ORAI1 Deficiency Impairs Activated T Cell Death and Enhances T Cell Survival

Kyun-Do Kim, Sonal Srikanth, Ma-Khin Win Yee, Dennis C. Mock, Gregory W. Lawson and Yousang Gwack

J Immunol 2011; 187:3620-3630; Prepublished online 26 August 2011;
doi: 10.4049/jimmunol.1100847
http://www.jimmunol.org/content/187/7/3620

Supplementary Material http://www.jimmunol.org/content/suppl/2011/08/26/jimmunol.1100847.DC1

References This article cites 61 articles, 28 of which you can access for free at:
http://www.jimmunol.org/content/187/7/3620.full#ref-list-1

Subscription Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscription

Permissions Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
ORAI1 Deficiency Impairs Activated T Cell Death and Enhances T Cell Survival

Kyun-Do Kim,† Sonal Srikanth,* Ma-Khin Win Yee,* Dennis C. Mock,† Gregory W. Lawson,‡ and Yousang Gwack*†

ORAI1 is a pore subunit of Ca\(^{2+}\) release-activated Ca\(^{2+}\) channels that mediate TCR stimulation-induced Ca\(^{2+}\) entry. A point mutation in ORAI1 (ORAI1\(^{991W}\)) causes SCID in human patients that is recapitulated in ORAI1\(^{-/-}\) mice, emphasizing its important role in the immune cells. In this study, we have characterized a novel function of ORAI1 in T cell death. CD4\(^{+}\) T cells from ORAI1\(^{-/-}\) mice showed robust proliferation with repetitive stimulations and strong resistance to stimulation-induced cell death due to reduced mitochondrial Ca\(^{2+}\) uptake and altered gene expression of proapoptotic and antiapoptotic molecules (e.g., Fas ligand, Noxa, and Mcl-1). Nuclear accumulation of NFAT was severely reduced in ORAI1-deficient T cells, and expression of ORAI1 and a constitutively active mutant of NFAT recovered cell death. These results indicate NFAT-mediated cell death pathway as one of the major downstream targets of ORAI1-induced Ca\(^{2+}\) entry. By expressing various mutants of ORAI1 in wild-type and ORAI1\(^{-/-}\) T cells to generate different levels of intracellular Ca\(^{2+}\), we have shown that activation-induced cell death is directly proportional to the intracellular Ca\(^{2+}\) concentration levels. Consistent with the in vitro results, ORAI1\(^{-/-}\) mice showed strong resistance to T cell depletion induced by injection of anti-CD3 Ab. Furthermore, ORAI1-deficient T cells showed enhanced survival after adoptive transfer into immunocompromised hosts. Thus, our results demonstrate a crucial role of the ORAI1–NFAT pathway in T cell death and highlight the important role of ORAI1 as a major route of Ca\(^{2+}\) entry during activated T cell death. The Journal of Immunology, 2011, 187: 3620–3630.

© 2011 by The American Association of Immunologists, Inc. 0022-1767/11/$16.00

Received for publication March 23, 2011. Accepted for publication July 28, 2011.

This work was supported by National Institutes of Health Grants AI-083432 and AI-088393 (to Y.G.) and a fellowship from the American Heart Association (to S.S.).

Address correspondence and reprint requests to Prof. Yousang Gwack, Department of Physiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095. E-mail address: ygwack@mednet.ucla.edu

The online version of this article contains supplemental material.

Abbreviations used in this article: 7-AAD, 7-aminoactinomycin D; CA, constitutively active; [Ca\(^{2+}\)]\(_{\text{e}}\), intracellular Ca\(^{2+}\) concentration; CaM, calmodulin; CRAC, Ca\(^{2+}\) release-activated Ca\(^{2+}\); Ca\(^{2+}\), threshold cycle; EAE, experimental autoimmune encephalomyelitis; ER, endoplasmic reticulum; FasL, Fas ligand; KO, knockout; NSG, NOD-SCID IL2R\(^{g-/-}\); SOCE, store-operated Ca\(^{2+}\) entry; SP, single positive; STIM1, stromal interaction molecule 1; WT, wild-type.

Copyright © 2011 by The American Association of Immunologists, Inc. 0022-1767/11/S16.00

www.jimmunol.org/cgi/doi/10.4049/jimmunol.1100847
TCR signaling plays an important role in immune homeostasis for maintenance of T cell numbers and induction of cell death. Cell death induced by TCR stimulation is critical for homeostasis of peripheral T cells after Ag clearance and negative selection of autoreactive T cells in the thymus (20–22). Activated T cell death occurs through two major apoptotic pathways, the death receptor- and mitochondria-mediated pathways. Death receptor-mediated apoptosis involves the Fas ligand (Fasl)/Fas signaling pathway majorly regulated by NFAT (23, 24), whereas mitochondria-mediated cell death occurs due to loss of mitochondrial membrane potential (20). Mitochondria-mediated cell death pathway involving the Bcl-2 family members (e.g., Bcl-2 and Bcl-XL) and the BH3-only proteins (e.g., Bad, Bik, Bim, and Noxa) plays an important role in T cell death and survival, as seen in isolated T cells and in animal models (20, 22, 25). Double-knockout (KO) mice lacking expression of Fas and Bim show severe lymphoproliferative disorders and marked resistance to cell death, indicating an important role of both death receptors and mitochondria in T cell death (26–28).

Earlier, it was noticed that T cell death mediated by increased [Ca2+]i, upon TCR stimulations can be mimicked by treatment with the ionophore ionomycin (29). In cell death induced by TCR stimulation, the relation between Ca2+ homeostasis and Bcl-2 family members such as Bax, Bak, Bcl-2, and Bcl-XL has been extensively studied (30–33). These studies indicate that ER Ca2+ homeostasis is important for T cell death by modulation of cytosolic free Ca2+, mitochondrial Ca2+ uptake, or Ca2+ entry. A relationship between Ca2+ entry and mitochondrial Ca2+ uptake in T cells has been implicated in numerous studies. T cells have been shown to accumulate Ca2+ in mitochondria upon elevation of [Ca2+]i, and reversely, mitochondrial Ca2+ buffering is important for prolonged CRAC channel activity, NFAT activation, and induction of cell death (34–37). Furthermore, it was shown that in T cells, mitochondria actively translocate toward the immunological synapse, accumulate Ca2+, and prevent Ca2+-induced mitochondrial Ca2+ uptake and reverse mitochondrial Ca2+ buffering is important for prolonged CRAC channel activity, NFAT activation, and induction of cell death (34–37). Furthermore, it was shown that in T cells, mitochondria actively translocate toward the immunological synapse, accumulate Ca2+, and prevent Ca2+-dependent inactivation of CRAC channels (38, 39). Although in vitro pharmacological studies suggest an important role of Ca2+ in cell death after TCR stimulation, the exact role of Orai1 in mitochondrial Ca2+ uptake and T cell death has not been investigated due to lack of an appropriate animal model. It is also puzzling how the same Ca2+ signaling pathway can play a critical role in various outcomes of proliferation, death, and tolerance of T cells. If the amplitude or frequency of Ca2+ entry governs the fate of T cells as proposed previously (40–42), the threshold levels of [Ca2+]i for such decisions need to be determined.

In this study, we investigated how different levels of Ca2+ entry influence death and survival of T cells in vitro and in vivo using Orai1+/− mice. We showed that Orai1-deficient T cells are strongly resistant to cell death due to reduction in death receptor- and mitochondria-mediated cell death mechanisms. Based on the results from recovery experiments by expression of Orai1 and constitutively active (CA)-NFAT in Orai1−/− T cells, we determined a crucial role of the Orai1–NFAT pathway in T cell death. Using Orai1-deficient cells and expression of a dominant-negative mutant of Orai1, we investigated how diverse levels of Ca2+ entry can influence T cell death. In support of the results from isolated T cells, Orai1+/− mice showed strong resistance to depletion of T cells upon injection of anti-CD3 Ab in vivo. In addition, survival of Orai1-deficient T cells was enhanced after transfer into immunocompromised hosts. To our knowledge, our results suggest for the first time a strong correlation between elevated [Ca2+]i, via Orai1 and T cell death/survival using a genetically manipulated animal model.

Materials and Methods

Mice

Orai1+/− mice were generated as previously described (14) and rederived using female ICR mice (Taconic Farms) at the University of California, Los Angeles. Orai1−/− mice generated from breeding of rederived Orai1−/− mice were verified by genotyping as well as measurement of SOCE. NOD-scid IL2Rγnull (NSG) mice were purchased from The Jackson Laboratory (stock number 005557). All animals were maintained in pathogen-free barrier facilities and used in accordance with protocols approved by the Institutional Animal Care and Use Committee at the University of California, Los Angeles.

T cell differentiation and stimulation

CD4+ T cells were purified from single-cell suspensions of spleens and lymph nodes of adult mice. Single-cell suspensions were prepared by mechanical disruption using a cell strainer (BD Biosciences). CD4+ T cells were isolated by magnetic sorting with CD4+ beads followed by treatment with the detach beads according to the manufacturer’s instructions (Invitrogen). For effector T cell differentiation, cells were stimulated with 1 µg/ml anti-CD3 Ab and 1 µg/ml anti-CD28 Ab (BD Pharmingen) for 48 h on a plate coated with 0.3 mg/ml goat anti-hamster (MP Biomedicals). CD4+ effector T cells were restimulated with anti-CD3 Ab with or without anti-CD28 Ab or with ionomycin or with or without PMA for cell death analysis.

T cell death and proliferation assays

Annexin V and 7-a minoactinomycin D (7-AAD) staining (BD Biosciences) were used to detect cell death followed by flow cytometry. For cell death experiments, T cells were cultured with 1 µM ionomycin and 20 µM PMA for 16 h, and CD4+ T cell were stimulated with variable concentrations of plate-coated anti-CD3 Ab for 6 h. Proliferation was analyzed by flow cytometric measurement of CFSE dilution. Purified T cells were labeled with 5 µM CFSE (Invitrogen) at 37°C for 10 min followed by extensive washing with PBS. CFSE-labeled T cells were stimulated with anti-CD3 and anti-CD28 for 48 h. For in vivo transfer experiments, CFSE-labeled naive CD4+ T cells purified from Orai1+/− and Orai1−/− mice were injected into the tail vein of 6–8-wk-old NSG mice. A week later, spleens were collected, dissociated into single-cell suspensions using cell strainers, and analyzed by flow cytometry.

RNA and real-time quantitative PCR

Total RNA was extracted from resting and stimulated CD4+ effector T cells using TRizol reagent (Invitrogen). cDNA was synthesized from total RNA using oligo(dT) primers and SuperScript III First-Strand cDNA synthesis kit (Invitrogen). Real-time PCR was performed using an iCycler IQ5 system (Bio-Rad) and SYBR Green dye (Sigma-Aldrich) using the following primer pairs: GAPDH (GU214026) forward (5′-TGGA-GATTGTGGCATCAACGACC-3′) and reverse (5′-TAGTACCCCG-ACATACTACGACACC-3′); FasL (NM_010177) forward (5′-CTGG-CGACTTGTGATTTGAC-3′) and reverse (5′-TTGTGAGTTGTCCATA-CCAG-3′); Bak (NM_007523) forward (5′-AACATGTCGTTGTTTGGT-3′) and reverse (5′-ACGACATGCAGC-3′); Bok (NM_016778) forward (5′-GACAGCTGTCCACAGCGCA-3′) and reverse (5′-TCCTAGCTCGGTGTTAC-3′); Bim (AF032461) forward (5′-GGGATACCATGGTGAACAAAGGA-3′) and reverse (5′-TTTCAGCCTGGGTTACAC-3′); Bim (NK_005788) forward (5′-ACATCTGACCTCTTTGGTG-3′) and reverse (5′-GCTTAGGACCAGGTGCT-3′); Gadd45α (NM_010763) forward (5′-AGTG-CAAACTGAGTCACCTTGG-3′) and reverse (5′-AACACCATGACCTGCTGTC-3′); Noxa (NM_009741) forward (5′-TACATCTGCTTGGTTGAGA-3′) and reverse (5′-GGATCCTGCTCCTCCTGAC-3′); and reverse (5′-GGATATGGCATCCTGGAGC-3′). The specificity of primers was examined by melt-curve analysis and agarose gel electrophoresis of products. The Journal of Immunology 3621

Immunoblot analysis

For immunoblot analyses, cells were lysed in a buffer containing 50 mM Tris (pH 7.5), 1% Triton X-100, 150 mM NaCl, 10% glycerol, and 1 mM EDTA. Samples were separated on a 10% or 12% SDS-PAGE. Proteins were transferred to nitrocellulose membranes and subsequently analyzed by immunoblot with relevant Abs. Abs used were anti-Axin (clone I-19; Santa Cruz Biotechnology), anti-Bim (clone H-191; Santa Cruz Biotechnology), anti-Bcl-2 (clone C-2; Santa Cruz Biotechnology), and anti-Bcl(X) (Cell Signaling...
Technology), anti-Bax (clone D2E11; Cell Signaling Technology), anti-NFAT1 (purified rabbit polyclonal Ab to the 67.1 peptide of NFAT1; a kind gift from Dr. Anjana Rao), and anti-Mcl-1 (Rockland). Chemiluminescence images were acquired using an Image Reader LAS-3000 LCD camera (FujiFilm). Band intensities were quantified using Multi Gauge V 3.0 software (FujiFilm).

Surface staining, measurement of mitochondrial membrane potential, and cell cycle analyses
All Abs used for flow cytometry were purchased from eBioscience, and staining was performed according to the manufacturer’s instructions. The following Abs were used for surface staining: anti-CD4 (FITC, clone GK1.5), anti-CD8 (PE, clone 53-6.7), anti-CD3 (PE, clone eBioH35-17.2), anti-CD19 (PerCP-Cy5.5; clone eBioID3), and anti-Fasl (PE; clone MFL3). For measurement of mitochondrial membrane potential, effector CD4+ T cells were stimulated with 3 μM ionomycin or 5 μg/ml plate-coated anti-CD3 Ab for 24 h, and then mitochondrial mass was measured by incubating cells with 50 nM MitoTracker Deep Red (Invitrogen) for 15 min at 37°C. For cell-cycle analysis, cells were stimulated with 1 μg/ml anti-CD3 Ab and 1 μg/ml anti-CD28 Ab (BD Pharmingen) for 24 or 48 h in a plate coated with 0.3 mg/ml goat anti-hamster, followed by incubation in a solution containing propidium iodide (50 nM). Effector CD4+ T cells were stimulated with 2 μg/ml anti-CD3 Ab for 18 h, and the surface expression of Fasl was determined by flow cytometry using anti-Fasl Ab. Samples were acquired with an FACS caliber (BD Biosciences) and analyzed with ModFit LT software (BD Biosciences) or FlowJo (Tree Star).

Retroviral transductions
Full-length cDNA of human WT Orai1 and mutants subcloned into bicistronic retroviral expression vector pMSCV-CITe-eGFP-PGK-Puro, which allows for simultaneous expression of Orai1, GFP, and a puromycin resistance gene, have been described previously (43). The cDNAs of WT NFAT1 (NFAT1C2) and CA NFAT1 were purchased from Addgene (contributed by Dr. Anjana Rao, La Jolla Institute for Allergy and Immunology, La Jolla, CA) and subcloned into the retroviral expression plasmid as described above. For retroviral transductions, Phoenix cells stably expressing gag-pol and ecotropic env (obtained from American Type Culture Collection) were transfected with plasmids to produce ecotropic, replication-incompetent retrovirus using the calcium phosphate transfection method. Virus-containing supernatant was collected at 2 and 3 d after transfection, and CD4+ T cells were transduced twice on days 1 and 3 after infection in the presence of 8 μg/ml polybrene. Transduction efficiencies were evaluated by GFP expression using flow cytometry and immunoblotting.

Injection of anti-CD3 Ab into mice
Mice were i.p. injected with PBS or 100 μg anti-CD3e (145-2C11) Ab (BioXCell). Mice were sacrificed for analysis after 2 d of injection. Thymocytes and lymphocytes were counted, and cell subset distributions were determined by flow cytometry analysis after surface staining with Abs to CD4, CD8, or CD19. CD4+ T cells were purified from single-cell suspensions of spleens and lymph nodes of mice as described above to determine their absolute numbers.

Bioluminescence imaging
Orai1+/+ and Orai1−/− T cells were injected into the tail vein of NSG mice. Before injection, isolated CD4+ T cells were transduced with retroviral vectors encoding a fusion protein of eGFP and firefly luciferase (44). Bioluminescence images were acquired at days 1, 7, 14, and 21 postinjection. Imaging was performed immediately after administration of n-luciferin by i.p. injection (3 mg/mouse) from a 15 mg/ml stock solution in PBS. A grayscale surface image of each mouse was obtained by focusing at a 20-cm field-of-view with 0.2 s exposure time. Overlapping bioluminescence images were acquired in the same field-of-view with 5 min exposure. Regions of interest were manually selected over the whole bodies.

Measurement of SOCE and mitochondrial Ca2+ uptake in T cells
A total of 1 × 10^7 T Cells were loaded with 1 μM fura 2-AM for 30 min at 25°C and attached to poly-l-lysine–coated coverslips for 15 min. Intracellular Ca2+ measurements were performed using essentially the same methods as recently described (49). Briefly, cells were mounted on a RC-20 closed-bath flow chamber (Warner Instrument, Hamden, CT) and analyzed on an Olympus IX51 epifluorescence microscope with Slidebook (Intelligent Imaging Innovations) imaging software. Fura 2 emission was detected at 510 nm with excitation at 340 and 380 nm, and the emission ratio (340/380) was acquired at every 5-s interval after background subtraction. For each experiment, 50–60 individual T cells were analyzed using OriginPro (Originlab) analysis software. [Ca2+]i was estimated from the relation [Ca2+]i = Kt(R - Rmin)/(Rmax - R - Rmin). Kt, Rmin, and Rmax were independently measured in control cells. For mitochondrial Ca2+ measurements, cells were loaded at 22 to 23°C for 45 min with 10 μM Rhod-2/AM in culture medium, washed with fresh medium, electroporated as reported (49) to remove the cytosolic rhod-2, washed with fresh medium twice, stored at room temperature for 10 min, and used immediately. Rhod-2 fluorescence was background subtracted and normalized to the initial fluorescence values.

NFAT nuclear-translocation assay
CD4+ T cells were cultured in nonpolarizing conditions until day 5 and stimulated for the indicated time with 10 nM PMA plus various concentrations of ionomycin at a density of 1 × 10^5 cells/well in a volume of 200 ul in 96-well plates. After stimulation, cells were attached to poly-l-lysine–coated 384-well plates in triplicates by centrifugation for 3 min at 200 × g. Cells were fixed with 2% paraformaldehyde, stained with anti-NFAT1 Ab and FITC-conjugated anti-rabbit (secondary Ab), and counterstained with the DNA-intercalating dye DAPI. Images were acquired with a 20× objective using the ImageXpress automated imaging system and analyzed by MetaXpress software (Molecular Devices). Nuclear translocation was assessed by calculation of a correlation of the intensity of NFAT1 staining and DAPI staining. T cells were considered to have nuclear NFAT1 when >80% of the FITC–anti-NFAT1 staining coincided with the fluorescence signal from DAPI. Each data point represents an average of at least 450 individual cells per well.

Statistical analysis
Statistical analysis was carried out using the two-tailed Student t test. Differences were considered significant when p values were <0.05.

Results
Orai1-deficient CD4+ effector T cells show strong resistance to TCR stimulation-induced cell death
To determine how reduced SOCE by ORAI1 deficiency influences T cell proliferation, first we examined the number of Orai1+/+ and Orai1−/− naive and effector CD4+ T cells after stimulation with plate-coated anti-CD3 and anti-CD28 Abs. Six days after stimulation, the number of Orai1−/− T cells did not show a significant difference with that of WT T cells (Fig. 1 A, 1st stimulation). However, after restimulation, the number of Orai1−/− effector T cells showed a robust increase, whereas that of WT effector T cells increased modestly (Fig. 1A, 2nd stimulation). Furthermore, Orai1-deficient T cells continuously responded to repetitive stimulations and expanded robustly, whereas WT T cells disappeared, possibly by undergoing cell death (Fig. 1A). Orai1-deficient T cells were capable of expanding up to at least 12 stimulations that we have tested (data not shown). Because the number of T cells is the summation of cell death and proliferation rate, we measured both the rate of proliferation and cell death in Orai1+/+ and Orai1−/− effector T cells. The measurements of the CFSE dilution rate together with cell cycle analysis showed a slightly enhanced proliferation rate and cell cycle progression of Orai1−/− T cells, especially at the early stages of 48 and 72 h poststimulation (Fig. 1B, Supplemental Fig. 1A). Surprisingly, we observed an ~2-fold increase in Orai1−/− live cell populations as determined by side and forward scatter after stimulation, suggesting that Orai1−/− T cells may exhibit resistance to cell death (Supplemental Fig. 1B). To directly measure cell death, we differentiated naive CD4+ T cells to effector cells and treated them with various concentrations of plate-coated anti-CD3 Ab for 6 h. Orai1−/− effector T cells showed a marked decrease in Annexin V+ or 7-AAD+ populations as compared with WT cells at all the concentrations of anti-CD3 Ab tested (Fig. 1C). As previously reported for human T cells lacking functional Orai1 (5), Orai1-deficient T cells showed a marked decrease in SOCE depending on gene dosage, with heterozygous cells showing intermediate levels of SOCE when compared with Orai1+/+ and Orai1−/− cells (Supplemental Fig. 2A, 2B).
FIGURE 1. ORAI1-deficient T cells are resistant to cell death induced by stimulation. A, Growth curves of Orai1+/+ (WT) and Orai1−/− (KO) T cells upon repetitive stimulations. Naive CD4+ T cells purified from 6-wk-old Orai1+/+ and Orai1−/− mice were stimulated with plate-bound anti-CD3 (1 μg/ml) and soluble anti-CD28 (1 μg/ml) Abs for 2 d. Five days poststimulation, cells were restimulated with plate-bound anti-CD3 (0.5 μg/ml) and soluble anti-CD28 (1 μg/ml) Abs for 24 h, and the cell number was counted daily (2nd stimulation). The same procedure was followed for consecutive 3rd and 4th stimulations. The graphs depict the average number of cells ± SD from three independent experiments. After the second stimulation, the control WT T cells were not counted because most of them died (indicated as ND). B, Measurement of the proliferation rate of Orai1+/+ and Orai1−/− effector T cells by CFSE labeling. Orai1+/+ and Orai1−/− effector T cells were labeled with CFSE and stimulated with plate-coated anti-CD3 and anti-CD28 Abs. At days 3 and 4 poststimulation, the proliferation rate was examined by flow cytometry. C, Effector T cells were restimulated with various concentrations of anti-CD3 Ab for 6 h, and cell death was assessed by Annexin V and 7-AAD staining. Representative data from five independent experiments are depicted.

(14). Together, these results suggest that the robust increase in the numbers of Orai1−/− effector T cells responding to repetitive stimulations is predominantly due to strong resistance to cell death with minor contributions from the increased proliferation rate.

FIGURE 2. Orai1−/− thymocytes are resistant to cell death induced by TCR stimulation. A, Thymocytes isolated from 6-wk-old Orai1+/+ (WT) and Orai1−/− (KO) mice were stimulated with PMA (20 ng/ml) and ionomycin (1 μM) for 16 h. Representative flow cytometric forward (FSC) and side (SSC) scatter profiles used to define live-cell populations are depicted. The bar graph on the right (depicted in Fig. 2A) shows average ± SD of live-cell populations determined by forward and side scatter profiles used to define live-cell populations from three independent experiments. B, Live cell gates (depicted in A) were further examined for apoptotic cells using Annexin V and 7-AAD staining. The bar graph on the right shows average ± SD of 7-AAD and/or Annexin V+ cell populations determined by forward and side scatter profiles used to define live-cell populations from three independent experiments. C, CD4+ and CD8+ T cell populations were analyzed from the thymus of 6–8-wk-old Orai1+/+ and Orai1−/− mice. Cells were analyzed by surface staining and flow cytometry. The left panel shows representative data from three independent experiments, whereas the average ± SD is shown in the bar graph on the right.
2C). These results suggest that Orai1-mediated Ca^{2+} entry is dispensable for development of T cells in the thymus; however, some of the thymocytes may escape cell death and accumulate with age. Our results in Fig. 2A–C are consistent with earlier observations indicating that Ca^{2+} entry in thymocytes set up a threshold for negative selection (42, 46, 48), although the defects in Orai1−/− mice are not strong enough to influence T cell development in young mice. We conclude that ORAI1 plays a major role in stimulation-induced cell death of peripheral T cells and also affects, to a lesser extent, cell death of thymocytes.

ORAI1 deficiency inhibits mitochondria-mediated cell death pathways in effector T cells

To elucidate the mechanism of strong resistance to cell death in Orai1−/− effector T cells (Fig. 1), we examined functions of major signaling pathways involved in induction of cell death, including mitochondrial Ca^{2+} uptake and the downstream transcriptional events. Ca^{2+} accumulates in mitochondria upon elevation of [Ca^{2+}]_{i} in T cells, and, reversely, Ca^{2+} buffering by mitochondria is important for sustained CRAC channel activity, suggesting a reciprocal relationship between CRAC channels and mitochondria (34–37). To examine mitochondrial functions in Orai1−/− T cells upon stimulation, we stained ionomycin or anti-CD3 Ab-stimulated Orai1+/+ or Orai1−/− T cells with Mitotracker-Deep Red 633, a dye that binds to actively respiring mitochondria. In WT cells, stimulation with ionomycin and anti-CD3 Ab increased the Mitotrackerlow population, indicative of cells lacking functional mitochondria (Fig. 3A). In contrast, this Mitotrackerlow population was substantially reduced in Orai1−/− cells, possibly due to reduced accumulation of Ca^{2+} in the mitochondria (Fig. 3A).

Previous studies have reported that location of mitochondria close to the site of Ca^{2+} entry is important to maintain sustained Ca^{2+} entry via CRAC channels in T cells (38, 39). Interestingly ORAI1 also translocates into the immunological synapse, resulting in localized Ca^{2+} influx at the immunological synapse (50, 51). Because Orai1 is a critical component of the CRAC channels, these results suggest that Ca^{2+} entry via Orai1 may serve as a route for mitochondrial Ca^{2+} uptake in T cells. To investigate this hypothesis, we measured mitochondrial Ca^{2+} accumulation in Orai1+/+ and Orai1−/− cells. Although control Orai1+/+ T cells showed a robust increase in mitochondrial [Ca^{2+}] upon store depletion, we observed minimal Ca^{2+} uptake by mitochondria from Orai1−/− T cells (Fig. 3B). Ca^{2+} ions accumulated in the mitochondria were from the extracellular medium, because we did not observe any mitochondrial Ca^{2+} accumulation in Ca^{2+}-free external solutions (Fig. 3B, right panel). These data indicate that in T cells, ORAI1 plays a crucial role in mitochondrial Ca^{2+} accumulation and thereby in the mitochondria-mediated cell death pathway.

ORAI1 deficiency influences gene expression patterns of pro- and antiapoptotic genes

Death receptor-mediated Fas/FasL signaling pathway plays a critical role in T cell death after stimulation (20–22, 52–54), and it has been shown that expression of FasL is regulated by the Ca^{2+}–NFAT pathway using NFAT-deficient cells and microarray analysis of ionomycin-treated primary T cells (23, 55). In addition, non–death receptor-mediated cell death pathways involving Bcl-2 family members (e.g., Bcl-2 and Bcl-XL) and the BH3-only proteins (e.g., Bad, Bik, Bim, and Noxa) are also critical for survival and death of T cells (20, 22, 25). We hypothesized that reduced cell death of Orai1−/− T cells may involve altered gene expression of key apoptotic molecules affecting the death receptor- or mitochondria-mediated cell death pathways. Indeed, deficiency of ORAI1 dramatically decreased the mRNA expression levels of FasL, not Fas, as judged by measurements of FasL transcripts, which is consistent with the decrease of surface-expressed FasL proteins in Orai1−/− T cells (Fig. 4A). However, lower expression of FasL in Orai1−/− T cells may not be the sole contributor for their high resistance to cell death because T cells from Fasl−/− mice lacking expression of Fas, therefore harboring disabled Fas/FasL signaling, did not show the same growth pattern upon repetitive stimulation as observed in Orai1−/− T cells (Supplemental Fig. 3). These results suggest that the impact of ORAI1 deficiency can be broader than just a decrease in expression of Fas ligand. Hence, we examined expression levels of various molecules known to be involved in T cell death. Our analysis showed that the mRNA expression levels of a proapoptotic factor Noxa was severely impaired in Orai1−/− T cells, whereas that of Bim was mildly influenced (Fig. 4B). The transcript levels of other proapoptotic molecules such as Bok and Bak also showed reduced expression in Orai1−/− T cells, whereas the mRNA expression levels of the antia apoptotic molecule, Bcl-2, was not affected. Correspondingly, the protein levels of these proapoptotic molecules including Bok and Bax were also reduced in Orai1−/− effector T cells while Bim was marginally increased in the absence of ORAI1 (Fig. 4C). The protein levels of Noxa could not be tested due to lack of the Ab that can detect the murine Noxa protein (56). Among antiapoptotic candidates, Mcl-1 protein levels were increased in ORAI1-deficient T cells, whereas Bcl-2 levels remained unaffected, which is consistent with the mRNA analyses (Fig. 4C). Recently, it was proposed that the ratio of Noxa to Mcl-1 is important for setting up a threshold for cell death induced by TCR stimulation (56). T cells lacking Noxa (Pmaip1−/−) show a survival advantage.
in vitro, resulting in an increase in the number of effector and memory T cells in vivo (S6). Our results show a novel role of ORAI1-mediated Ca^{2+} entry in regulating the ratio of Noxa to Mcl-1. A proportional relationship between the intracellular Ca^{2+} levels and cell death in T cells. ORAI1 deficiency reduces nuclear translocation of NFAT upon stimulation and resistance of ORAI1-deficient T cells to cell death is recovered by expression of CA-NFAT.

Next, we sought to determine the correlation between intracellular Ca^{2+} and induction of cell death by expressing various mutants of ORAI1 in WT and ORAI1-deficient T cells. The goals of these experiments were 2-fold. First, we wanted to verify whether expression of ORAI1 in ORAI1-deficient T cells can rescue their reduced cell death phenotype. Second, we wanted to examine whether a further reduction in SOCE in ORAI1-deficient cells can enhance their resistance to cell death. We chose ORAI1E106Q, a pore mutant of ORAI1 that has a dominant-negative effect on ORAI1-mediated Ca^{2+} entry and activation of SOCE in T cells (6) and ORAI1R91W, a mutant identified in SCID patients that results in inactive CRAC channels (5). Expression of ORAI1E106Q and ORAI1R91W strongly inhibited SOCE in WT T cells.
A. Nuclear translocation of endogenous NFAT was examined by immunocytochemistry in WT and Orai1^{−/−} CD4⁺ T cells. Effector T cells were treated with different concentrations of ionomycin for 2 h. Cells were fixed, permeabilized, and stained with anti-NFAT1 (NFATc2) Ab followed by FITC-conjugated secondary Ab (green) and counterstaining with DAPI for nuclei (blue). Images were acquired with a 20× objective. B. The percent of cells containing nuclear NFAT in Orai1^{+/+} and Orai1^{−/−} T cells. Cells were stimulated with ionomycin (1 μM) for different time points, fixed, and stained with anti-NFAT Ab and DAPI. C, Orai1^{+/+} and Orai1^{−/−} effector T cells were stimulated with soluble anti-CD3 Ab (20 μg/ml) or ionomycin (1 μM) for 30 min and harvested for immunoblotting to examine the phosphorylation status of endogenous NFAT1. The cells at the resting condition were pretreated with cyclosporin A (CsA; 1 μg/ml) or DMSO for 30 min before stimulation. D, Naive T cells were stimulated with plate-bound anti-CD3 and anti-CD28 Abs and transduced with the retroviruses encoding WT NFAT1 (WT-NFAT) or CA-NFAT1 (CA-NFAT). After 4 d, T cells were restimulated with plate-coated anti-CD3 and anti-CD28 Abs and harvested for immunoblotting to examine the phosphorylation status of endogenous NFAT1. The cells at the resting condition were pretreated with cyclosporin A (CsA; 1 μg/ml) for 30 min before stimulation. E. The percent of cells containing nuclear NFAT in WT and Orai1^{−/−} T cells. Cells were stimulated with ionomycin (1 μM) for different time points, fixed, and stained with anti-NFAT Ab and DAPI. F, Orai1^{+/+} and Orai1^{−/−} effector T cells were stimulated with soluble anti-CD3 Ab (20 μg/ml) or ionomycin (1 μM) for 30 min and harvested for immunoblotting to examine the phosphorylation status of endogenous NFAT1. The cells at the resting condition were pretreated with cyclosporin A (CsA; 1 μg/ml) or DMSO for 30 min before stimulation. G, Naive T cells were stimulated with plate-bound anti-CD3 and anti-CD28 Abs and transduced with the retroviruses encoding WT NFAT1 (WT-NFAT) or CA-NFAT1 (CA-NFAT). After 4 d, T cells were restimulated with plate-coated anti-CD3 and anti-CD28 Abs and harvested for immunoblotting to examine the phosphorylation status of endogenous NFAT1. The cells at the resting condition were pretreated with cyclosporin A (CsA; 1 μg/ml) for 30 min before stimulation. H, The percent of cells containing nuclear NFAT in WT and Orai1^{−/−} T cells. Cells were stimulated with ionomycin (1 μM) for different time points, fixed, and stained with anti-NFAT Ab and DAPI. I, Orai1^{+/+} and Orai1^{−/−} effector T cells were stimulated with soluble anti-CD3 Ab (20 μg/ml) or ionomycin (1 μM) for 30 min and harvested for immunoblotting to examine the phosphorylation status of endogenous NFAT1. The cells at the resting condition were pretreated with cyclosporin A (CsA; 1 μg/ml) or DMSO for 30 min before stimulation. J, Naive T cells were stimulated with plate-bound anti-CD3 and anti-CD28 Abs and transduced with the retroviruses encoding WT NFAT1 (WT-NFAT) or CA-NFAT1 (CA-NFAT). After 4 d, T cells were restimulated with plate-coated anti-CD3 and anti-CD28 Abs and harvested for immunoblotting to examine the phosphorylation status of endogenous NFAT1. The cells at the resting condition were pretreated with cyclosporin A (CsA; 1 μg/ml) for 30 min before stimulation.

t cells (Fig. 6A, left panel). These data showed that Orai1^{R91W} in addition to Orai1^{E106Q} also has a strong suppression effect on the endogenous CRAC channel activity when expressed in WT T cells. In Orai1-deficient T cells, expression of WT Orai1 recovered SOCE, whereas that of Orai1^{E106Q} and Orai1^{R91W} further suppressed the residual SOCE in these cells, most likely by multimerizing with other ORAI proteins (Fig. 4A, right panel).

Next, we examined the effect of expression of these mutants on cell death. As expected, in WT T cells, expression of Orai1^{R91W} reduced cell death upon anti-CD3 stimulation (Fig. 6B, top two panels). Interestingly, in Orai1-deficient T cells, expression of WT Orai1 recovered cell death to the levels similar to WT T cells, whereas expression of Orai1^{R91W} further suppressed cell death (Fig. 6B, bottom two panels). These results indicate a direct correlation between intracellular Ca²⁺ accumulation via Orai1 and resistance to cell death, with reduction in SOCE proportionally enhancing resistance to cell death.

Orai1-deficient T cells showed resistance to cell death and enhanced survival in vivo

T cells from Orai1^{−/−} mice showed a strong resistance to cell death upon stimulation in vitro. To examine if this was the case in vivo, we injected anti-CD3 Ab into Orai1^{+/+} and Orai1^{−/−} mice and examined depletion of T cells. In the lymph nodes of Orai1^{+/+} mice, CD4⁺ population decreased upon injection of anti-CD3 Ab; however, the depletion was much less in Orai1^{−/−} mice (Fig. 7A, 7B). Depletion of CD8⁺ cells in control mice was more pronounced than CD4⁺ cells and even CD8⁺ cells survived better in Orai1^{−/−} mice after anti-CD3 Ab injection (Fig. 7B).

The number of thymocytes in anti-CD3 Ab-injected Orai1^{+/+} control mice reduced markedly (25% of that in PBS-injected mice), whereas that in Orai1^{−/−} mice decreased less (50% of that in PBS-injected mice) (Fig. 7C), recapitulating in vitro resistance to cell death (Fig. 2A, 2B). These results further support the idea that Orai1-mediated cell death upon stimulation can be a common mechanism for CD4⁺ and CD8⁺ T cells in the peripheral lymphoid organs as well as thymocytes.

To further test the hypothesis that reduced cell death of Orai1^{−/−} T cells may benefit T cell survival in vivo, we transferred Orai1^{+/+} and Orai1^{−/−} T cells into immunocompromised NSG mice. After transfer of the same number of CFSE-labeled cells (<i>x</i> 10⁶) into NSG recipients by i.v. injection, we detected only 0.3% of the total splenocytes of the recipient mice as Orai1^{+/+} CFSE-positive cells after 1 wk, whereas 3-fold more Orai1^{−/−} CFSE-positive cells were detected (0.9% of total splenocytes; Fig. 7D). These results were confirmed independently by noninvasive imaging of transferred Orai1^{+/+} and Orai1^{−/−} CD4⁺ T cells expressing firefly luciferase. Under identical conditions of isolation, transduction, and transfer, Orai1^{−/−} T cells showed enhanced survival over a period of 3 wk when compared with Orai1^{+/+} T cells (Fig. 7E). Taken together, these results suggest that deficiency of Orai1 antagonizes cell death and improves survival of T cells in vitro and in vivo.

Discussion

Ca²⁺ ions play a pivotal role in cell proliferation and death by controlling a plethora of signaling pathways (40). Although in vitro pharmacological studies suggest a direct role of Ca²⁺ entry and the
expression of WT ORAI1 and suppression of Ca2+ entry and cell death by expression of ORAI1R91W. A, WT or Orai1−/− T cells were transduced with retroviruses encoding cDNAs for WT or ORAI1 mutants. CRAC channel activity was determined after store depletion with thapsigargin (TG) in the presence of extracellular solution containing 2 mM Ca2+. Each trace represents average ± SEM from 50–60 individual cells. B, Naive T cells were stimulated with plate-bound anti-CD3 and anti-CD28 Abs and transduced with the viruses encoding WT ORAI1 (WT-ORAI1) or the R91W mutant (ORAI1R91W). After 4 d, T cells were restimulated with plate-coated anti-CD3 Ab (1 µg/ml) for 6 h, and cell death was assessed by Annexin V and 7-AAD staining. Representative data from three independent experiments are depicted. In these experiments, only GFP+ T cells were selected for analysis.

detailed molecular mechanism have not been investigated due to a lack of the molecular identity and an appropriate animal model. In this study, we reaffirmed the important role of [Ca2+]i for T cell survival.

FIGURE 6. Recovery of activated T cell death in Orai1−/− T cells by expression of WT ORAI1 and suppression of Ca2+ entry and cell death by expression of ORAI1R91W. A, WT or Orai1−/− T cells were transduced with retroviruses encoding cDNAs for WT or ORAI1 mutants. CRAC channel activity was determined after store depletion with thapsigargin (TG) in the presence of extracellular solution containing 2 mM Ca2+. Each trace represents average ± SEM from 50–60 individual cells. B, Naive T cells were stimulated with plate-bound anti-CD3 and anti-CD28 Abs and transduced with the viruses encoding WT ORAI1 (WT-ORAI1) or the R91W mutant (ORAI1R91W). After 4 d, T cells were restimulated with plate-coated anti-CD3 Ab (1 µg/ml) for 6 h, and cell death was assessed by Annexin V and 7-AAD staining. Representative data from three independent experiments are depicted. In these experiments, only GFP+ T cells were selected for analysis.

that the [Ca2+]i levels determine cell death or maturation of thymocytes, depending on avidity of Ag–TCR interactions and the strength of costimulation (e.g., CD28) (42, 46–48). Together, these results suggest that high [Ca2+]i, through ORAI1, may be commonly used to control the negative selection process in the thymus and to maintain the size of the T cell pool by playing a negative role in T cell survival.

FIGURE 7. Orai1−/− T cells are resistant to anti-CD3 Ab-induced cell death and show enhanced survival in vivo. A, Six-week-old Orai1+/+ and Orai1−/− mice were injected i.p. with PBS or anti-CD3 Ab (100 µg). Forty-eight hours postinjection, percentages of CD4+, CD8+, and CD19+ cell populations from the lymphoid organs were determined by surface staining and flow cytometry. Data represent the results from three independent experiments. B, Relative percentage of CD4+ and CD8+ cell populations from the lymph nodes of Orai1+/+ and Orai1−/− mice injected with PBS or anti-CD3 Ab. Bar graph represents percentage of purified CD4+ and CD8+ T cells from PBS and anti-CD3 Ab-injected mice. Data represent average ± SD from three 6-wk-old mice. The p values were determined using paired Student t test. C, Total thymocyte cell numbers from 6-wk-old Orai1+/+ and Orai1−/− mice injected with PBS or anti-CD3 Ab (100 µg) for 48 h. Data represent average ± SD from three 6-wk-old mice. D, Purified CD4+ T cells from 6-wk-old Orai1+/+ and Orai1−/− mice were labeled with CFSE and adoptively transferred i.v. into NSG recipient mice. Seven days after transfer, survival of transferred CFSE+ T cells was examined from the spleen of the host mice by flow cytometry. The bar graph shows averages ± SD from two independent experiments with three mice in each experiment. E, CD4+ T cells purified from Orai1+/+ and Orai1−/− mice injected with PBS or anti-CD3 Ab (100 µg) were retrovirally transduced with fluorescent luciferase reporter genes, and luciferase expression was determined at 7, 14, and 21 d posttransfer as indicated. The graph on the right depicts average ± SD of normalized luciferase intensity from three independent experiments with three mice in each experiment.

Downloaded from http://www.jimmunol.org/ by guest on May 1, 2017
Our and other groups’ observations showed that CRAC channels are crucial for the function of effector T cells such as cytokine production (Supplemental Fig. 4) (13, 14). These data together with the SCID symptoms of human patients harboring mutations in Orai1 or STIM1 genes demonstrate a positive role of CRAC channels in the immune response (5, 12, 57). In this study, we showed that Orai1 plays a bona fide role in stimulation-induced cell death, further emphasizing the role of Orai1 in the diverse functions of effector T cells in addition to cytokine production (Fig. 1). So far, none of the data from the patients and mice harboring deletion or mutations of Orai1 and STIM1 genes indicates any severe defect in development or homing of T cells in the peripheral lymphoid organs. However, these results do not rule out the role of Ca2+ signaling in T cell development or homing because it is still possible that Ca2+ plays a role via entering through alternate routes (e.g., ORAI2, ORAI3, or other non–store-operated Ca2+ channels) instead of ORAI1. In support of this idea, reduction of SOCE in Orai1-deficient naive T cells was much less than that in effector T cells, and ORAI2 instead of Orai1 was abundantly expressed in naive T cells as shown by mRNA expression analysis (13, 14).

The role of CRAC channels in T cell proliferation is more complex than in cytokine production or cell death because it differs significantly in various mouse models. In the current work, we showed that Orai1−/− T cells do not have a defect in proliferation (Fig. 1). Instead, the absence of Orai1 enhanced the proliferation rate at the early stage of activation. A recent report examining T cell functions of knockin mice harboring a point mutation at position 93 (ORAI1E106Q) to recapitulate the phenotype observed in SCID patients (Orai1R91W) showed markedly reduced proliferation of Orai1R91W effector T cells (58). It is known that Orai1 can form heteromultimers with other Orai family members (6), and human Orai1R91W mutant has been shown to function in a dominant negative manner in an Orai1-STEM1 overexpression system (59). We also observed suppression of SOCE in WT and Orai1−/− T cells upon expression of Orai1R91W (Fig. 6A). Therefore, it is possible that the levels of SOCE in T cells isolated from Orai1R91W/R91W mice are much lower than those of Orai1−/− T cells, which may not reach the minimum requirement of [Ca2+]i to promote proliferation of T cells. Consistent with these observations, STEM1-deficient T cells showed normal proliferation with marginal differences in vitro and in vivo after immunization, whereas T cells lacking both STEM1 and STEM2 proliferate to a much lesser extent (18, 19). Together, these results suggest that T cell proliferation does not require high [Ca2+]i levels, and the threshold of [Ca2+]i, necessary for T cell proliferation seems to be much lower than that for cytokine production or cell death.

A direct correlation between the [Ca2+]i levels and activated T cell death was further verified by recovery experiments in Orai1-deficient T cells. Expression of Orai1 in Orai1-deficient T cells almost completely recovered normal cell death levels in addition to SOCE (Fig. 6). Interestingly, we were able to suppress T cell death in WT T cells by expression of the dominant-negative mutant of Orai1, Orai1E106Q, and Orai1R91W (Fig. 6B and data not shown). Expression of Orai1R91W in Orai1-deficient T cells further suppressed the residual levels of SOCE and cell death induced by stimulation (Fig. 6B). Together, these results indicate that the degree of stimulation-induced T cell death is directly proportional to [Ca2+]i levels regulated via Orai1. Furthermore, our data support a model in which excessive Ca2+ entry mediated by Orai1 supports death programs mediated by multiple cell death pathways, including a transcriptional event mediated by NFAT and nontranscriptional events of mitochondrial Ca2+ uptake. This conclusion is supported by the following observations. First, Orai1−/− T cells showed reduced expression of proapoptotic molecule FasL that is known to be regulated by Ca2+/NFAT signaling. Second, our results showed [Ca2+]i-mediated regulation of the ratio of Noxa to Mcl-1, which is recently identified to set a threshold for T cell death (Fig. 4) (56). Finally, Orai1−/− T cells showed severely reduced mitochondrial Ca2+ uptake and thereby reduced mitochondria-mediated cell death (Fig. 3). Because the NFAT family of transcription factors are direct downstream targets of Ca2+-CaM/calcineurin pathway, our results together with those of NFAT family-deficient mice suggest that excessive [Ca2+]i, turns on cell death transcriptional programs, many of which are regulated by NFAT (23, 55). It is also known that predominant accumulation of nuclear NFAT can turn on transcriptional programs of a status of T cell tolerance termed anergy (23). Orai1-deficient T cells were not anergic because proliferation and cell cycle progression were actively induced upon repetitive stimulations (Fig. 1A). Therefore, the threshold levels of [Ca2+]i for anergy induction may be higher than those observed in Orai1−/− T cells. Future studies in Orai1−/− T cells examining the expression levels or activities of anergy-inducing factors including E3 ubiquitin ligases (Cbl-b, Itch, or GRAIL) and caspase 3 that cleaves/degrades TCR signaling molecules and the zinc finger transcription factor Ikaros that suppresses IL-2 transcription would validate the role of Orai1 in anergy (60, 61).

The rise in [Ca2+]i, triggered by TCR stimulation plays a pivotal, positive role in T cell activation, cytokine production, and proliferation. However, symptoms of the patients with nonfunctional CRAC channels, especially those with mutations in STIM1 gene, are perplexing because in addition to a defect in activation of immune cells as exemplified by SCID symptoms, they also display lymphoproliferative disorders demonstrated by lymphadenopathy, splenomegaly, and elevated memory T cell population (12). In addition to the proposed mechanism of reduced regulatory T cell population (18), our observations of resistance to cell death can serve as an alternate explanation for the lymphoproliferative symptoms of SCID patients. Our findings demonstrate a crucial role of high [Ca2+]i in diverse immune tolerance mechanisms such as negative selection, induction of cell death, and T cell survival. Our and other groups’ results point toward different threshold levels of [Ca2+]i, to trigger various functions of T cells including proliferation, anergy, or death. A comprehensive study of animal models with various levels of CRAC channel activity can facilitate further understanding of how different amplitudes of Ca2+ entry influence diverse activities of T cells.

Acknowledgments
We thank Dr. Talal Chatila for critical comments on the manuscript, Drs. Ram Raj Singh, Steven Bensinger, David Brooks, and Dong-Sung An for sharing animals and active discussions, and Drs. Caius Radu, David Stout, and Seungmin Hwang for help with bioluminescence imaging. We also thank Drs. Anjana Rao, Robb MacLean, Peng Zhao, Peipei Ping, David Liem, and Reuben Kim for sharing Abs and reagents.

Disclosures
The authors have no financial conflicts of interest.

References

Downloaded from http://www.jimmunol.org/ by guest on May 1, 2017

Supplementary Figures

Supplementary Figure 1 Cell cycle analysis of ORAI1-deicient T cells after stimulation

(A) Cell cycle progression was analyzed using propidium iodide staining of Orai1\(^{+/+}\) and Orai1\(^{-/-}\) T cells at 24 and 48 hours post stimulation with anti-CD3 and anti-CD28 antibodies. A representative of three independent experiments is shown. P values were determined using paired Student’s t-test.

(B) Live cell gating using forward/side scattering of WT and ORAI1-deficient (KO) effector T cells after stimulation with plate-bound anti-CD3 and anti-CD28 antibodies. Isolated naive T cells were stimulated, cultured for five days, and re-stimulated. These cells were analyzed for CSFE-labeling experiments in Fig. 1B.

Supplementary Figure 2 Store-operated Ca\(^{2+}\) entry in CD4\(^+\) T cells from Orai1\(^{+/+}\), Orai1\(^{+/-}\), and Orai1\(^{-/-}\) mice

(A) CRAC channel activity in effector CD4\(^+\) T cells was determined after store depletion with thapsigargin (TG) in the presence of extracellular solution containing 0.5 and 2 mM Ca\(^{2+}\). The bar graph on the right shows average ± s.e.m. from three independent experiments.

(B) CRAC channel activity in effector CD4\(^+\) T cells measured after store depletion by cross-linking of anti-CD3 antibody. Cells were pretreated with biotin-conjugated anti-CD3 antibody and streptavidin was added at the indicated time points to induce cross-linking. The bar graph on the right shows average ± s.e.m. from three independent experiments.

Supplementary Figure 3 Proliferation of T cells from Faslpr mice upon repetitive stimulations

Naïve CD4\(^+\) T cells purified from control (MRL) and MRL-Faslpr mice were stimulated with plate-bound anti-CD3 (1 μg/ml) and soluble anti-CD28 (1 μg/ml) antibodies for 2 days. At day 6 post stimulation, T cells were restimulated with plate-bound anti-CD3 (0.5 μg/ml) and soluble anti-CD28 (1 μg/ml) antibodies for 24 hours and counted for live cells. The same condition was used for successive stimulation of Faslpr T cells.

Supplementary Figure 4 cytokine production of ORAI1-deficient effector CD4\(^+\) T cells

Naïve CD4\(^+\) T cells purified from Orai1\(^{+/+}\) and Orai1\(^{-/-}\) mice were stimulated with plate-bound anti-CD3 (1 μg/ml) and soluble anti-CD28 (1 μg/ml) antibodies for 2 days. At day 6 post stimulation, T cells were restimulated with plate-bound anti-CD3 (1 μg/ml) and soluble anti-CD28 (1 μg/ml) antibodies for 6 hours, fixed, and intracellularly stained for IL-2 and IFN-γ.
A

WT KO

24 hrs

S-G2/M

6.32%

11.1%

24 hrs

48 hrs

48.3%

59.5%

Cells

DNA content

% Cells (S-G2/M)

P < 0.001

P < 0.0002

% Cells (G1)

24 hrs

48 hrs

P < 0.001

P < 0.002

B

Effector T cells: Stimulation with anti-CD3/CD28 Ab

Day 0

Day 3

Day 4

WT

61.6

44.5

42.6

KO

74

87.3

79

Suppl Fig. 1
Suppl Fig. 2
Suppl Fig. 3

2nd stimulation
- Control
- Fas^{pr}

3rd stimulation

4th stimulation

Days after stimulation

T cells (x10⁶)

Days after stimulation

Days after stimulation
Suppl Fig. 4