IU/ml; PeproTech, Rocky Hill, NJ), and 1 μg/ml anti–IFN-γ neutralizing Abs (BD Pharmingen). Three milliliters new media with 20 IU/ml IL-2 (PeproTech) was added into each well at day 3. At day 4, cells were collected, washed twice, and restimulated with 10 ng/ml PMA and 2.5 μg/ml ionomycin for another 72 h (Sigma-Aldrich, St. Louis, MO) when the supernatants were collected (total of 7 d in culture). For iNKT cell cultures, 2 × 106 splenocytes were stimulated with 100 nM α-GaICer for a total of 72 h.

Lungs were lavaged via the tracheal tube with 1 ml PBS at room temperature. Total leukocyte, lymph, and basophil numbers were measured using a Coulter Counter (Coulter, Hialeah, FL). Cytokines in bronchoalveolar lavage fluid (BALF) were analyzed by ELISA using the standards and kits as provided (BD Pharmingen). Supernatants were analyzed for levels of IL-4, IL-5, IL-17, IL-13, and IFN-γ by a Luminex multiplex bead system kit (Lincoplex, Billerica, MA) on a Bioplex system (Bio-Rad, Hercules, CA). For some experiments, IFN-γ values were obtained by ELISA kits (BD Pharmingen).

OVA-induced allergic asthma model

Mice were immunized i.p. on days 0 and 5 with 50 μg/ml OVA (Sigma-Aldrich) complexed with Alum (10 μg OVA/1 mg Alum; Thermo Fisher Scientific, Rockford, IL). Beginning 12 d after immunization, mice were exposed to 60 μg OVA i.n. for 4 consecutive d, and sacrificed 24 h after the last exposure or on day 15. For some experiments, 2 μg α-GaICer or PBS was administered to the mice at day 0. VDR KO mice also received purified iNKT cells (1.5 ×107) or T cells (1.5 ×107) i.p. from WT mice on day 0.

α-GaICer–induced lung inflammation

α-GaICer (Axoxara, San Diego, CA) was dissolved in PBS containing 0.5% Tween 20, heated to 80°C for 10 min, and sonicated for 5 min on ice. Two micrograms α-GaICer was administered i.n. to mice anesthetized with isoflurane. Glycolipid vehicles were administered as controls. Twenty-four hours after the α-GaICer administration, mice were analyzed for AHR, and sections of the lungs were stained for lung inflammation.

AHR and lung histopathology

AHR was determined using a Flexivent mechanical ventilator (SciReq, Chandler, AZ). Mice were anesthetized and a cannula placed in the trachea so that the lungs were ventilated at a rate of 120 breaths/min; tidal volume = 0.2 ml, flow rate 1.5 ml/s at 2 to 3 cm H2O positive end-expiratory pressure. Airway pressure in response to methacholine (0–100 mg/ml) was determined using a differential pressure transducer. Following the AHR measurements, lungs were fixed, sectioned (Veterinary Diagnostic Laboratory, The Pennsylvania State University), and scored for the severity of the inflammation using a range of 0, no disease, to 4, maximal disease and exactly as previously described (18, 19).

Results

BALB/c VDR KO mice fail to develop experimental allergic asthma

VDR KO and WT mice on the BALB/c background were immunized with OVA and Alum to induce experimental allergic asthma exactly as described (18). Twenty-four hours after the last i.n. challenge, mice were subjected to mechanical ventilation for analysis of AHR. As expected, immunized WT BALB/c mice showed an increase in AHR with increasing dose of methacholine (Fig. 1A). Conversely immunized VDR KO mice did not respond to increasing doses of methacholine (Fig. 1A). In fact, the AHR response of immunized VDR KO mice was the same as mock PBS-treated WT mice (WT naive, Fig. 1A). Histopathology sections from immunized WT BALB/c mice showed increased leukocyte accumulation around the bronchi and bronchioles in the lungs (Fig. 1B). Immunized VDR KO mice had little inflammation, similar to what was found in the sections from naive WT mice (Fig. 1B). The lung histopathology scores from immunized VDR KO mice were significantly less than those from WT mice (Fig. 1C). The histopathology scores from primed WT mice were 3.2 ± 0.5, whereas primed VDR KO were 0.5 ± 0.1 (mean ± SEM). BALB/c VDR KO mice are resistant to the development of experimental allergic asthma induced by OVA/Alum immunization.

VDR KO mice are hypersensitive to α-GaICer

To determine the role of iNKT cells in the development of airway inflammation in VDR KO mice, α-GaICer was administered i.n. to WT and VDR KO mice on the C57BL/6 and BALB/c backgrounds. As expected, exposure to α-GaICer 24 h prior to methacholine challenge resulted in increased airway resistance in both
C57BL/6 and BALB/c WT mice (Fig. 2A). Conversely, α-GalCer treatment resulted in VDR KO mice nonresponsive to methacholine on both the C57BL/6 and BALB/c background (Fig. 2A, Table I). In fact, there was no increase in AHR responses with α-GalCer treatment of VDR KO mice over that with the PBS controls. Airway resistance of WT mice was significantly higher than that of VDR KO or WT challenged with PBS at doses of methacholine >25 mg/ml (Fig. 2A). Histopathology sections of the lungs showed that eosinophils and lymphocytes infiltrated into peribronchial spaces of the WT lungs exposed to α-GalCer (Fig. 2B). The histopathology sections of VDR KO mice exposed to α-GalCer were more similar to the unsensitized (PBS) mice than the α-GalCer-exposed WT (Fig. 2B and WT PBS data not shown). The BALF from C57BL/6 WT mice exposed to α-GalCer had high levels of IL-4 (Fig. 2C). Consistent with the lack of AHR response, the C57BL/6 VDR KO mice exposed to α-GalCer had no detectable IL-4 in the BALF, and the IL-4 response was similar to the unsensitized PBS-treated controls (Fig. 2C). The data suggest that activation of pulmonary iNKT cells fails in the VDR KO mice regardless of the genetic background of the mice (Table I).

TABLE I. VDR KO versus WT response on the BALB/c and C57BL/6 backgrounds

<table>
<thead>
<tr>
<th>Cytokine</th>
<th>BALB/c</th>
<th>C57BL/6</th>
<th>WT</th>
<th>VDRKO</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-4</td>
<td>↓↓↓</td>
<td>↓</td>
<td>↑</td>
<td>–</td>
</tr>
<tr>
<td>IL-5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>IL-13</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>IL-17</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AHR</td>
<td>↓↓↓</td>
<td>↓</td>
<td>↑</td>
<td>–</td>
</tr>
<tr>
<td>Histopathology</td>
<td>↓↓↓</td>
<td>↓</td>
<td>↑</td>
<td>–</td>
</tr>
</tbody>
</table>

VDR KO mice had reduced numbers of iNKT cells

Previously, it has been shown that the frequencies of CD4 and CD8 T cells in the spleen, liver, and thymus of C57BL/6 VDR KO and WT are similar (17). The BALF from the lungs of C57BL/6 VDR KO mice contained normal frequencies of CD4$^+$ and CD8$^+$ T cells compared with WT (Fig. 3C). The frequencies of CD4$^+$ T cells were the same in VDR KO and WT BALB/c mice in the spleen, whereas the BALB/c VDR KO BALF had significantly fewer CD8$^+$ T cells compared with WT mice (Fig. 3B, 3D). CD4 numbers and frequencies are the same in the spleen and lung of BALB/c VDR KO and WT mice (Fig. 3A, 3D). There were no differences in the numbers of lymphocytes collected from the spleens and BALF of VDR KO and WT mice, and therefore the total CD4$^+$ and CD8$^+$ frequencies reflect the actual numbers of cells in the VDR KO and WT mice (Fig. 3) (17). The percentages of iNKT cells (defined as TCRβ and CD1d-PBS57 tetramer positive) were significantly lower in the BALB/c VDR KO spleen than different in the BALF compared with BALB/c WT mice (Fig. 3B, 3D). The frequencies of iNKT cells in the thymus and liver of BALB/c VDR KO mice were not significantly different from the BALB/c WT mice (Fig. 3B). This is in sharp contrast to the significant and 4–10-fold lower numbers of iNKT cells in the C57BL/6 VDR KO mice (17). In the spleen, BALB/c and C57BL/6 KO mice had half as many iNKT cells as their respective WT counterparts (0.8–1% WT and 0.5–0.3% VDR KO). The BALF of both the BALB/c and C57BL/6 VDR KO lung contained similar frequencies and total numbers of iNKT cells compared with WT mice (Fig. 3C–E). The data show that VDR KO mice on the
The total number of iNKT cells in the BALF of the C57BL/6 and BALB/c VDR KO, and IL-4 was lower in the C57BL/6 VDR KO Th2 cell cultures. Data shown are the mean ± SEM of three to six individual mice and one representative of three experiments.

Th2 and iNKT cell responses in VDR KO mice

T cells are recruited to the lung during chronic asthmatic responses, producing cytokines such as IL-4, IL-5, and IL-13 that are associated with the pathology of asthma and allergy (20–22). The underlying cause of the observed hyporesponsiveness of VDR KO mice to either OVA and Alum- or α-GalCer–induced lung inflammation could be as a result of reduced Th2 cells, reduced iNKT cells, or both. Splenocyte cultures were used to induce Th2 and/or iNKT cells in vitro and the profile of cytokine secretion evaluated. The Th2 cultures from VDR KO mice had comparable levels of IL-5, IL-17, and IFN-γ as the WT Th2 cell cultures (Fig. 4A, 4B). IL-13 was lower in the Th2 cell cultures from BALB/c VDR KO, and IL-4 was lower in the C57BL/6 VDR KO Th2 cell cultures than WT. There was no effect on the Th2 cell production of IL-5, IL-17, and IFN-γ in VDR KO mice (Table I).

iNKT stimulation of splenocytes using α-GalCer (72 h) showed that VDR KO splenocytes secreted significantly less IL-4 than similarly treated WT cells (Fig. 4C). Even though there are significantly fewer iNKT cells in the spleen of VDR KO mice, IFN-γ secretion in response to α-GalCer was not different between VDR KO and WT mice (Fig. 4C, 4D). IL-17 production by C57BL/6 VDR KO splenocytes was 51-fold lower than WT (Fig. 4D). VDR KO α-GalCer–stimulated splenocytes secreted 6–19-fold less IL-4, 4–8-fold less IL-5, and 2–3-fold less IL-13 (Fig. 4C, 4D). Only in the BALB/c VDR KO iNKT cell cultures did the IL-5 and IL-13 reduction reach significance (Fig. 4C, 4D). VDR deficiency has a significant effect on iNKT cell production of several key asthma-inducing cytokines (Table I).

Transfer of WT iNKT cells to VDR KO mice rescues lung inflammation

iNKT cells or T cells were purified from WT mice and injected into VDR KO C57BL/6 recipients. Some of the mice were injected with α-GalCer prior to being induced to develop experimental allergic asthma using OVA/Alum. AHR was highest in WT mice that had received α-GalCer prior to OVA immunization (WT iNKT, Fig. 5A). AHR was lowest in VDR KO mice that received T cells plus α-GalCer (VDR KO T cells, Fig. 5A). AHR responses of VDR KO mice that had received WT iNKT cells and α-GalCer (VDR KO iNKT) approached those of the WT mice and were significantly higher than the VDR KO mice that received T cells at 95 mg/ml methacholine (Fig. 5A). The AHR of VDR KO mice with WT iNKT cells was not different from WT at 64 mg/ml methacholine (Fig 5A). The composition of BALF was analyzed following mechanical ventilation in the mice shown in Fig. 5A. Consistent with the elevated AHR measurements, WT mice with α-GalCer and OVA immunization had more WBCs and lymphocytes (Lymph) than all other groups (Fig. 5B). Eosinophils were not detected in either the VDR KO or WT BALF. The numbers of WBCs were not different between VDR KO mice with WT iNKT cells, α-GalCer, and OVA immunization and WT mice with PBS and OVA immunization (Fig. 5B). The WBC counts in VDR KO with PBS and OVA immunization had slightly lower but not significantly lower WBC numbers than the WT PBS and VDR KO iNKT values (Fig. 5B). WT transfer of iNKT cells rescues AHR development in VDR KO mice immunized with OVA/Alum.
Discussion

The inability of VDR KO mice to develop AHR is a result of impaired iNKT cell development and not Th2 cell defects. Reconstitution of iNKT cells and not T cells was able to recover AHR responses in VDR KO mice. Interestingly, even in Th2-biased BALB/c mice, the iNKT cell defect overcomes the Th2 allergic asthma bias of the mice, and VDR KO BALB/c mice fail to develop allergic asthma. The role of iNKT cells in experimental allergic airway disease has been demonstrated in several models. The production of IL-13, IL-4, and IL-5 by iNKT cells is thought to promote AHR, eosinophilia, and IgE class switching (23, 24). In addition, iNKT cells that produce IL-17 result in the increased secretion by Th2 cells in another study (21). This seemingly disparate result might reflect the population of cells present in the cultures. Beneficial effects of vitamin D might include the induction of Treg cells that have not only been shown to be induced but also to protect against experimental allergic asthma (22, 27). Other benefits of 1,25(OH)2D3 treatment might be the inhibition of IL-17 production (23, 24, 26). VDR KO mice have normal numbers of functional Treg cells (16). CD4+ T cells from VDR KO mice have more activated and memory cells that readily develop into Th17 and Th1 cells (14, 28). Th2 development is largely intact in the VDR KO mice (19). In the OVA/Alum models, the critical T cell types for disease development include the Treg, Th2, and iNKT cells. In VDR KO mice, the inability of the iNKT cells to induce a robust Th2 response with the presence of normal functional Treg cells prevents the induction of AHR and development of other symptoms of allergic asthma.

There has been extensive speculation that vitamin D deficiency may be associated with several chronic inflammatory diseases including asthma (26). These association studies lack the ability to understand the mechanisms by which a nutrient like vitamin D could impact chronic inflammatory diseases like asthma or inflammatory bowel disease. The epidemiological data in humans would seem to undermine the major conclusions from these more mechanistic studies in mice. One explanation for this is that vitamin D does not induce and regulate human iNKT cells. Another possibility is that iNKT cells are not important in the development of asthma in humans. For vitamin D and asthma, the data from humans are not without controversy because there is at least one group that has shown that increased vitamin D supplementation during childhood is associated with increased wheezing (29). The role of iNKT cells in human asthma is also a controversial topic, with different groups reporting disparate results and finding either very low frequencies (30) or high frequencies [60% of the T cells (31)] of iNKT cells. There are numerous explanations for the discrepancies in the data, and it seems possible that even low frequencies of iNKT cells could have a significant impact on asthma development. The connections among vitamin D status, iNKT cells, and asthma in humans require further investigation.

Vitamin D is an important regulator of iNKT cells in the lung. In the absence of the VDR, iNKT cells fail to induce Th2 cells and AHR in the lungs. Even in BALB/c mice that are very susceptible to experimental asthma, the iNKT cell defect in VDR KO mice results in the failure to generate AHR. WT iNKT cells rescue AHR and asthma development when transferred to VDR KO mice. The iNKT cell data in isolation suggest that asthma might be made worse by increasing vitamin D status in humans. However, it is clear that vitamin D regulates several different pathways in the lung, and therefore careful determinations of all mechanisms at
play are required. A better understanding of the mechanisms by which vitamin D regulates both the lung and immune function is needed to be able to predict what effects increasing vitamin D status might have on human asthma. Several ongoing or planned human clinical trials are underway to look at the role of vitamin D in preventing and ameliorating asthma development so, hopefully, answers are forthcoming.

Acknowledgments
We thank the National Institutes of Health Tetramer Core Facility for the CD1d tetramers used in these experiments and the members of the Center for Molecular Immunology and Infectious Diseases for lively discussion.

Disclosures
The authors have no financial conflicts of interest.

References