Comment on "The Inhibiting Fc Receptor for IgG, Fc γRIIB, Is a Modifier of Autoimmune Susceptibility"

Divaker Choubey, Ravichandran Panchanathan and Hongzhu Liu

J Immunol 2011; 187:3909; doi: 10.4049/jimmunol.1190055
http://www.jimmunol.org/content/187/8/3909.1

References

This article cites 6 articles, 3 of which you can access for free at:
http://www.jimmunol.org/content/187/8/3909.1.full#ref-list-1

Subscription

Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Comment on “The Inhibiting Fc Receptor for IgG, FcγRIIB, Is a Modifier of Autoimmune Susceptibility”

F

cγRIIB₁₂₉^{−/−} female mice produce detectable levels of anti-nuclear autoantibodies (ANAs) at the age of 4–5 mo (1). Moreover, these mice, compared with age-matched wild-type C57BL/6 mice, exhibit a reduced expression of the <i>Arm2</i> gene (a member of the <i>Ifi200</i> gene family), activation of the IFN response, and the induction of certain IFN-inducible genes at the age of ∼8 wk (much earlier than the detection of ANAs) (2). The IFN-inducible genes include the <i>If202</i> gene (encoding for the p202 protein) from the <i>If200</i> gene family (2), which is located within the <i>Nba2</i> lupus susceptibility interval (3, 4). The interval also includes the <i>Fggr2b</i> gene (4). Given that increased nuclear levels of p202 protein in B6. <i>Nba2</i>-congenic female mice are associated with the production of ANAs (3, 4), recent observations by Boross et al. (5) that Fc_{γRIIB}₁₂₉^{−/−} (but not Fc_{γRIIB}_{B6}^{−/−}) female mice at the age of 10 mo exhibit ANAs are consistent with previous observations (3, 6). However, it is intriguing that Boross et al. (5) did not examine whether Fc_{γRIIB}₁₂₉^{−/−} mice exhibit the activation of a type I IFN response. Because FcγRIIB₁₂₉^{−/−} mice express increased levels of p202 protein (Fig. 1) at the age of ∼8 wk, the observations by Boross et al. (5) support an interesting possibility that epistatic interactions between <i>Fggr2b</i> and <i>If202</i> family genes contribute to an increased production of type I IFN and ANAs. Therefore, further work is needed to characterize these epistatic interactions to understand their role in the development of lupus disease.

Divaker Choubey, Ravichandran Panchanathan, and Hongzhu Liu

Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267

Address correspondence and reprint requests to Dr. Divaker Choubey, Department of Environmental Health, University of Cincinnati, 3223 Eden Avenue, P.O. Box 670056, Cincinnati, OH 45267. E-mail address: choubedr@ucmail.uc.edu

FIGURE 1. Levels of p202 protein increase in FcγRIIB₁₂₉^{−/−} mice. Splenic cells from wild-type C57BL/6 and age-matched (∼8 wk) FcγRIIB₁₂₉^{−/−} male or female mice were prepared, and total cell lysates containing equal amounts of proteins were analyzed by immunoblotting, using Abs specific to the indicated proteins. The fold increases in the p202 protein levels in FcγRIIB₁₂₉^{−/−} male and female mice (compared with wild-type mice) are indicated.

Response to Comment on “The Inhibiting Fc Receptor for IgG, FcγRIIB, Is a Modifier of Autoimmune Susceptibility”

In our opinion, the comment of Choubey et al. deals with two issues: 1) the direct link between FcγRIIB and Ifi202 expression and 2) the role of Ifi202 as a systemic lupus erythematosus (SLE) susceptibility gene.

The Ifi202 gene is located in the flanking region of the <i>Fggr2b</i> gene, which is of 129 origin in FcγRIIB₁₂₉^{−/−} mice. As shown in the study of Jørgensen et al. (1), expression of the allelic variant of the Ifi202 gene present in the <i>Nba2</i> interval of the NZB mouse is significantly higher compared with the Ifi202 expression in C57BL/6 mice. In our opinion, the explanation for the higher Ifi202 gene expression found in FcγRIIB₁₂₉^{−/−} mice is due to the <i>Sle16</i> haplotype of the 129-derived <i>Fggr2b</i> flanking region, which most likely is the same as that of the NZB-derived <i>Nba2</i> interval. On the basis of these data, we expect that in our FcγRIIB_{B6}^{−/−} mice, the Ifi202 expression is the same as in C57BL/6 mice.

However, these data do not exclude Ifi202 as a candidate SLE susceptibility gene. The goal of our study was to define the intrinsic role of FcγRIIB in the development of autoimmunity. For that purpose, we compared two FcγRIIB knockout mouse strains independently generated in two different genetic backgrounds. We demonstrated that in a pure C57BL/6 background, FcγRIIB deficiency is not sufficient to induce autoimmunity. We concluded that epistatic interactions between one or more genes located in the 129-derived genomic region that flanks the <i>Fggr2b</i> gene and the C57BL/6 genome result in the development of autoantibodies. Subsequently, FcγRIIB deficiency enhances the

References

Downloaded from http://www.jimmunol.org/ by guest on July 31, 2017

Copyright © 2011 by The American Association of Immunologists, Inc. 0022-1767/11/S16.00
downstream pathogenic effects of these autoantibodies. In this way, the $Fcgr2b$ knockout allele and unidentified genes in its 129-derived flanking region synergize in the development of lethal lupus in FcγRIIB$^{129-/-}$ mice. Our SLE-resistant FcγRIIBb6$^{-/-}$ KO mouse model enables individual testing of the different candidate SLE susceptibility genes within the $Fcgr2b$ flanking region, including Ifi202, by combining the expression of the 129-derived allelic variants of these genes with FcγRIIB deficiency in a C57BL/6 background.

Sjef Verbeek,* Peter Boross,* and Shozo Izui†

*Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; and †Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland

Address correspondence and reprint requests to Dr. Sjef Verbeek, Department of Human Genetics, Leiden University Medical Center, Building 2, S4-P, Einthovenweg 20, 2333 ZA Leiden, The Netherlands. E-mail address: j.s.verbeek@wxs.nl

References

www.jimmunol.org/cgi/doi/10.4049/jimmunol.1190056