Combining Liver- and Blood-Stage Malaria Viral-Vectored Vaccines: Investigating Mechanisms of CD8+ T Cell Interference

Emily K. Forbes, Sumi Biswas, Katharine A. Collins, Sarah C. Gilbert, Adrian V. S. Hill and Simon J. Draper

J Immunol 2011; 187:3738-3750; Prepublished online 29 August 2011; doi: 10.4049/jimmunol.1003783
http://www.jimmunol.org/content/187/7/3738

Supplementary Material
http://www.jimmunol.org/content/suppl/2011/08/29/jimmunol.1003783.DC1

References
This article cites 53 articles, 23 of which you can access for free at:
http://www.jimmunol.org/content/187/7/3738.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Combining Liver- and Blood-Stage Malaria Viral-Vectored Vaccines: Investigating Mechanisms of CD8\(^+\) T Cell Interference

Emily K. Forbes, Sumi Biswas, Katharine A. Collins, Sarah C. Gilbert, Adrian V. S. Hill, and Simon J. Draper

Replication-deficient adenovirus and modified vaccinia virus Ankara (MVA) vectors expressing single pre-erythrocytic or blood-stage *Plasmodium falciparum* Ags have entered clinical testing using a heterologous prime-boost immunization approach. In this study, we investigated the utility of the same immunization regimen when combining viral vectored vaccines expressing the 42-kDa C terminus of the blood-stage Ag merozoite surface protein 1 and the pre-erythrocytic Ag circumsporozoite protein in the *Plasmodium yoelii* mouse model. We find that vaccine coadministration leads to maintained Ab responses and efficacy against blood-stage infection, but reduced secondary CD8\(^+\) T cell responses against both Ags and efficacy against liver-stage infection. CD8\(^+\) T cell interference can be minimized by coadministering the MVA vaccines at separate sites, resulting in enhanced liver-stage efficacy in mice immunized against both Ags compared with just one. CD8\(^+\) T cell interference (following MVA coadministration as a mixture) may be caused partly by a lack of physiologic space for high-magnitude responses against multiple Ags, but is not caused by competition for presentation of Ag on MHC class I molecules, nor is it due to restricted T cell access to APCs presenting both Ags. Instead, enhanced killing of peptide-pulsed cells is observed in mice possessing pre-existing T cells against two Ags compared with just one, suggesting that priming against multiple Ags may in part reduce the potency of multiantigen MVA vectors to stimulate secondary CD8\(^+\) T cell responses. These data have important implications for the development of a multistage or multicomponent viral vectored malaria vaccine for use in humans. *The Journal of Immunology*, 2011, 187: 3738–3750.

Malaria remains a significant global health problem. *Plasmodium* spp. infected ~240 million people and caused ~860,000 deaths worldwide in 2008 (1). It is widely recognized that a highly effective vaccine against malaria remains urgently needed. One promising approach is the use of replication-deficient recombinant viral vectored vaccines (2, 3), whereby an adenovirus (Ad)-modified vaccinia virus Ankara (MVA) prime-boost approach has been shown to induce strong T cell responses and high-titer Abs against malaria Ags in preclinical studies in mice, rabbits, and rhesus macaques (4–10). Phase I/IIa clinical trials using this strategy are currently underway in Oxford, U.K. (2, 11). The clinical vaccine candidates comprise chimpanzee adenovirus 63 and the orthopoxvirus MVA, administered 8 wk apart, expressing the *Plasmodium falciparum* protein 1; MVA, modified vaccinia virus Ankara; pRBC, parasitized RBC; PyCSP, *Plasmodium yoelii* CSP; PyMSP1, *P. yoelii* MSP1; RT, room temperature; vp, viral particle.

The Jenner Institute, University of Oxford, Oxford, United Kingdom

Received for publication November 15, 2010. Accepted for publication July 22, 2011.

This work was supported by the Welcome Trust and the European Malaria Vaccine Development Association, a European Commission FP6-funded consortium, S.C.G., A.V.S.H., and S.J.D. are Jenner Investigators and A.V.S.H. is also a Welcome Trust Principal Research fellow. S.J.D. is a Medical Research Council Career Development Fellow.

Address correspondence and reprint requests to Emily K. Forbes, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, United Kingdom. E-mail address: ekforbes@hotmail.com.

The online version of this article contains supplemental material.

Abbreviations used in this article: Ad, adenovirus; AdHu5, human adenovirus serotype 5; AMA1, apical membrane Ag 1; CSP, circumsporozoite protein; DC, dendritic cell; ICS, intracellular cytokine staining; i.d., intradermal; MSP1, merozoite surface protein 1; MVA, modified vaccinia virus Ankara; pRBC, parasitized RBC; PyCSP, *Plasmodium yoelii* CSP; PyMSP1, *P. yoelii* MSP1; RT, room temperature; vp, viral particle.

Copyright © 2011 by The American Association of Immunologists, Inc. 0022-1767/11/$16.00

AgS ME-TRAP (a string of multiple epitopes from liver-stage malaria Ags fused to the thrombospondin-related adhesion protein) (12), or the blood-stage malaria Ags merozoite surface protein 1 (MSP1) (6) or apical membrane Ag 1 (AMA1) (9, 10).

It is widely acknowledged that a multistage or multiantigen formulation will likely be necessary to provide high-level efficacy. Any such vaccine will warrant deployment only if it provides significantly greater efficacy than pre-existing pre-erythrocytic control measures as well as RTS,S (a pre-erythrocytic-stage vaccine targeting the circumsporozoite protein [CSP] currently in phase III trials across Africa) (13). It is suggested that a second-generation vaccine will need to provide >80% efficacy for at least 4 y to justify deployment (14). One possible strategy that has been investigated preclinically in rhesus macaques is the combination of RTS,S/AS02A with protein-in-adjuvant vaccine candidates for the blood-stage Ags MSP1 and AMA1 (15). This study found that AMA1-specific Ab responses are reduced when AMA1 is coadministered with either RTS,S or the 42-kDa C terminus of MSP1 (MSP1\(_{42}\)). A substantial body of work has also been carried out investigating mixtures of DNA and poxvirus vaccines encoding four to nine malaria Ags in mice and macaques (16–21). This work highlighted the issue of antigenic competition in multicomponent malaria vaccine formulations and demonstrated that immune interference may be complex and Ag dependent.

Despite these findings, the majority of phase I/IIa clinical trials investigating multiantigen and multistage malaria vaccines have not investigated the immunogenicity of each antigenic component alone nor assessed individual contributions to efficacy. These vaccines include protein vaccines such as GMZ2 (22), PICP2.9 (23) and combination B (24), as well as multiantigen strings expressed in DNA plasmids or viral vectors such as ME-TRAP (12, 25), NYVAC-Pf7 (26), and L3SEPTL polyprotein (27).
Similarly, studies in the field of HIV-1 vaccines have used mixtures of 3-4 DNA and/or poxvirus or human adenovirus serotype 5 (AdHu5) vaccines, but any potential effects of immune interference between the individual components and their encoded Ags have not been reported (28, 29). Two studies have been performed in which individual components in a multitarget virosome and viral-vectorized malaria vaccine have been assessed directly in humans when administered alone and in combination (30, 31). In both cases, total IgG responses were not affected by coadministration of Ags; however, T cell responses were not assessed directly. To our knowledge, no study has directly assessed the effects of coadministration of malaria Ags on T cell responses in humans. These data clearly highlight the importance of investigating the individual antigenic components within a multitarget vaccine and their effect on vaccine immunogenicity and efficacy in both preclinical and clinical studies.

Crucially, a combination vaccine strategy has not been assessed previously with the clinically relevant Ad-MVA prime-boost vectored vaccine platform. In this study, we have evaluated in mice the coadministration of vectors expressing the P. yoelii Ags CSP (PyCSP) and MSP142 (PyMSP142) in an AdHu5-MVA prime-boost regimen. CSP is expressed on the surface of sporozoites, and Abs against this Ag are thought to prevent sporozoite invasion, whereas CSP-specific CD8+ T cell responses [induced by recombinant human adenoviral vectors in mice (32–34)] and CD4+ T cell responses in humans (35), have been associated with protective outcome. MSP142 is the 42-kDa C terminus of MSP1 and is expressed during the late liver-stage and on the surface of merozoites during blood-stage infection. During merozoite invasion of RBCs, MSP142 is cleaved into a 33-kDa (MSP133) and a 19-kDa (MSP119) fragment (36). MSP119 remains associated with the merozoite surface, and Abs against this Ag are capable of providing blood-stage protection. We have shown that vectors expressing PyMSP142 can provide partial liver-stage efficacy because of CD8+ T cells targeting PyMSP119 (4), and protective blood-stage efficacy owing to Abs responses against PyMSP119 (4, 5). In these studies, efficacy was further enhanced if the PyMSP142 vaccine construct included the core domain from the murine α-chain of complement C4 binding protein (mC4bp/IMX108) fused to the C terminus (5, 37).

In this study using an AdHu5-MVA vectored vaccine platform for PyCSP and PyMSP142, we demonstrate an absence of interference for Ag-specific Abs following administration of the vaccine mixture; however, significant CD8+ T cell interference occurs after the MVA boost, resulting in reduced efficacy against sporozoite challenge. This effect is associated with enhanced killing of infected cells in vivo at the time of the boosting immunization in mice that are previously primed against two Ags rather than one. CD8+ T cell interference can be minimized by separate site immunization, which leads to enhanced efficacy of the dual-antigen vaccine regimen. These data have important implications for the development of multicomponent viral vectored vaccines against numerous difficult infectious diseases.

Materials and Methods

Recombinant AdHu5 and MVA vaccines

The construction of AdHu5 and MVA vectors expressing PyCSP and PyMSP142-mC4bp (IMX108), referred to throughout as PyMSP142, has been described previously (4, 5, 37). Control vectors were made using similar methods. AdHu5-control included the transgene promoter and polyA tail, but no antigenic insert. MVA-control contained GFP.

Animals and immunizations

Procedures were performed according to the U.K. Animals (Scientific Procedures) Act 1986 and were approved by the University of Oxford Animal Care and Ethical Review Committee. Six- to 8-wk-old female BALB/c (H-2b) and C57BL/6 (H-2b) mice were obtained from Harlan, UK and housed in specific pathogen-free conditions. Immunizations were performed as described in Table I, unless stated otherwise. All vaccines were formulated in endotoxin-free PBS and given intradermally (i.d.) in a total volume of 50 μl (25 μl per ear). There was an 8-wk interval between priming and boosting immunizations in all cases. When only a single malaria Ag vaccine was given, control vaccines were included to equalize viral load.

Isolation of splenocytes

Spleens were dissected into PBS, mechanically homogenized, and passed through a 70-μm cell strainer. Erythrocytes were removed by resuspension of cells in ACK lysis buffer (0.15 M NH₄Cl + 1 mM KHCO₃ + Na₂EDTA dissolved in 1L dH₂O and adjusted to pH 7.2–7.4 with 1 M HCl; all from Sigma) for 5 min before the addition of excess PBS. Splenocytes were pelleted by centrifugation and resuspended in complete MEM (MEM α-modification, 10% FCS, 100 U/ml penicillin, 100 μg/ml streptomycin, 1-glutamine [4 mM] and 2-ME [50 μM]).

Isolation of PBMCs from blood

Seven to ten drops of blood were collected from the tail vein into 200 μl of 10 mM EDTA in PBS. Erythrocytes were removed by incubation with ACK lysis buffer and cells were resuspended in complete MEM.

Isolation of liver mononuclear cells

Livers were perfused with PBS and mechanically homogenized. Cells were incubated for 1 h in complete MEM containing 0.7 mg/ml collagenase (Sigma) and 0.03 mg/ml DNase (Sigma) then passed through a 70-μm cell strainer. Cells were washed in PBS and underlaid with Ficoll-Paque PLUS (GE Healthcare) before spinning at 2000 rpm without the brake for 45 min at 21°C to separate cells. Cells at the interface were carefully removed, washed twice with PBS, and resuspended in complete MEM.

Peptides

PyCSP-specific responses were measured using a peptide against the dominant CD8+ epitope, PyCSP280–288 (38), the subdominant CD8+ epitope, PyCSP267–275 (39), or the CD4+ epitope, PyCSP170–178 (40). PyMSP142-specific T cell responses were measured after stimulation with a pool of peptides spanning the entire length of PyMSP133, this consisted of 52 15mers overlapping by 10 aa ((5). For all intracellular cytokine staining (ICS) assays, cells were stimulated with 1 μg/ml of each peptide unless stated otherwise. For peptide-pulsing CD11c+ cells, only peptides encoding the seven PyMSP133 epitopes (41) were used. These are all predicted to be H-2 Kd-restricted using the epitope prediction section of the SYFPEITHI Web site (http://www.syfpeithi.de/Scripts/MHCserver.dll/EpitopePrediction.htm) developed at the University of Tübingen. MVA-specific responses were measured using peptides against E3 and F2(G) (42). Individual peptides are described in Table II.

Intracellular cytokine staining

Cellular immune responses in the blood, spleen, and liver were measured by ICS as described previously (4). Cells were restimulated for 5 h at 37°C in the presence of GolgiPlug (BD Biosciences) and peptides specific for PyMSP1, PyCSP, or MVA vector at a final concentration of 1 μg/ml for each peptide, before storage at 4°C overnight.

Cells were then incubated for 15 min in the presence of anti-mouse CD16/CD32 (Fc-block) before surface staining for 30 min with anti-mouse CD8α-PerCP-Cy5.5 (clone 53-6.7) and CD4-Pacific Blue (clone GK1.5). Permeabilization was performed using Cytofix/Cytoperm solution (BD Biosciences) according to the manufacturer’s instructions. Cells were stained intracellularly for 30 min with anti-mouse IFN-γallophycocyanin (clone XMG1.2), IL-2–PE (clone JES6-5H4) and TNF-α–FITC (clone MP6-XP22). All incubations were performed at 4°C with Abs from eBioscience. Cells were resuspended in 1% formalin solution and responses measured using a CyAn ADP Flow Cytometer (Dako, Ely, U.K.) or LSRII (BD Biosciences). Data were analyzed using Flowjo version 8.7 (Tree Star). For some experiments, analysis of distributions was performed using SPICE version 5.1, downloaded from http://exon.niaid.nih.gov/spice (43). Results show the stimulated response with background responses from the unstimulated control subtracted (typically <0.05%).

ELISA

Blood was collected by tail bleed into microvette tubes, stored at 4°C overnight, and spun at 13,000 rpm for 4 min. Serum was removed and stored at −20°C until use; 2 μg/ml GST-PyMSP119 protein (5) or
a branched PyCSP peptide (MAP4–Py1T-Py3) (44) in PBS was adsorbed to 96-well Nunc-Maxisorp plates (Fisher Scientific) by overnight incubation at room temperature (RT). Plates were washed six times in PBS 0.05% Tween 20 (PBS/T) and blocked for 1 h in PBS/T containing 10% skimmed milk powder. Preboost samples sera were diluted 1:100 and postboost 1:1000 before serial dilution down the plate and incubation for 2 h at RT. Plates were then washed in PBS/T and bound Abs detected by incubation for 1 h with alkaline phosphatase conjugated goat anti-mouse total IgG (Sigma). Alternatively bound Abs isotypes were detected using biotin-conjugated rat anti-mouse IgG1 or IgG2a (BD Biosciences) at a concentration of 1 µg/ml in PBS/T for 1 h, before washing and adding ExtrAvidin (Sigma) conjugated to alkaline phosphatase and incubation for 30 min. Plates were then washed and developed using 1 mg/ml p-nitrophenylphosphate substrate pNPP (Sigma) in diethanolamine buffer (Fisher Scientific UK Ltd). OD was read at 405 nm. Endpoint titers were taken as the x-axis intercept of the dilution curve at an absorbance value 3 SD greater than the OD405 for naïve mouse serum. All samples were tested in duplicate, and a high-titer reference control sample was included in all experiments.

P. yoelii sporozoite and parasitized RBC challenge

P. yoelii YM sporozoite and parasitized RBC (pRBC) challenges were performed as described previously (4). Sporozoites were obtained by homogenization of salivary glands from infected Anopheles stephensi mosquitoes in RPMI 1640 medium (Sigma). Infected erythrocytes (i.e., pRBCs) were stored by cryopreservation and passed in a donor mouse prior to challenge. Mice were infected by i.v. injection with 50, 250, or 1000 sporozoites or 10^5 pRBCs, and blood-stage parasitemia was monitored after challenge by Giemsa-stained thin blood smear from day 2 for pRBC challenge and day 4 or 5 for sporozoite challenge. Parasitemia was calculated as the percentage of infected RBCs. Mice were considered uninfected if no parasites were observed in 50 fields of view containing ∼500 RBCs per field. The lower limit of detection was therefore 0.004%. Mice were culled if they reached ≥80% infected RBCs.

P. yoelii sporozoite immunofluorescence Ab test

P. yoelii YM sporozoites were isolated from the salivary glands of infected mosquitoes and were dissected in PBS containing aziadine. Samples were diluted at 1:100 sporozoites/ml and 10 µl/well pipetted onto an eight-well microscope slide, such that each well contained ∼3000 sporozoites. Slides were air-dried, wrapped in foil and stored with desiccant at −20˚C until use. For the immunofluorescence Ab test, all incubation steps were performed at a dark, humidified chamber, and slides were washed three times in PBS between each step. Wells were blocked for 2 h using 1% BSA in PBS. After washing, serum samples were added at a dilution of 1:100 for 1 h. Slides were then washed, Alexa Fluor 488 conjugated goat anti-mouse IgG secondary Ab (Invitrogen) was added at a dilution of 1:200 PBS (in 1% BSA). Slides were incubated for 30 min, washed, and mounted with Mowiol and a coverslip. Slides were dried at RT overnight in the dark. Slides were viewed under a Leica DMI3000 microscope.

Isolation and peptide-pulsing of CD11c+ cells

Spleens from naïve BALB/c mice were shipped, resuspended in complete MEM, and rotated at RT for 30 min in the presence of 0.3 mg/ml collagenase-dispase (Life Technologies) and 0.02 mg/ml DNase I (Sigma), before the dispersion of salivary glands from infected Mosquitoes. Isolated CD11c+ cells were washed thoroughly, resuspended in complete MEM, and pulsed with 10 µg/ml peptide for 16 h. Cells were then washed and resuspended at 2 × 10^5 cells/ml in MACS buffer. CD11c+ cells were isolated by passing splenocytes through an LS MACS column according to the manufacturer’s instructions (Miltenyi Biotech). After positive selection, CD11c+ cells were washed thoroughly, resuspended in complete MEM, and pulsed with 10 µg/ml peptide for 16 h. Cells were then washed and resuspended at 2 × 10^5 cells/ml in MACS buffer. CD11c+ cells were isolated by passing splenocytes through an LS MACS column according to the manufacturer’s instructions (Miltenyi Biotech). After positive selection, CD11c+ cells were washed thoroughly, resuspended in complete MEM, and pulsed with the seven PyMSP113 peptides, the two PyCSP peptides, or a mixture of all nine peptides. The concentration of DMSO was controlled to 0.05%.

In vivo CTL assay

Naïve BALB/c splenocytes were prepared by mechanical disruption (as described) as targets for in vivo killing. Cells were washed and resuspended at 5 × 10^5 cells/ml in warm MEM (without additions, 37˚C) and split into two populations. One population of cells was labeled with a high concentration of CFSE (5 µM) and the other with a low concentration of CFSE (0.5 µM; Invitrogen). After the addition of CFSE, cells were immediately incubated for 10 min at 37˚C, with regular mixing by inversion. The reaction was stopped by the addition of cold complete MEM. Cells were then washed twice in complete MEM and resuspended at 1 × 10^5 cells/ml. Cells labeled with a high concentration of CFSE were split into subpopulations and incubated at 37˚C for 1 h with PyMSP113 peptide pool, PyCSP (2 µg/ml), or both. PyMSP113 peptide pool and PyCSP (2 µg/ml) All peptides were used at 200 ng/ml. Cells were then washed twice in PBS. For i.v. injection, a 1:1 ratio of high and low CFSE-labeled cells were then combined such that each mouse received 1 × 10^5 cells labeled with a low concentration of CFSE and were not peptide pulsed, and 1 × 10^5 cells labeled with a high concentration of CFSE and were pulsed with the indicated peptides. These cells were then injected in a volume of 200 µl in PBS into BALB/c mice that had been previously primed with AdHu5 vaccines as indicated. Immunized mice were culled 5 h later, and a single-cell suspension of splenocytes was prepared. The CFSE intensity of each population was analyzed by flow cytometry. Specific killing was calculated as follows: ratio = (percentage CFSE low / percentage CFSE high); and percentage specific killing = (1 − mean ratio control primed / ratio primed) × 100%. In one experiment, splenocytes were labeled with CD11c-allophycocyanin prior to flow cytometry to allow an assessment of the killing of CD11c+ cells.

Statistics

Data were analyzed using GraphPad Prism v5.01. The normality of the data was determined using the Kolmogorov-Smirnov one-sample test. For nonparametric data, two groups were compared using a Mann–Whitney U test and multiple groups were analyzed by Kruskal–Wallis test. Data are presented as median ± range or as individual data points. ELISA titers were logarithmically (log10) transformed to normalize the data and allow parametric analysis. Parametric data were analyzed using an unpaired t test for two groups and are presented as mean ± SD. In all cases, a p value ≤0.05 was considered significant (p < 0.05, **p ≤ 0.01, and ***p ≤ 0.001).

Results

Ab responses to PyMSP142 and PyCSP vaccines

BALB/c mice were immunized against the PyMSP142 or PyCSP Ags, or both, either individually or as a mixture, using a previously described AdHu5-MVA prime-boost immunization regimen (4, 5). Details of the specific immunizations regimes are shown in Table I. The kinetics of the total IgG Ab responses that inhibit blood-stage parasite growth is well established (4, 5). The ability of Ad-MVA vaccination to induce functional PyMSP119-specific IgG Ab responses that inhibit blood-stage parasite growth is well established (4, 5). The ability of
Abs induced by Ad-MVA PyCSP to bind *P. yoelii* sporozoites was also confirmed by an immunofluorescence Ab test (Supplemental Fig. 1).

T cell responses to PyMSP142 and PyCSP vaccines

BALB/c mice were immunized as before (Table I) and PBMCs were isolated from the blood 2 and 8 wk after the Ad prime and 2 and 9 wk after the MVA boost to assess the affect of mixing the Ad and MVA vaccines on transgene-specific T cell responses following peptide stimulation (Table II). Production of IFN-γ from CD8+ cells was assessed by ICS following restimulation with a pool of overlapping peptides against PyMSP133 (Fig. 2A) or PyCSP280–288 peptide (Fig. 2B). T cell responses could not be measured against full-length PyCSP because of a lack of availability of peptides, and they were not measured against PyMSP119 because they were previously found to be undetectable (4). Following Ad priming, there was comparable production of Ag-specific IFN-γ from CD8+ T cells in mice immunized with either a single Ag or both Ags. However, 2 wk after the MVA boost, the two-antigen vaccine regimen resulted in significantly lower Ag-specific CD8+ IFN-γ+ responses to both PyMSP1 and PyCSP in comparison with the single-Ag regimens. CD8+ IFN-γ+ responses were also measured in the spleen 2 wk after MVA administration (Fig. 2C). These data confirmed the responses observed in the blood, with significantly lower responses to the PyMSP133 peptide pool and PyCSP280–288 in the two-Ag regimen than if either Ag had been given alone. Because of the availability of cells, responses were also measured against the subdominant PyCSP epitope, PyCSP58–67 (39). These data confirmed that responses to both reported class I H-2d epitopes within PyCSP are lower in mice receiving the vaccine mixture compared with Ad-MVA PyCSP given alone. These data also indicated that the total magnitude of the CD8+ IFN-γ+ T cell response in the two-Ag regimen is no greater than when the Ad-MVA PyCSP vaccines are given alone. In addition to CD8+ T cell responses, CD4+ T cell responses were assessed in the spleen 2 wk after the boost (Fig. 2D). Cells were stimulated with PyMSP133, the published PyCSP CD4+ T cell epitope PyCSP59–79, and the overlapping epitope PyCSP58–67. Responses to each peptide are shown, but overall they trend toward being lower in the dual-antigen regimen, they were not significantly lower. Given the low level of these responses, they

TABLE I. Standard immunization regimes

<table>
<thead>
<tr>
<th>Ags</th>
<th>AdHu5 Prime (Mixed)</th>
<th>MVA Boost (Mixed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSP1 + CSP</td>
<td>1 x 10^10 vp AdHu5-PyMSP142 + 1 x 10^10 vp AdHu5-PyCSP</td>
<td>1 x 10^7 PFU MVA-PyMSP142 + 1 x 10^7 PFU MVA-PyCSP</td>
</tr>
<tr>
<td>MSP1 + control</td>
<td>1 x 10^10 vp AdHu5-PyMSP142 + 1 x 10^10 vp AdHu5-Control</td>
<td>1 x 10^7 PFU MVA-Control + 1 x 10^7 PFU MVA-Control</td>
</tr>
<tr>
<td>CSP + control</td>
<td>1 x 10^10 vp AdHu5-Control + 1 x 10^10 vp AdHu5-PyCSP</td>
<td>1 x 10^7 PFU MVA-Control + 1 x 10^7 PFU MVA-PyCSP</td>
</tr>
</tbody>
</table>

In all experiments, mice were vaccinated with the indicated regimes, unless stated otherwise. The viruses used were mixed, and then mice were vaccinated i.d. in the ear in a total volume of 50 μl, with 25 μl given in each ear. There was an 8-wk interval between prime and boost. When only a single malaria Ag was given, control vaccines were included to control for viral load.

FIGURE 1. Ag-specific IgG is maintained in a multistage vaccine regimen. BALB/c mice were immunized with the AdHu5-MVA vaccine regimes described in Table I. Serum was collected 2 and 8 wk after priming and 2 and 9 wk after boost (weeks 10 and 17). Total IgG responses at all time points were measured against PyMSP119-GST protein (A) and PyCSP-specific MAP4-Py1T-Py3 branched peptide (B) by ELISA. Data are mean ± SD for six mice per group. These data are representative of two independent experiments. IgG1 and IgG2a responses were measured 2 wk after boost against PyMSP119 (C) and PyCSP (D). C57BL/6 mice were also immunized with the vaccines described in Table I. Serum was collected 2 wk after boost and total IgG responses measured against both Ags (E). Bars indicate median responses. The dashed line indicates the limit of detection. *p = 0.018 by Student *t* test.
were not investigated further in this study. CD8+ T cell responses were also assessed in C57BL/6 mice. Two weeks after the MV A boost, responses were measured in the blood by ICS against the pool of PyMSP133 peptides (Fig. 2E). Responses tended toward being lower in the mice immunized with PyMSP142 + PyCSP, although this did not reach statistical significance. No responses were detected after stimulation with PyCSP280–288 (data not shown), and peptides were not available against full-length PyCSP.

It has been shown previously that CD4+ T cells simultaneously producing IFN-γ, TNF-α, and IL-2 are associated with protection against Leishmania major in a murine challenge model (45), and that IFN-γ and TNF-α are important components of the non-cytolytic pathways underlying CD8+ T cell-mediated efficacy against intracellular liver-stage malaria infection in mice (7, 46). Therefore, in addition to IFN-γ, production of TNF-α and IL-2 was measured and the multifunctionality of the CD8+ T cells was assessed. The quality of the Ag-specific cells was analyzed in terms of production of all three cytokines in blood, spleen, and liver 2 wk after the MVA boost immunization (Fig. 3). Responses in the blood and spleen were measured against both the PyMSP133 peptide pool (Fig. 3A) and PyCSP280–288 peptide (Fig. 3B). As seen previously for IFN-γ, total production of Ag-specific TNF-α and IL-2 was significantly reduced in mice immunized against both Ags in comparison with a single Ag. However, within each compartment the proportion of cells (Fig. 3A,3B, pie charts) that were producing all three cytokines (IFN-γ + TNF-α + IL-2), two cytokines (predominantly IFN-γ + TNF-α), or a single cytokine (predominantly IFN-γ) was largely unaffected by immunizing against both Ags. Because of the relatively small number of cells isolated, mononuclear cells could not be stimulated with each Ag separately. Instead, they were stimulated with a single peptide pool containing PyMSP133 peptide pool, PyCSP280–288, and PyCSP58–67 (Fig. 3C). Although conclusions about the contribution of each individual Ag cannot be made from these data, it was clear that the total cytokine production from liver mononuclear cells of mice that had received the MSP1 + CSP vaccine regimen was no higher than in mice that had received the PyCSP vaccines.

![Figure 2](http://www.jimmunol.org/)

Figure 2. Ag-specific CD8+ T cell responses after boost following a two-Ag vaccine regimen are lower than following a single-Ag regimen. BALB/c mice were immunized with the regimes described in Table I. The percentages of CD8+ PBMCs producing IFN-γ were measured in the blood by ICS at the indicated time points. PBMCs were restimulated with the PyMSP133 peptide pool (A) or PyCSP280–288 (B). Data are median ± interquartile range for 6–12 mice per group. Two weeks after boost, CD8+IFN-γ+ (C) and CD4+IFN-γ+ (D) responses were measured in the spleen against the indicated peptides. Bars represent median responses ± range for six mice per group. C57BL/6 mice were also immunized and the percentage of CD8+ PBMCs producing IFN-γ was measured 2 wk after the MVA boost following restimulation with the PyMSP133 peptide pool (E). *p < 0.05, **p < 0.01 by Mann–Whitney U test, excluding negative controls.

Table II. Immunogenic peptides and murine MHC class I restriction

<table>
<thead>
<tr>
<th>Species</th>
<th>Ag</th>
<th>Residues (aa)</th>
<th>Sequence</th>
<th>MHC Class I Restriction</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. yoelii</td>
<td>CSP</td>
<td>58–67</td>
<td>YNRNIVNRL</td>
<td>Kd</td>
</tr>
<tr>
<td>CSP</td>
<td>280–288</td>
<td>SYVPSAEQI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSP</td>
<td>59–79</td>
<td>YNRNIVNRLGDALNGKPEEK</td>
<td></td>
<td>MHC class II</td>
</tr>
<tr>
<td>MSP133</td>
<td>1421–1429</td>
<td>TYKSIKKHML</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSP133</td>
<td>1453–1462</td>
<td>DFLEVLSHEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSP133</td>
<td>1473–1481</td>
<td>YVIRNPYQQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSP133</td>
<td>1513–1521</td>
<td>KFFNKMVEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSP133</td>
<td>1550–1558</td>
<td>KYIIPLELDL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSP133</td>
<td>1571–1580</td>
<td>EYSEEQLNQR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSP133</td>
<td>1599–1607</td>
<td>KYIQIDELK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MVA</td>
<td>E3</td>
<td>140–148</td>
<td>VGPSNSPTF</td>
<td>Dd</td>
</tr>
<tr>
<td>F2(G)</td>
<td>26–34</td>
<td>SPGAAGYDL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Predicted MHC class I restriction.
alone—in agreement with data from the spleen and blood. Interestingly, CD8+ T cells expressing IL-2 after restimulation were undetectable in the blood, but were observed in both the spleen and liver.

Protection against *P. yoelii* sporozoite challenge

CD8+ T cell responses, induced by viral vectored vaccines encoding either PyMSP142 or PyCSP, have been reported previously to provide partial or sterilizing liver-stage protection against *P. yoelii* sporozoite challenge (4, 32–34). To assess whether the reduced CD8+ T cell responses after the boost in the MSP1 plus CSP vaccine regimen had an effect on efficacy against sporozoite challenge, mice were challenged intravenously 2 or 10 wk after the MVA boost with either 1000 or 50 sporozoites respectively (Table III). Fifty sporozoites are routinely used in the *P. yoelii* challenge model (4, 5, 47); however, we had already reported that the Ad-MVA PyMSP142 vaccine regimen could protect against a high-dose challenge of 250 sporozoites (48) 2 wk after the MVA boost immunization (4). Therefore, to maximize any protective differences between immunization groups, an even

<table>
<thead>
<tr>
<th>Immunization Regime</th>
<th>No. Survived/No. Challenged (% Survival)</th>
<th>No. Sterilely Protected/No. Challenged (% Sterile)</th>
<th>Geometric Mean (Range) Peak Parasitemia of Surviving Mice (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSP1 + CSP</td>
<td>5/6 (83)</td>
<td>1/6 (16)</td>
<td>4.62 (0–28)</td>
</tr>
<tr>
<td>MSP1 + control</td>
<td>6/6 (100)</td>
<td>1/6 (16)</td>
<td>1.80 (0–7.9)</td>
</tr>
<tr>
<td>CSP + control</td>
<td>4/6 (66)</td>
<td>4/6 (66)</td>
<td>N/A</td>
</tr>
<tr>
<td>Naive, not immunized</td>
<td>0/6 (0)</td>
<td>0/6 (0)</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>1000 Sporozoites, 2 wk after Boost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSP1 + CSP</td>
<td>5/6 (83)</td>
<td>2/6 (33)</td>
<td>4.53 (0–11.8)</td>
</tr>
<tr>
<td>MSP1 + control</td>
<td>6/6 (100)</td>
<td>1/6 (16)</td>
<td>0.20 (0–17.6)</td>
</tr>
<tr>
<td>CSP + control</td>
<td>3/6 (50)</td>
<td>3/6 (50)</td>
<td>N/A</td>
</tr>
<tr>
<td>Naive, not immunized</td>
<td>0/6 (0)</td>
<td>0/6 (0)</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>50 Sporozoites, 10 wk after Boost</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BALB/c mice were immunized with the regimes described in Table I and challenged i.v. with sporozoites at the indicated time points. Parasitemia was monitored as described.
higher challenge dose of 1000 sporozoites was used at the 2-wk postboost challenge time point (Fig. 4, Table III). In both experiments, fewer mice were steriley protected following immunization with the MSP1 plus CSP regimen in comparison with the CSP alone regimen. Following challenge 2 wk after the MVA boost, only 1 in 6 mice was steriley protected in the MSP1 plus CSP group, compared with 4 in 6 in the CSP alone group, and a similar trend was observed at the late 10-wk challenge time point. Sterilizing liver-stage efficacy had therefore been reduced following coadministration of the MSP1 plus CSP vaccines, indicating that a mixed population of CD8+ T cells against PyMSP133 and PyCSP is less protective in this model than a similar quantity of cells targeting PyCSP alone. However, despite this reduced efficacy at the liver-stage and in agreement with the PyMSP119 Ab data (Fig. 1A), overall survival in the mice vaccinated with MSP1 plus CSP remained high after the onset of blood-stage parasitemia, with 5 in 6 (83%) surviving in each challenge experiment compared with 100% survival following immunization with the MSP1 vaccine alone. For mice challenged 10 wk after the boost, sera were collected and peak parasitemia were correlated significantly with prechallenge total PyMSP119-specific total IgG ELISA titer (Fig. 4). These data suggest that, following the onset of blood-stage parasitemia, survival in this model remains dependent on PyMSP119 Ab titers. These data also confirm that the Ad-MVA PyMSP142 vaccine regimen by itself maintains 100% survival following a high-dose challenge with 1000 sporozoites at day 70 and following a challenge with 50 sporozoites 10 wk after the boost.

CD8+ T cell interference is not completely overcome by lowering vaccine dose

One possible explanation for the observed CD8+ T cell interference following the coadministration of the MVA PyMSP142 and PyCSP booster vaccines (but not AdHu5 priming vaccines), was that it was a systemic or spatial effect. Given the relatively high overall magnitude of the responses induced against each Ag individually, it may not be physiologically possible to expand both Ag-specific populations to the same extent when both vaccines were administered together. T cell responses induced by vectored vaccines follow a dose-response curve (49); therefore, it was hypothesized that lowering the dose of the vaccines might reduce the overall magnitude of the response induced and thus prevent the observed CD8+ T cell interference. BALB/c mice were thus immunized as described in Table I, but primed with 10^9 viral particles (vp) of each AdHu5 vaccine (rather than 10^10 vp) and boosted with 10^6 PFU of each MVA vaccine (rather than 10^7 PFU). Two weeks after the MVA boost, mice were culled and splenocytes were restimulated with the PyMSP133 peptide pool or PyCSP280–288 before assaying responses by ICS (Fig. 5). In this case, PyCSP-specific responses were significantly lower (p = 0.0087 by Mann–Whitney U test) than those observed previously, with a median response of 13.7% of CD8+ T cells producing IFN-γ after CSP only vaccination compared with 25.4% observed in the previous experiment (Fig. 2C), and significant CD8+ T cell interference was not observed for this Ag. However, despite the reduced magnitude of the PyCSP CD8+ T cell population, significant interference was still observed after vaccine coadministration for the relatively weaker responses against PyMSP133. Given that overall responses of greater total

FIGURE 4. Survival and peak parasitemia following sporozoite challenge. Mice were challenged with sporozoites as described in Table III. Kaplan–Meier curves show survival following sporozoite challenge 2 wk after boost (A) and 10 wk after boost (B). Following challenge 10 wk after boost PyMSP119-specific total IgG titers correlate with peak parasitemia (C; p = 0.0098; r = −0.7541 by Spearman’s rank correlation analysis.)

FIGURE 5. CD8+ T cell competition is not completely overcome by lowering doses of vaccines. BALB/c mice were immunized with the same regimes as described in Table I, but using lower doses of vaccines (10^5 vp of each AdHu5 and 10^6 PFU of each MVA). Ag-specific CD8+ IFN-γ responses were measured as before in the spleen 2 wk after boost by ICS. **p < 0.01 by Mann–Whitney U test, excluding negative controls.
magnitude were previously observed in the spleen (Fig. 2C), these data indicate that physiologic space is not the only contributing factor to CD8+ T cell interference in this model.

CD8+ T cell interference can be minimized by immunization at separate sites

A second possibility was that CD8+ T cell interference was a local effect, occurring at the draining lymph node sites of T cell boosting, and could be overcome by immunizing with the vectored vaccines at physically separated sites. To investigate this possibility, BALB/c mice were primed as usual with a mixture of 10^{10} vp of each AdHu5 vaccine and then boosted 8 wk later with 10^7 PFU of each MVA vaccine, except that the two different MVA vaccines were given into separate ears. Two weeks after the MVA boost, PBMCs were isolated and restimulated as before with the indicated peptides before analysis by ICS (Fig. 6A). Comparable PyCSP-specific CD8+ IFN-γ+ T cell responses were observed in mice immunized against MSP1 plus CSP or against CSP alone. Importantly, these PyCSP-specific responses were maintained at a magnitude similar to those seen previously when the vaccines had been given as a mixture, rather than at the lower magnitude observed after reduced dose immunization. PyMSP1_{42}-specific CD8+ IFN-γ+ T cell responses were, however, still lower in mice immunized against MSP1 plus CSP compared with MSP1 alone. Similar results were observed for TNF-α and IL-2, and the multifunctionality of the cells was unaffected by immunizing at separate sites, in agreement with previous observations (data not shown). Furthermore, total IgG responses against both Ags remained unaffected by immunization against both Ags at separate sites and were maintained at the same level as when the two MVA had been given as a mixture (Fig. 6B, 6C).

Immunization at separate sites improves efficacy against P. yoelii sporozoite challenge

Two weeks after immunization with the MVA vaccines at separate sites, mice were challenged with 1000 sporozoites by i.v. injection. In this instance, on day 5 after the challenge, parasitemia was still undetectable in mice immunized against MSP1 plus CSP, whereas mice immunized with either Ag alone had already begun to develop patent blood-stage infection (Fig. 7A). Given that PyMSP1_{19} Ab responses remained comparable in the MSP1 plus CSP and MSP1-only immunized groups, and given the previously observed reduced interference in CD8+ T cell responses against both Ags, this reduction in patent parasitemia at day 5 after challenge indicates that when the two recombinant MVA vaccines are given at separate sites, mice immunized against both Ags had enhanced liver-stage protection compared with when they were immunized with either Ag alone. However, all mice in the coadministration and MSP1-only immunized groups eventually developed a patent blood-stage parasitemia but, like before, high-level survival was maintained in both groups of mice possessing Abs against PyMSP1_{19} (Fig. 7B). Ultimately, delayed-onset blood-stage parasitemia combined with subsequent survival in all mice indicated a more beneficial effect of PyMSP1_{42} and PyCSP coimmunization following separate site administration of the MVA boosting vaccines compared with that previously seen when the vaccines were administered as a mixture.

CD8+ T cell interference is not due to competition for presentation on MHC class I

Having identified that CD8+ T cell interference could be overcome for PyCSP-specific responses and minimized for PyMSP1_{42}-specific responses by immunization with the two recombinant MVA at separate sites, we sought to identify the mechanism of interference. One possibility was that it was due to peptides competing for presentation on MHC class I molecules on the surface of APCs. In BALB/c mice, all seven dominant epitopes within the PyMSP1_{42} peptide pool are predicted to be H-2Kd-restricted, as well as PyCSP_{280-289} (38) and PyCSP_{58-67} (39) (Table II). To investigate whether competition for presentation on MHC class I was the reason for interference between these multiple CD8+ T cell responses, we measured responses against epitopes with a different MHC class I restriction within the MVA vector backbone. Splenocytes harvested 2 wk after the MVA boosting immunization were restimulated with F2(G) (H-2Ld-restricted) and E3 (H-2Dd-restricted) peptides (42) (Fig. 8). For both epitopes encoded within the MVA vector, IFN-γ production from de novo primed CD8+ T cells was also significantly lower in mice that had been immunized with the two malaria Ag regimens compared with mice immunized with either Ag alone, despite all mice receiving the same viral load. CD8+ T cell interference was therefore occurring with respect to MVA-specific

FIGURE 6. BALB/c mice were primed with a mixture of AdHu5 vaccines as described in Table I, but 8 wk later the two MVA vaccines were coadministered at separate sites—one given in each ear. Twelve days after immunization with MVA, the production of Ag-specific IFN-γ from CD8+ PBMCs was measured by ICS (A). Bars indicate median responses. These data are representative of two independent experiments. Total IgG against both PyMSP1_{19} (B) and PyCSP (C) were also measured. The dashed line indicates the limit of detection and bars indicate mean response. *p < 0.05 by Mann–Whitney U test, excluding negative controls.
responses and Ag-specific responses regardless of epitope MHC class I restriction.

CD8+ T cell interference is not due to presentation of both Ags on the same APC

We hypothesized that interference could also be due to some other aspect of presentation of both Ags on the same APC. It has been demonstrated that CD8+ T cell interference can occur when CD8+ T cells compete for access to APCs when both Ags are presented on the same APC surface (50). The exact cause of the competition is not known, but it has been suggested it may be due to limited space around the APC, perhaps limiting access to Ag, costimulatory molecules, or survival factors. To investigate the phenomenon in this study, BALB/c mice were immunized with a mixture containing 1×10^{10} vp each of AdHu5-PyMSP142 and AdHu5-PyCSP. Eight weeks later, rather than boosting with MVA, the responses were boosted with 2×10^{8} peptide-pulsed CD11c+ DCs as reported previously (51). The DCs were pulsed with PyMSP133 peptides and PyCSP peptides, either mixed together or pulsed separately and with cells mixed immediately before i.v. injection. Two weeks later, CD8+ IFN-γ+ responses were measured against the two Ags in the blood by ICS (Fig. 9). In the majority of mice, both PyMSP133- and PyCSP-specific responses were boosted by injecting peptide-pulsed CD11c+ DCs compared with nonpulsed DCs, but the level of boosting did not reach statistical significance because of at least one nonresponder in each group. Nevertheless it demonstrated that responses were not different, regardless of whether the DCs had been pulsed with peptides specific for both Ags either separately or as a mixture. These data suggest that T cell interference is not occurring because of CD8+ T cells competing when both Ags are presented on the same APC.

Cells presenting two Ags are better targets for killing at the time of MVA boost immunization

We hypothesized that secondary CD8+ T cell responses may be lower when the two recombinant MVA vaccines expressing both Ags are given together at the same site because of dual infection of cells at the vaccination site. Infection of a single cell with more than one MVA has been demonstrated in vitro (52), and it is likely to occur in vivo given the dose of MVA used. These cells may be better targets for killing by pre-existing transgene-specific cytotoxic CD8+ T cells specific for both PyMSP142 and PyCSP, allowing less time for Ag expression, processing, and cross-presentation to APCs, compared with when the two vaccines are given separately. To investigate this possibility, an in vivo CTL killing assay was performed. In the first experiment, BALB/c mice were primed by i.d. immunization with 2×10^{10} vp AdPyMSP142 plus AdPyCSP, AdPyMSP142 plus AdControl, or AdControl only and then left to rest for 8 wk. At the time the MVA-boost immunization would normally be given, the mice were injected with CFSE-labeled, peptide-pulsed splenocytes as described. The mice were culled 5 h after the cells were injected, and Ag-specific killing was calculated by analyzing CFSE-fluorescence intensity (Fig. 10A). These data showed that if cells were pulsed with PyMSP142 and PyCSP peptides mixed together, and therefore presenting both Ags, then ~40% of the cells were killed within 5 h in mice primed against both Ags. This finding was in contrast with ~20% killing seen when mice had been primed only against MSP142, or when cells pulsed with only MSP133 peptides were transferred into mice primed against either MSP142 alone or both Ags (Fig. 10B). These data imply that priming mice against two malaria Ags could lead to a greater level of cellular killing following coadministration of two recombinant MVA booster vaccines as mixture, and this is associated with reduced boosting of CD8+ T cell responses against both Ags. However, in a second experiment, similar observations were made when mice primed against both Ags were injected with splenocytes that had been pulsed with the PyMSP133 and PyCSP peptides separately (Fig. 10C). This outcome was the same, regardless of whether the total splenocyte population or only CD11c+ cells were analyzed (data not shown). Although enhanced killing is observed when mice are previously primed against both Ags, the observations using this
model assay failed to account for the improved CD8+ T cell immunogenicity seen against the PyCSP Ag after coadministration of the two MVA vaccines at separate sites.

Discussion

In this study, we demonstrate the feasibility of a multistage and multiantigen vaccine regimen using a clinically relevant viral vectored vaccine delivery platform. In the *P. yoelii* mouse model, CD8+ T cells were primed with a mixture of AdHu5 vaccines as described in Table I. Eight weeks later they were boosted i.d. with 2×10^6 CD11c⁺ cells either pulsed with a mixture of the seven known PyMSP133 peptide epitopes and the two known PyCSP peptide epitopes or pulsed separately with the PyMSP133 peptides and PyCSP peptides, which were then mixed in a 1:1 ratio immediately prior to injection to give a total of 2×10^5 cells. Two weeks after immunization with peptide pulsed DCs, PBMCs were isolated and restimulated with peptides specific for PyMSP133 (A) and PyCSP (B) before ICS staining for IFN-γ.

CD8⁺ T cell interference may occur for a number of reasons. First, we hypothesized that it could be a systemic or spatial effect, because of the large magnitude of the CD8⁺ T cell responses induced in BALB/c mice against these two Ags. To address this question we lowered the doses of vaccines, giving 100-fold less AdHu5 and 10-fold less MVA. This reduced the overall magnitude of the Ag-specific immune responses, in agreement with other dosing studies in mice for similar viral vectored vaccines (49), and PyCSP-specific CD8⁺ T cell interference was no longer observed, although the PyMSP133-specific response was still reduced by more than 50% in the two-antigen regimen, indicating that while the magnitude may have been contributing to competition, it is not the sole cause. In addition, altering the ratio of the vaccines, such that mice were boosted with 10-fold more MVA-PyMSP142 than MVA-PyCSP in the two-antigen regimen, could not overcome the PyMSP133-speciﬁc CD8⁺ T cell competition (data not shown).

It has been found that coadministering vaccines at separate sites can overcome CD8⁺ T cell interference (16). In agreement with that finding, we found that administration of the two recombinant MVA vectors at separate sites eliminated PyCSP-specific CD8⁺ T cell interference. PyMSP133-specific competition still occurred, but in this case it was minimized, with 70% of the response maintained in the mice immunized against both Ags, whereas in previous experiments the response had been reduced by >50%. Furthermore, when these mice were challenged with *P. yoelii* sporozoites, those immunized at separate sites demonstrated enhanced liver-stage efficacy, as determined by day 5 blood-stage parasitemias.

A number of studies have found that CD8⁺ T cell interference occurs when CD8⁺ T cells compete for antigenic epitopes presented on the same APC surface (50). The cause is not known, but it may be limited space around the APC, perhaps limiting access to costimulatory molecules or survival factors. It has been shown that peptide-pulsed DCs can boost MVA primed immune responses (51). To investigate whether this was the case, we boosted mice primed with the mixture of Ad-PyCSP and Ad-PyMSP142 with peptide-pulsed CD11c⁺ DCs that had either been pulsed with peptides from both Ags together or separately. We found that a modest increase in the production of IFN-γ from CD8⁺ T cells was observed when Ad-primed responses were
boosted with peptide-pulsed DCs, but there was no significant difference in the magnitude of the CD8+ IFN-γ response between those that had been pulsed with peptide separately or together. This finding is in contrast to those of Kedl et al. (50), who show that when mice are immunized with DCs pulsed with two different peptides, in the presence of high-affinity T cells specific for one of the peptides, then responses to both peptides are impaired if they are presented on the same APC, but only to one peptide if they are presented on separate APC.

We subsequently hypothesized that the killing of MVA-infected cells at the time of the boost by cytotoxic CD8+ T cells, previously primed by the AdHu5 vaccines, may also be a crucial factor in determining the magnitude of the secondary CD8+ T cell response. A study of secondary influenza infection showed that CD8+ T cells secreting perforin rapidly terminate Ag presentation in this model (55). Furthermore, studies with MVA and vaccinia virus have shown that during secondary responses the timing of Ag presentation is crucial, with responses detected only to Ags expressed early during the viral life cycle. The development of secondary response to Ags expressed early in the life cycle was dependent on the presence of primed T cells, although a mechanism was not identified (56). Our own results using an in vivo killing assay showed that following injection of peptide-pulsed splenocytes, cells pulsed with both PyMSP133 and PyCSP peptides together were almost twice as likely to be killed within 5 h as those that had been pulsed with peptides corresponding to a single Ag. These data suggest that the more rapid clearance of MVA coinfecting cells expressing both the PyMSP142 and PyCSP Ags, results in a reduced period of Ag expression and presentation, and consequently a reduced secondary CD8+ T cell response. We also observed that enhanced killing occurred when cells were pulsed with peptides separately and the cells were mixed immediately before injection. This finding does not appear to be in agreement with the immunogenicity data and may reflect differences in systemic compared with local CTL activity. Otherwise, alternative mechanisms may yet explain the reasons for improved immunogenicity following separate site immunization with two recombinant MVAs.

The outcomes from this study imply that immunizing at separate sites may be necessary to prevent antigenic interference. However,
this practice may be neither practical nor financially viable. A more feasible approach is the development of multivalent MVA vectors, which express a number of malaria Ags from a single virus. Establishing whether CD8\(^+\) T cell interference occurs in humans, and the mechanism of interference, will be crucial in deciding which is the more effective approach to developing a multiantigen or multistage malaria vaccine. Phase I/IIa clinical trials are currently underway at Oxford University to assess the efficacy of AdCh63-MVA vectored vaccines expressing \(P. falciparum\) MSP1, AMA1, and ME-TRAP alone and in combination. Based on the preclinical work presented in this study, vaccines are being administered at separate sites.

In summary, we show that Ad-MVA viral vectored vaccines expressing the Ags PyCSP and PyMSP\(_{142}\) can induce enhanced protection against \(P. yoelii\) sporozoite challenge compared with either Ag given alone, provided that MVA vaccinates are given at separate sites. When MVA vaccines are given as a mixture, reduced CD8\(^+\) T cell responses are observed. This CD8\(^+\) T cell interference is not due to peptide epitope competition for presentation on the same MHC class I molecules, nor is it at the level of the APC. Enhanced killing of cells presenting both Ags at the same time of the boost occurs regardless of whether the vaccines are given at separate sites. When MV A vaccines are given as a mixture, enhanced killing of cells presenting both Ags at the same time of the boost occurs regardless of whether the vaccines are given at separate sites or as a mixture. The exact mechanism of CD8\(^+\) T cell interference in a vaccine mixture thus remains to be fully elucidated. Classical protein-in-adjuvant vaccines do not induce strong cellular immunity; therefore, T cell interference in multiantigen vaccination regimes is not routinely assessed. However, multiantigen viral vectored and DNA vaccines that induce strong T cell responses are currently being tested for a wide variety of diseases, including HIV-1, tuberculosis, malaria, and influenza (3). Understanding T cell interference will be critical in developing effective vaccines against these difficult infectious diseases.

Acknowledgments

We thank A. Spencer, J. Furze, M. Tunnicliff, M. Dicks, S. Douglas, S. de Cassan, A. Goodnan, D. Worth, B. Bolinger, and The Jenner Institute Viral Vector and Flow Cytometry Core facilities for assistance.

Disclosures

The authors have no financial conflicts of interest.

References

3750 COMBINING LIVER- AND BLOOD-STAGE MALARIA-VECTORED VACCINES

