CD134 Plus CD137 Dual Costimulation Induces Eomesodermin in CD4 T Cells To Program Cytotoxic Th1 Differentiation

J Immunol 2011; 187:3555-3564; Prepublished online 31 August 2011; doi: 10.4049/jimmunol.1101244

http://www.jimmunol.org/content/187/7/3555

References

This article cites 72 articles, 43 of which you can access for free at:

http://www.jimmunol.org/content/187/7/3555.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:

http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:

http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:

http://jimmunol.org/alerts

The Journal of Immunology is published twice each month by

The American Association of Immunologists, Inc.,
1451 Rockville Pike, Suite 650, Rockville, MD 20852

Copyright © 2011 by The American Association of Immunologists, Inc. All rights reserved.

Print ISSN: 0022-1767 Online ISSN: 1550-6606.
CD134 Plus CD137 Dual Costimulation Induces Eomesodermin in CD4 T Cells To Program Cytotoxic Th1 Differentiation

Harry Z. Qui,* Adam T. Hagymasi,* Suman Bandyopadhyay,* Marie-Clare St. Rose,* Raghunath Ramanarasimhaiah,* Antoine Ménoret,* Robert S. Mittler,† Scott M. Gordon,‡,§ Steven L. Reiner,‡,§ Anthony T. Vella,* and Adam J. Adler*

Cytotoxic CD4 Th1 cells are emerging as a therapeutically useful T cell lineage that can effectively target tumors, but until now the pathways that govern their differentiation have been poorly understood. We demonstrate that CD134 (OX40) costimulation programs naive self- and virus-reactive CD4 T cells to undergo in vivo differentiation into cytotoxic Th1 effectors. CD137 (4-1BB) costimulation maximized clonal expansion, and IL-2 was necessary for cytotoxic Th1 differentiation. Importantly, the T-box transcription factor Eomesodermin was critical for inducing the cytotoxic marker granzyme B. CD134 plus CD137 dual costimulation also imprinted a cytotoxic phenotype on bystander CD4 T cells. Thus, to our knowledge, the current study identifies for the first time a specific costimulatory pathway and an intracellular mechanism relying on Eomesodermin that induces both Ag-specific and bystander cytotoxic CD4 Th1 cells. This mechanism might be therapeutically useful because CD134 plus CD137 dual costimulation induced CD4 T cell-dependent tumoricidal function in a mouse melanoma model. The Journal of Immunology, 2011, 187: 3555–3564.

Copyright © 2011 by The American Association of Immunologists, Inc.

Abbreviations used in this article: AcH3, acetylated histone H3; BM, bone marrow; ChIP, chromatin immunoprecipitation; Cx, threshold cycle; DCo, dual costimulation; Eomes, Eomesodermin; GzmB, granzyme B; HA, hemagglutinin; MFI, mean fluorescence intensity; SEA, staphylococcal enterotoxin A; Tg, transgenic; Treg, regulatory; WT, wild-type.

Received for publication April 28, 2011. Accepted for publication August 1, 2011.

This work was supported by National Institutes of Health Grants RO1 CA109339 (to A.J.A. and A.T.V.), R56 AI057441 (to A.J.A.), and T32 AI07080 (to H.Z.Q.).

Address correspondence and reprint requests to Dr. Adam J. Adler, Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030-3710. E-mail address: adler@up.uconn.edu

www.jimmunol.org/cgi/doi/10.4049/jimmunol.1101244

The Journal of Immunology
agonists are currently being developed separately as cancer therapeutics in human clinical trials (26, 27), and our current findings suggest that the application of DCo might be particularly effective in controlling disease progression because it can engage both CD8 and CD4 T cells that directly target tumors.

Materials and Methods

Mice, adoptive transfer, and tumor challenge

TCR transgenic (Tg) CD4 T cells specific for an I-E

\(^d\)-restricted epitope deriving from influenza (PR8 strain) hemagglutinin (HA) (\(^{15}\)SFER-FEIPFK\(^{126}\)) prepared from CD8-depleted lymph nodes of 6.5 TCR Tg mice (28) on the B10.D2 (H-2\(^b\)) Thy-1.1 background were adoptively transferred into congenic Thy1.2 Tg B10.H2-HA mice expressing HA in several parenchymal tissues (self-HA mice, 137 founder line (29)) or Thy1.2-\(^{\text{ng}}\) Tg (wild-type [WT]) B10.D2 mice infected with a recombinant vaccinia virus at 10\(^6\) PFU and treated with or without CD134 and CD137 agonists were recovered from spleens, as previously described (24, 30). For experiments using staphyllococcal enterotoxin A (SEA), WT C57Bl/6 (B6) mice were treated with 1 \(\mu\)g SEA with or without CD134 plus CD137 agonists, and spleens harvested on day 5 to analyze the response of SEA-reactive Thy1.2 and nonreactive Thy1.1 Tg CD4 T cells. Mice with targeted null mutations in the Il2 (31) and Tbx21 (T-bet) (32) genes on the B6 background were purchased from The Jackson Laboratory and backcrossed onto the 6.5 TBL10.D2 Thy1.1 background. Thy1.1 B6 mice were also purchased from The Jackson Laboratory, Thy1.2 B6 conditional Eomes \(^{-}\)mice (Eomes \(^{-}\)mice (33) and TCR Tg mice (34) were previously described. The Thy1.2-\(^{\text{ng}}\) Tg CD4 T cells adaptively transferred into Thy1.2 recipient mice was 10\(^6\) unless otherwise indicated, and their functional responses were analyzed following recovery from recipient spleens at the indicated times, as previously described (24, 30, 35). In experiments in which WT and gene-targeted TCR Tg CD4 T cells were cotransferred, the two populations were distinguished through homozgyous versus heterozygous expression of Thy1.1. Agonistic anti-CD137 (25 \(\mu\)g) and/or anti-CD134 (50 \(\mu\)g) mAbs were administered i.p., as previously described, (19, 24). As indicated, WT and IL-2-\(^{-}\) TCR Tg CD4 T cells were depleted of CD4\(^{\text{high}}\) memory cells prior to adoptive transfer using biotinylated anti-CD44 mAb and streptavidin-conjugated magnetic beads (Dynal).

Bone marrow (BM) chimeras were generated, as previously described (35), with the following modifications. Lethally irradiated WT B10.D2 Thy1.1 Tg B6 mice were recipricated with 2 \(\times\) 10\(^5\) BM cells from WT B10.D2 Thy1.2 Tg mice. One group (n = 11) was untreated; a second group (n = 11) was treated with p.o. Sendai virus following 24-h stimulation with plate-bound anti-CD3 mAb. GzmB expression was quantitated by flow cytometry and real-time RT-PCR, as previously described (24, 35). Briefly, after reverse transcribing cDNA, T-bet, Eomes, perforin 1, and GzmB mRNAs were quantitated by first normalizing for input sample amounts by calculating the difference in threshold cycle (C\(_T\)) values relative to hypoxanthine phosphoribosyltransferase (\(\Delta\Delta C_{T}\)), and then using the \(\Delta\Delta C_T\) method to calculate the ratio between experimental samples and a representative naive CD4 T cell sample. Primers to T-bet, Eomes, and hypoxanthine phosphoribosyltransferase were previously described (24, 35). Primers to GzmB were forward, 5'-AATTGGAAGC-CAGGAGATGTTGC-3' and reverse, 5'-CCGAAAGGGAGACGCGTTG-GTCTT-3'. Primers to perforin 1 were forward, 5'-GAGCCCTGCA-ACATTACTGGA-3' and reverse, 5'-ACATCTCAAAGTCATCTT-3'.

Real-time quantitative SYBR Green PCR-based chromatin immunoprecipitation (ChIP) to measure acetylated histone H3 (AcH3) within the Ifng promoter was performed, as previously described (24, 35), with the following modifications. DNA immunoprecipitated from fixed and sheered chromatin samples using anti-AcH3 was amplified using primers specific to the various gene promoters. The amount of AcH3 at each promoter was first normalized for input sample amounts by normalizing to the G6PD promoter (\(\Delta\Delta C_{T}\)) and then calculating the fold difference (\(\Delta\Delta C_{T}\)) relative to naive TCR Tg CD4 T cell. Primers corresponding to Ifng (35) and G6PD (24) were previously described. Primers to Eomes were forward, 5'-ACCATGCAGACACTTCAA-CCC-3' and reverse, 5'-TATATTGGACCGGTGGCCGTC-3'. Primers to Prf1 were forward, 5'-CAGGGCAGAAGATGTAATGATG-3' and reverse, 5'-CTCTCCTCTCTTTACCTAAGTC-3'. Primers to GzmB were forward, 5'-ACTAGATGTGCACTTGTTGCTG-3' and reverse, 5'-ATCCTCCCCAGAAGGCCGCTAGG-3'.

Degranulation assay

Spleen samples were cultured for the indicated times with either 100 \(\mu\)g/ml HA peptide or 5 \(\mu\)g/ml soluble anti-CD3 mAb. FITC-conjugated mAbs to both CD107a and CD107b were present throughout the culture. CD107a/b fluorescence was subsequently analyzed on CD4\(^{\text{Thy1.1}}\) (specific) and CD4\(^{\text{Thy1.1}}\) (bystander) CD4 T cells.

Lytic assay

Recipient spleen samples containing 5 \(\times\) 10\(^5\) TCR Tg CD4 T cells were cultured with 2.5 \(\times\) 10\(^5\) A20 cells (38) that had been labeled with 500 nM CFSE and pulsed with cognate HA peptide plus 2.5 \(\times\) 10\(^6\) nonpulsed A20 cells labeled with 50 nM CFSE in 96-well plates. Naive WT splenocytes were added so that the total number of cells/well was 10\(^6\) while maintaining an E:T ratio of 1:1. The proportion of CFSE\(^{-}\) and CFSE\(^{\text{low}}\) A20 cells within the live gate (based on forward and side scatter) was measured after 4 h, and the percentage of specific killing was calculated using the following formula: (1 - [% peptide (CFSE\(^{\text{low}}\)/% peptide (CFSE\(^{\text{low}}\))]).

Statistical analysis

All quantitative data are expressed as the mean ± SEM, and p values were calculated using an unpaired two-tailed t test.

Results

CD134 plus CD137 DCo programs cytotoxic CD4 Th1 cell differentiation

We asked whether DCo through CD134 and CD137 exerts effects on specific CD4 T cells similar to its known effects on CD8 + CTL. DCo induced HA-specific TCR Tg CD4 T cells transferred into HA-expressing (self-HA) recipients to express high amounts of GzmB protein (Fig. 1A, 1B). Because the serine protease GzmB is a lytic granule component normally expressed in CD8 + CTL and NK cells (39), this result suggested that DCo programs cytotoxic CD4 Th1 cell differentiation. Consistent with this effect being genetically programmed, DCo induced mRNA encoding not only GzmB, but also the pore-forming component of lytic granules perforin 1 (40) (Fig. 1C). Also consistent with the epigenetic profile of CD8 + CTL (41), real-time PCR-based ChIP indicated that DCo significantly increased the amount of AcH3 bound to the GzmB and Prf1 gene promoters (Fig. 1D). Thus, DCo programmed these genes to undergo epigenetic remodeling toward a transcriptionally permissive configuration. Confirming the fidelity of the ChIP assay, DCo increased ACh3 bound to the Ifng promoter (Fig. 1D), consistent with the enhanced IFN-\(\gamma\) expression (24).
To test whether DCo-programmed specific CD4 T cells are cytotoxic, we measured degranulation of lytic granules via cell surface localization of CD107a (LAMP1) and CD107b (LAMP2) (42). Surface CD107a/b increased 6-fold on DCo-treated specific CD4 T cells following 2-h stimulation with cognate peptide. In contrast, peptide-stimulated DCo-nontreated counterparts expressed substantially less surface CD107a/b (Fig. 1E). Secondly, DCo-treated CD4 T cells induced \textit{>50\%} specific lysis of cognate CD4 T cells following 2-h stimulation with cognate peptide. In contrast, peptide-stimulated DCo-nontreated counterparts expressed substantially less surface CD107a/b (Fig. 1E).

FIGURE 1. CD134 plus CD137 DCo programs specific CD4 T cells to express GzmB, perforin, and cytotoxic function. HA-specific Thy1.1$^{-}$6.5 TCR Tg CD4 T cells were transferred into Thy1.2$^{-}$ self-HA recipients treated with anti-CD134 plus anti-CD137 agonistic mAbs (+DCo) or rat Ig (−DCo), and then recovered from spleens on day 4. Representative (A) and total (B, MFI, \(n = 4\) per group) intracellular GzmB. C. Real-time RT-PCR analysis of GzmB and perforin 1 mRNAs in MACS-purified specific CD4 T cells, \(n = 4\) per group. D. AcH3 bound to the Gzmb, Prf1, and Ifng promoters in purified specific CD4 T cells measured by ChIP, \(n = 5\) per group. RT-PCR and ChIP data are expressed as the ratio to naive specific CD4 T cells. E. Degranulation measured via surface CD107a/b expression before and 2 h after restimulation with HA peptide, \(n = 3\) per group. F. Specific CD4 T cells treated ±DCo were cultured 4 h at an E:T of 1:1 with A20 cells pulsed with (CFSE$^{\text{high}}$) or without (CFSE$^{\text{low}}$) HA peptide. Representative histograms and bar graph of peptide-specific lysis are based on \(n = 3\) per group.

FIGURE 2. CD134 costimulation drives cytotoxic CD4 Th1 differentiation, but CD134 plus CD137 DCo maximizes clonal expansion. TCR Tg CD4 T cells transferred into self-HA mice treated with anti-CD137, anti-CD134, both, or neither agonist (control rat Ig) were recovered from spleens on day 4, \(n = 3\) per group. A. Accumulation. B. Representative IFN-γ versus TNF staining after HA peptide restimulation. C. Representative GzmB expression directly ex vivo.
FIGURE 3. DCo induces GzmB in both specific and bystander CD4 T cells. A, B6 mice were treated with 1 μg SEA ± DCo (naive mice received neither SEA nor DCo). On day 5, SEA-specific (Vβ3+) and nonreactive bystander (Vβ14+) CD4 T cells in spleens were stained for GzmB directly ex vivo. Histograms are representative of three to four replicates per group that were highly comparable. B, IFN-γ staining following in vitro restimulation with PMA plus ionomycin in the samples corresponding to A. C and D, Self-HA mice that received Thy1.1+-specific CD4 T cells were treated with DCo (+ specific), whereas DCo-treated WT mice that were not given specific CD4 T cells served as the control (− specific). Spleens were analyzed on day 4. C, Intracellular GzmB in Thy1.2+ bystander CD4 T cells directly ex vivo, representative of two to four replicates per group that were highly comparable. D, Surface CD107a/b on bystander CD4 T cells recovered from self-HA DCo-treated specific CD4 T cell adoptive transfer recipients before (0 h) and 5 h following in vitro restimulation with soluble anti-CD3 mAb. Representative histograms (left) and bar graph (right) are from n = 3 per group. E and F, Either 10⁶ or 10³ Thy1.1+-specific CD4 T cells were transferred into WT B10.D2 recipients infected with viral-HA and treated 6 DCo, and recovered from spleens on day 5. E, Intracellular IFN-γ was measured after restimulation with HA peptide. Left and middle panels, Representative histograms, with a dashed line indicating the cutoff for positive staining determined using an isotype control. Right panel, Graph of the percentage of IFN-γ+–specific CD4 T cells (n = 4–5 per group). F, Ex vivo GzmB expression is presented as in E, except that the data are expressed as MFI (n = 4, 5, 10, and 10 for 10⁶ − DCo, 10⁶ + DCo, 10³ − DCo, and 10³ + DCo, respectively).
peptide-pulsed MHC class II+ A20 cells at an E:T ratio of only 1:1 (Fig. 1F). Because DCo increases specific CD4 T cell expansion several-fold (24), this assay was performed in vitro so that lytic activities could be compared at the same E:T ratio. Taken together, our data identify costimulation as a process to induce genetic programming of naive CD4 T cells into cytotoxic Th1 cells.

We next assessed whether CD134, CD137, or both costimulatory signals are required to program cytotoxic CD4 Th1 cell differentiation. CD137 costimulation alone significantly enhanced expansion (Fig. 2A) and expression of IFN-γ, TNF (Fig. 2B), and GzmB (Fig. 2C) in specific CD4 T cells, but CD134 alone induced greater expansion and expression of IFN-γ, TNF, and GzmB. DCo did not boost effector molecule expression beyond CD134 alone, but it did boost clonal expansion (Fig. 2A). CD134 is thus sufficient to program cytotoxic Th1 differentiation, whereas addition of CD137 costimulation maximizes clonal expansion of the cytotoxic CD4 Th1 cells.

To test whether DCo programming of cytotoxic CD4 Th1 cells is a natural phenomenon not limited to artificial TCR Tg adoptive transfer models, we analyzed endogenous CD4 T cell responses to the pathogenic bacterial protein SEA. SEA stimulates TCR Vδ3+, but not Vβ14+ CD4 T cells (43). After in vivo stimulation with SEA, DCo programmed specific Vδ3+ CD4 T cells to express high amounts of GzmB (Fig. 3A, left) and IFN-γ (Fig. 3B, left). Thus, DCo programming of cytotoxic CD4 Th1 cells is a general phenomenon. Strikingly, SEA plus DCo induced SEA-nonreactive Vβ14+ bystander CD4 T cells to express large amounts of GzmB (Fig. 3A, right), but lower amounts of IFN-γ (Fig. 3B, right).

In this SEA model, the initial frequency of specific Vδ3+ CD4 T cells was ∼5% of the overall CD4 T cell repertoire (data not shown). To test whether GzmB is induced in bystander CD4 T cells when fewer Ag-responsive T cells are initially present, we used the TCR Tg transfer system in which the initial frequency is ∼0.1% after transfer of 10⁶ cells. Bystander CD4 T cells expressed substantially more GzmB in DCo-treated mice that contained specific CD4 T cells than controls (Fig. 3C). Because bystander CD4 T cells have a diverse TCR repertoire, cytotoxic potential was assessed by degranulation. Importantly, anti-CD3 mAb induced surface CD107a/b expression on these bystander CD4 T cells recovered from DCo-treated recipients (Fig. 3D), albeit at lower magnitude and with slower kinetics compared with specific CD4 T cells (data not shown). Thus, although bystander CD4 T cells may be less potent, they do appear to have cytotoxic potential.

HA-specific CD4 T cells transferred into WT mice infected with a recombinant vaccinia virus expressing HA (viral-HA) dif-

![Figure 4](http://www.jimmunol.org/)

FIGURE 4. DCo enhances IL-2 signaling. A. Specific CD4 T cells transferred into self-HA mice treated ±DCo were recovered from spleens on day 4 and directly stained for pSTAT5 versus CD25 and GzmB versus Foxp3. Plots are gated on both Thy1.1+-specific and Thy1.2+ bystander CD4 T cells. The cutoff for positive CD25, GzmB, and Foxp3 staining was based on isotype controls, whereas the cutoff for positive pSTAT5 staining was based on the −DCo groups. B. Time course of CD25, pSTAT5, and GzmB expression on specific and bystander CD4 T cells between 0 and 48 h posttransfer into self-HA mice treated ±DCo. The arrow in the top left graph indicates that DCo was given at 24 h. n = 3 for each 0- and 24-h point and 4 for each 36- and 48-h point. Asterisks indicate p < 0.05 for ±DCo comparisons.

The Journal of Immunology 3559
differentiate into conventional Th1 cells that express IFN-γ (Fig. 3E), but not GzmB (Fig. 3F). The addition of DCo programmed these virally-primed specific CD4 T cells to express GzmB as well as higher amounts of IFN-γ. DCo thus facilitates a Th1-inducing virus to induce the cytotoxic Th1 phenotype. Next, the response 10^6 versus 10^5 specific CD4 T cells transferred into DCo-treated viral-HA–infected mice was compared to explore whether DCo can program the cytotoxic Th1 profile when the initial specific CD4 T cell frequency is within a physiological range. Adoptive transfer of 10^5 TCR Tg CD4 T cells seeds recipient secondary lymphoid organs at numbers (~ 100) approximating individual specificities within the steady state repertoire (44, 45). As expected, 10^5 specific CD4 T cells transferred into viral-HA–infected DCo-treated recipients accumulated to a lesser degree compared with a 10^6 specific CD4 T cells transferred group ($6.6 \times 10^5 \pm 2.5 \times 10^5$ versus $6.9 \times 10^7 \pm 8 \times 10^6$ at day 5, $n = 10$ and 5 per group, respectively). Perhaps surprisingly, however, in both the 10^5 and 10^6 groups, DCo significantly boosted expression of IFN-γ (Fig. 3E) and GzmB in specific CD4 T cells ($p = 0.03$) as well as GzmB in bystander CD4 T cells ($p = 0.008$) (Fig. 3F). Importantly, GzmB MFI values for specific and bystander CD4 T cells did not differ between the 10^5 and 10^6 DCo-treated groups ($p = 0.2$). Bystander GzmB MFI values also increased in virus-infected DCo-treated mice that did not receive any transferred HA-specific TCR Tg CD4 T cells (data not shown), an effect that was presumably mediated by endogenous vaccinia-specific CD4 T cells.

The cellular mechanism mediating cytotoxic CD4 Th1 differentiation

CD134 costimulation enhances IL-2 production by CD4 T cells (46), and IL-2 induces both GzmB (12, 47, 48) and IFN-γ (49, 50). We thus postulated that the CD134→IL-2 axis might promote cytotoxic CD4 Th1 differentiation. To explore this possibility, expression of CD25 on specific and bystander CD4 T cells treated with DCo was examined. Four days following self-HA Ag encounter with DCo, CD25 was expressed on 24.6% ± 1.0% (mean ± SEM, $n = 3$) of the specific CD4 T cells, but only 1.7% ± 0.2% were CD25+ without DCo. Even at this later time point, some of the DCo-treated CD25+–specific CD4 T cells contained phosphorylated STAT5 (17.5% ± 6.8%) (Fig. 4A, first and second top panels). CD25 and pSTAT5 expression on specific CD4 T cells peaked 24 h after transfer in the absence of DCo, but expression of both IL-2–signaling molecules increased between 24 and 48 h with DCo. Furthermore, GzmB expression was several-fold higher in DCo-treated compared with nontreated specific CD4 T cells at 48 h (Fig. 4B). DCo thus enhances and prolongs IL-2–signaling, an effect that correlates with the acquisition of GzmB expression. DCo-treated specific CD4 T cells did not express Foxp3 at day 4 (Fig. 4A, third and fourth top panels), consistent with studies in which CD134 costimulation blocked inducible Treg differentiation (51, 52). DCo also increased the proportion of bystander CD4 T cells expressing CD25 and Foxp3 by 1.9- and 1.8-fold, respectively ($p = 0.001$ in both) (Fig. 4A, bottom panels), and induced GzmB not only in Foxp3− (11.6-fold, $p = 0.006$), but also in Foxp3+ (2.6-fold, $p = 0.01$) bystander CD4 T cells (Fig. 4A, third and fourth bottom panels). Taken together, DCo augments IL-2–signaling followed by induction of GzmB in specific CD4 T cells, and in both Foxp3+ and Foxp3− bystander CD4 T cells. IL-2−/−–specific CD4 T cells were used to definitively test whether IL-2 facilitates DCo-programmed cytotoxic Th1 differentiation. Due to the absence of Treg cells, IL-2−/− mice contain a disproportionally high frequency of activated/memory T cells (53). Therefore, we used two separate approaches to compare the response of IL-2−/− versus IL-2+/+–specific CD4 T cells. First, CD44high activated/memory cells were removed via magnetic beads from both populations prior to adoptive transfer into DCo-treated self-HA recipients. IL-2−/−–specific CD4 T cells expressed substantially less GzmB (Fig. 5A, middle panel) and IFN-γ (data not shown) compared with IL-2+/+ counterparts, and they failed to induce GzmB in bystander CD4 T cells (Fig. 5A, right panel).
To test whether T-bet programs cytotoxic CD4 Th1 cell differentiation, the response of Tbx21−/− (T-bet-deficient)–specific (32) CD4 T cells to DCo was analyzed. WT and T-bet−/−–specific CD4 T cells underwent comparably robust expansion in DCo-treated self-HA recipients (data not shown), but T-bet−/−–specific CD4 T cells expressed one-third the amount of IFN-γ and similar amounts of TNF compared with WT (Fig. 7A). In viral-HA–primed conventional Th1 cells, T-bet deficiency completely eliminated IFN-γ expression and partially reduced TNF potential (Fig. 7A). GzmB production was not altered in T-bet−/−–specific CD4 T cells after DCo (Fig. 7B).

To test whether Eomes was responsible for GzmB expression in DCo-treated specific CD4 T cells, WT, T-bet−/−, or conditionally Eomes−/− (33) polyclonal T cells were adoptively transferred into TCR β−/− × δ−/− recipients, and subsequently treated with SEA ± DCo. As expected, DCo significantly induced GzmB expression in WT and T-bet−/− SEA-specific Vβ3+ CD4 T cells, but, importantly, DCo failed to induce GzmB in Eomes−/− Vβ3+ CD4 T cells (Fig. 8A, 8B). Although T-bet−/− but not Eomes−/−–specific CD4 T cells were programmed by DCo to express GzmB, DCo boosted the ability of both T-bet−/− and Eomes−/−–specific CD4 T cells to express IFN-γ (Fig. 8C). Taken together, DCo-induced T-bet and Eomes can both contribute to enhancing IFN-γ expression in specific CD4 T cells, but GzmB expression depends on Eomes.

DCo programs CD4 T cell-dependent tumoricidal activity

DCo can induce CD8 T cell-dependent tumor immunity (19, 21, 22). We currently used the B16-F10 (B16) murine melanoma to test whether DCo can program CD4 T cells to mediate tumor immunity. B16 can be induced by IFN-γ to express MHC class II in vivo, thus becoming susceptible to lysis by specific cytotoxic CD4 Th1 cells (10, 11). Nonactivated polyclonal CD4 T cells (depleted of CD8+, NK1.1+, and B220+ cells) transferred into RAG−/− recipients were unable to control the growth of B16 melanoma inoculated intradermally 5 d later (Fig. 9A, 9B). In RAG−/− recipients given polyclonal CD4 T cells, DCo administered either the day of or 4 d prior to tumor inoculation substantially limited tumor growth (p ≤ 0.006) (Fig. 9A, 9B). Importantly, CD4 T cells recovered from DCo-treated mice expressed higher levels of IFN-γ (p = 0.01) (Fig. 9C) and GzmB (p = 0.009) (Fig. 9D) compared with nontreated counterparts. DCo showed a trend toward limiting tumor growth in RAG−/− mice that did not receive CD4 T cells (Fig. 9B), most likely resulting from the activity of NK or other innate immune cells that can respond to CD134 and CD137 costimulation (54, 55). Taken together, DCo can program CD4 T cells to become tumoricidal as part of a multipronged antitumor immune response.

Discussion

Cytotoxic CD4 Th1 cells are emerging as a physiologically relevant (6, 7) and therapeutically useful (10, 11) effector T cell lineage. The differentiation process by which these multifunctional effector
tor CD4 T cells develop can be facilitated by IL-2 in vitro (48) and lymphopenia in vivo (10, 11), but the relevant costimulatory pathways and transcriptional networks have until now been poorly understood. Our current study identifies a specific costimulatory pathway that programs cytotoxic CD4 Th1 cells in vivo. CD134 costimulation is sufficient to program the cytotoxic Th1 profile in Ag-primed CD4 T cells, consistent with the ability of CD134 to induce GzmB in CD8 T cells (56). The addition of CD137 (dual) costimulation maximized clonal expansion of these cytotoxic CD4 Th1 cells, suggesting that the combination would be a potent therapeutic regimen for eliciting tumor cytotoxicity.

CD134 plus CD137 DCo increased CD4 T cell expression of the T-box transcription factor T-bet that drives IFN-γ expression in conventional Th1 cells (25), consistent with the increased ability of these CD4 T cells to express IFN-γ. Nevertheless, dual costimulated T-bet+/−–specific cytotoxic CD4 Th1 cells exhibited only partially impaired IFN-γ expression. T-bet−/− CD8 T cells can express moderate amounts of IFN-γ because they express the related T-box factor Eomes that also drives granzyme and perforin expression (15, 16). Importantly, dual costimulated specific cytotoxic CD4 Th1 cells expressed Eomes, and Eomes−/− CD4 T cells were unable to be induced by DCo to express GzmB. Thus, Eomes programs cytotoxic function in dual costimulated CD4 T cells.

In addition to Eomes, IL-2 was also required for cytotoxic Th1 differentiation. DCo induced specific CD4 T cells to express higher levels of both CD25 and pSTAT5, consistent with IL-2 acting directly on the specific CD4 T cells. That an IL-2–Eomes axis might be critical for cytotoxic CD4 Th1 cell differentiation is consistent with the recent observation that IL-2 induces Eomes in CD8 T cells (14). Regardless of whether CD134 and/or CD137 costimulation programs cytotoxic CD4 Th1 cell function under physiological conditions such as during viral infection (6, 7), our current finding is clinically relevant. Thus, CD134 and CD137 costimulatory agonists are being developed separately as cancer therapeutics (26, 27), and, in the case of MHC class II− tumors such as B cell lymphomas (57, 58) and melanomas (8), the ability of tumour-reactive CD4 T cells to develop cytotoxic function would allow them to directly kill tumor cells. This would expand their role in tumor immunity beyond their traditionally assumed role as helpers that enhance the function of CD8 T cells and other immune cells (59–61). Indeed, DCo effectively programmed purified polyclonal CD4 T cells to control the growth of B16 melanoma in RAG−/−/− mice.
mice. Consistent with the ability of innate immune cells to respond to CD134 and CD137 ligation (54, 62–64), DCo elicited moderate control of tumor growth in Rag-1−/− mice that did not receive T cells (albeit this effect was not statistically significant). Nevertheless, the ability of DCo to engage multiple arms of the immune response (CD8+ CTL, NK cells, and cytotoxic CD4 Th1 cells) that can target distinct tumor determinants should be therapeutically beneficial.

In response to CD134 plus CD137 DCo, Ag-specific cytotoxic CD4 Th1 cells imprint Ag-inexperienced bystander CD4 T cells with similar functional capabilities. Ag-stimulated CD4 T cells can augment proliferation in other Ag-stimulated CD4 T cells (65), but our current result is novel because Ag-stimulated CD4 T cells programmed bystander CD4 T cells to express an effector molecule typically expressed in CD8+ T cells and NK cells. The expression of GzmB in these bystander CD4 T cells is dependent on paracrine IL-2 secreted by Ag-specific CD4 T cells, although other bystander-programming factors may also be involved. An interesting facet of the bystander response is that GzmB is not only induced in conventional bystander CD4 T cells, but also in Foxp3+ Treg cells that express high-affinity IL-2R. Treg cells can exert suppressive function through GzmB (66, 67), which raises the possibility that one function of the bystander response might be to limit collateral damage inflicted by the robust Ag-specific cytotoxic CD4 Th1 cell response.

The DCo-induced bystander response may have a complex effect during tumor immunotherapy. For instance, polyclonal granzyme-expressing bystander T cells may eliminate residual Ag-loss variant tumor cells that lack expression of vaccine-targeted epitopes (68–72), but their polyclonal nature raises the potential for autoimmunity. In this regard, it was previously noted that careful titration of each costimulatory agonist significantly lowered the effective dose of the other required to elicit optimal specific CD8 T cell responses (20), and, thus, it might be possible to preserve useful antitumor effects while limiting pathogenic side effects by titrating down the dose of each agonist Ab. This strategy would not be possible using single costimulators, and thus represents an in-built advantage of DCo.

Disclosures

The authors have no financial conflicts of interest.

References

