The Protein Kinase IKKε Is a Potential Target for the Treatment of Inflammatory Hyperalgesia

Christine V. Möser, Katharina Kynast, Katharina Baatz, Otto Quintus Russe, Nerea Ferreirós, Heike Costiuk, Ruirui Lu, Achim Schmidtko, Irmgard Tegeder, Gerd Geisslinger and Ellen Niederberger

J Immunol 2011; 187:2617-2625; Prepublished online 3 August 2011;
doi: 10.4049/jimmunol.1004088
http://www.jimmunol.org/content/187/5/2617

Supplementary Material

http://www.jimmunol.org/content/suppl/2011/08/04/jimmunol.1004088.DC1

References

This article cites 40 articles, 21 of which you can access for free at:
http://www.jimmunol.org/content/187/5/2617.full#ref-list-1

Subscription

Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
The Protein Kinase IKKe Is a Potential Target for the Treatment of Inflammatory Hyperalgesia

Christine V. Möser,¹ Katharina Kynast,¹ Katharina Baatz, Otto Quintus Russe, Nerea Ferreirós, Heike Costiuk, Ruirui Lu, Achim Schmidtko, Irmgard Tegeder, Gerd Geisslinger, and Ellen Niederberger

Inhibitor-κB kinase ε (IKKe) was only recently identified as an enzyme with high homology to the classical I-κB kinase subunits, IKKe and IKKB. Despite this similarity, it is mainly discussed as a repressor of viral infections by modulating type I IFNs. However, in vitro studies also showed that IKKe plays a role in the regulation of NF-κB activity, but the distinct mechanisms of IKKe-mediated NF-κB activation are not clear. Given the paramount role of NF-κB in inflammation, we investigated the regulation and function of IKKe in models of inflammatory hyperalgesia in mice. We found that IKKe was abundantly expressed in nociceptive neurons in the spinal cord and in dorsal root ganglia during hind paw inflammation evoked by injection of zymosan or formalin. IKKe knockout mice showed normal nociceptive responses to acute heat or mechanical stimulation. However, in inflammatory pain models, IKKe-deficient mice exhibited a significantly reduced nociceptive behavior in comparison with wild type mice, indicating that IKKe contributes to the development of inflammatory hyperalgesia. Antinociceptive effects were associated with reduced activation of NF-κB and attenuated NF-κB-dependent induction of cyclooxygenase-2, inducible NO synthase, and metalloproteinase-9. In contrast, IRF-3, which is an important IKKe target in viral infections, was not regulated after inflammatory nociceptive stimulation. Therefore, we concluded that IKKe modulates inflammatory nociceptive sensitivity by activation of NF-κB-dependent gene transcription and may be useful as a therapeutic target in the treatment of inflammatory pain.

Chronic pain is associated with a number of adaptive changes in the peripheral and CNS, which may enhance the sensitivity to painful stimuli and lead to an independent “pain disease”. The sensitization involves several adaptive and maladaptive processes that depend, in part, on the transcription factor NF-κB–activation cascade (1). During inflammation, NF-κB is activated by the so-called “classical” pathway, which depends on an inhibitor-κB kinase (IKK) complex consisting of the regulatory subunit IKKy (also known as NF-κB essential modulator) and the catalytic subunits IKKe and IKKB (2–4). In most unstimulated cells, NF-κB dimers are localized in the cytoplasm and sequestered by binding to the inhibitory subunit

Inhibitor-κB kinase ε (IKKe) was only recently identified as an enzyme with high homology to the classical I-κB kinase subunits, IKKe and IKKB. Despite this similarity, it is mainly discussed as a repressor of viral infections by modulating type I IFNs. However, in vitro studies also showed that IKKe plays a role in the regulation of NF-κB activity, but the distinct mechanisms of IKKe-mediated NF-κB activation are not clear. Given the paramount role of NF-κB in inflammation, we investigated the regulation and function of IKKe in models of inflammatory hyperalgesia in mice. We found that IKKe was abundantly expressed in nociceptive neurons in the spinal cord and in dorsal root ganglia during hind paw inflammation evoked by injection of zymosan or formalin. IKKe knockout mice showed normal nociceptive responses to acute heat or mechanical stimulation. However, in inflammatory pain models, IKKe-deficient mice exhibited a significantly reduced nociceptive behavior in comparison with wild type mice, indicating that IKKe contributes to the development of inflammatory hyperalgesia. Antinociceptive effects were associated with reduced activation of NF-κB and attenuated NF-κB-dependent induction of cyclooxygenase-2, inducible NO synthase, and metalloproteinase-9. In contrast, IRF-3, which is an important IKKe target in viral infections, was not regulated after inflammatory nociceptive stimulation. Therefore, we concluded that IKKe modulates inflammatory nociceptive sensitivity by activation of NF-κB-dependent gene transcription and may be useful as a therapeutic target in the treatment of inflammatory pain.

C hronic pain is associated with a number of adaptive changes in the peripheral and CNS, which may enhance the sensitivity to painful stimuli and lead to an independent “pain disease”. The sensitization involves several adaptive and maladaptive processes that depend, in part, on the transcription factor NF-κB–activation cascade (1). During inflammation, NF-κB is activated by the so-called “classical” pathway, which depends on an inhibitor-κB kinase (IKK) complex consisting of the regulatory subunit IKKy (also known as NF-κB essential modulator) and the catalytic subunits IKKe and IKKB (2–4). In most unstimulated cells, NF-κB dimers are localized in the cytoplasm and sequestered by binding to the inhibitory subunit

Copyright © 2011 by The American Association of Immunologists, Inc. 0022-1767/11/$16.00

Abbreviations used in this article: COX-2, cyclooxygenase-2; DRG, dorsal root ganglia; IKK, inhibitor-κB kinase; iNOS, inducible NO synthase; i.t., intrathecal (ly); KO, knockout; MMP, matrix metalloprotease; siRNA, small interfering RNA; TBK1, tank-binding kinase 1; WT, wild type.

Received for publication December 17, 2010. Accepted for publication June 16, 2011.

This Work was supported by the Deutsche Forschungsgemeinschaft (NI 705/2-1, TE 322/5.1, and Graduate School “Biologicals” GRK 1172) and the Interdisciplinary Centre of Neuroscience Frankfurt.

Address correspondence and reprint requests to Dr. Ellen Niederberger, Pharmazeutrum Frankfurt/Das Zentrum für Arzneimittelforschung, Entwicklung und –Sicherheit, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, 60590 Frankfurt am Main, Germany

E-mail address: e.niederberger@em.uni-frankfurt.de

The online version of this article contains supplemental material.

Pharmazeutrum Frankfurt/Das Zentrum für Arzneimittelforschung, Entwicklung und –Sicherheit, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, 60590 Frankfurt am Main, Germany

1C.V.M. and K.K. contributed equally to this work.

Copyright © 2011 by The American Association of Immunologists, Inc. 0022-1767/11/$16.00
Materials and Methods

Animals
Male C57BL/6 mice were obtained from Harlan Winkelmann (Borchend, Germany) at the age of 6–8 wk. Homozygous IKKe−/− mice with a C57BL/6 background were kindly provided by Prof. Shizuo Akira (WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan). In these mice, exons 7 and 8 of the IKKe gene were replaced, resulting in an inactive protein that contains a truncated kinase domain and is still detectable at mRNA and protein levels. IKKe−/− mice are viable, fertile, and healthy (17). IKKe−/− mice were backcrossed with C57BL/6 WT mice. Heterozygous offspring were mated to get WT and IKKe−/− littermates. Genotyping was performed using the following primers, as described: IKKe wild, 5′-TTGATTTCCTTGCAGGGCCATGTC-3′; IKKe extra, 5′-AGAAACCCGAAATAGGAAGCTCCAGC-3′, and IKKe neo, 5′-TTGATTTCCTTGCAGGGCAACACTGTCG-3′. Animals had free access to food and water and were maintained in climate- and light-controlled rooms (24 ± 0.5°C, 12/12-h light/dark cycle).

In all experiments, the European ethic guidelines for investigations in conscious animals were followed, and the procedures were approved by the local Ethics Committee for Animal Research. All efforts were made to minimize animal suffering and to reduce the number of animals used. All behavioral experiments were performed by an observer blinded for the genotype in a dedicated room with restriction on sound level and activity.

Drugs

BX795 used as IKKe inhibitor (18) was purchased from Axon Medchem (Groningen, The Netherlands). The drug was dissolved in 50% DMSO/H2O at a concentration of 10 mM. Five microliters of this solution was injected intratraehally (i.t.) into mice (20 g), which corresponded to a dose of 1.5 mg/kg body weight, 30 min prior to the formalin test. Control mice received an injection of the same volume of vehicle.

Determination of BX795 concentrations in the spinal cord

After finishing the formalin test (~2 h after i.t. injection of BX795), mice were killed and the spinal cord was dissected, rapidly frozen in liquid nitrogen, and kept at −80°C until further analysis. Quantification of BX795 was done by liquid chromatography (Agilent 1200 Series (Waldbronn, Germany) connected to an HPLC ALS autosampler (Chromtech, Idstein, Germany), coupled to a hybrid triple quadrupole/linear ion trap mass spectrometer AB Sciex 5500 Qtrap (AB Sciex, Darmstadt, Germany). Spinal cord samples were homogenized with PBS to achieve a concentration of 0.1 mg tissue/µL. Twenty microliters of this solution was mixed with 80 µL H2O and 450 µL methanol and centrifuged at 15,000 rpm for 5 min. The supernatant was transferred to a chromatographic vial, evaporated under N2 at 45°C, and reconstituted in 50 µL acetonitrile. Ten microliters of the extract was injected into the liquid chromatography–mass spectrometry/mass spectrometry system. Desmethylcelecoxib was used as internal standard.

The separation was carried out in a Gemini C18 column (Phenomenex, Aschaffenburg, Germany) (20 × 2.1 mm, 100 Å, 5 µm) at a flow rate of 1.5 mL/min with a guard column of the same material at room temperature and under gradient elution, with water and acetonitrile as mobile phases at a flow rate of 600 µL/min. The mass spectrometry/mass spectrometry system was operated in positive mode with an electrospray voltage of ~4500 V at 500°C. Auxiliary gas 1 and 2 were 50 and 50 psi, respectively. A precursor-to-product ion transition of m/z 589.7 → 518.7 was used for quantification of BX795 (collision energy ∼28 V), with a dwell time of 50 ms.

All quadrupoles were working at unit resolution. BX795 concentrations were calculated using Analyst Software V1.5 (AB Sciex, Darmstadt, Germany), using the internal standard method.

Preparation of primary cells

Neuronal cultures. For the generation of primary neuronal cell cultures, dorsal root ganglia (DRG) neurons from adult mice were prepared. After dissection, DRG were directly transferred to ice-cold HBSS containing CaCl2 and MgCl2 and then treated with dispase (1 mg/ml) and collagenase (5 mg/ml; Biochrom, Berlin, Germany), followed by mechanical separation using a 1-mm Gilson pipette. After two additional digestion steps with trypsin and DNase 1, the suspension was filtered through a 30% BSA gradient to remove cellular waste. To obtain neuron-enriched cultures, the cell suspension was plated onto poly-L-lysine–coated 3.5-cm dishes and incubated for 2 h in neurobasal medium containing B-27 supplement (Invitrogen), 10% FCS, 100 U/mL penicillin, 100 µg/mL streptomycin, and 2 mM l-glutamine at 37°C and 5% CO2. After the cells became adherent, fresh medium containing 0.01 µg/mL murine nerve growth factor (Invitrogen) was added.

Astrocytes. Primary astrocytes were prepared from embryonic mouse brain (embryonic day 15). Brains were dissected, washed in HBSS, and digested for 2 h in 10% trypsin solution at 37°C. After two washes with DMEM containing 10% FCS/1% penicillin/streptomycin, the brains were homogenized and plated onto culture dishes in DMEM with the addition of 10% FCS/1% penicillin/streptomycin and 1% 200 mM glutamine. The cultures were used for two or three passages.

Microglia. For primary microglia cultures, embryonic mouse brains (embryonic day 15) were dissected, washed in HBSS, and digested for 2 h in 10% trypsin solution at 37°C. After two washes with DMEM containing 10% FCS, the brains were homogenized and plated onto culture dishes in DMEM with the addition of 10% FCS and 1% 200 mM glutamine. The culture was then incubated for 10–14 d until microglia could be shaken off and separated from the astrocytes. Then cells were plated onto new dishes and submitted to cytokine-stimulation experiments.

Cell culture

RAW 264.7 mouse macrophages were cultured and incubated in RPMI 1640 medium containing 10% FCS and 1% penicillin/streptomycin. Cells were stimulated with 10 µg/ml LPS for the indicated times, with and without transfection with IKKe−/− small interfering RNA (siRNA). The following oligonucleotide sequences were used as IKKe−/− siRNA: sense, 5′-GAUAGUGUAGUAAATCAAAT-3′; antisense, 5′-UUGUUUUAUCCCUGUAAGAC-5′ (Ambion, Applied Biosystems, Darmstadt, Germany). Transfection of 50 nM siRNA was performed using siPORT Amine (Ambion) on two consecutive days. After incubation for 48 h, cells were treated with LPS for the indicated times. siRNA treatment resulted in 60–80% reduction in the IKKe protein level, which was stable throughout the entire incubation period. Transfection efficacy was monitored with a Cy3-labeled siRNA (Silencer Cy3 negative control siRNA #1; Ambion). Fluorescence microscopy and subsequent analysis with Image J software revealed transfection of ~80% of cells in the culture.

Primary cells were incubated with a cytokine mix consisting of 5 ng/ml TNF-α (PeproTech EC, London, U.K.), 1 ng/ml IL-1β (PeproTech EC), and 1 µg/ml LPS (Sigma) for 8 h (neuronal culture) or 24 h (astrocytes and microglia).

Western blot analysis

For Western blot analysis, mice were injected with either formalin or zymosan in the hind paws. Lumbar spinal cords and DRG (L4-L6) were dissected at the indicated time points. Tissues were homogenized in PhosphiSafe Extraction Buffer (Merck, Darmstadt, Germany) containing protease inhibitor (1 mM Pefabloc SC; Alexis Biochemicals) and kept on ice immediately after preparation. To remove cellular debris, extracts were centrifuged at 14,000 rpm for 1 h at 4°C, and supernatants were stored at −80°C. RAW 264.7 cells were seeded in six-well plates at a density of 3 × 104 cells/well. At 80% confluency, cells were stimulated with LPS for the indicated time points with and without transfection with IKKe−/− siRNA. At the end of the incubation period, cells were washed with 0.1 M PBS, scraped with a rubber policeman, and collected in 1.5-mL tubes. After a short centrifugation, the pellet was resuspended in PhosphiSafe Extraction Buffer (Merck, Darmstadt, Germany) containing protease inhibitor (1 mM Pefabloc SC; Alexis Biochemicals) and kept on ice for 30 min. After sonication for 10 s, the suspension was centrifuged at 14,000 rpm for 10 min at 4°C in an Eppendorf centrifuge; the supernatant was stored at −80°C until further analysis.

Proteins (30 µg) were separated electrophoretically by 10% SDS-PAGE and then transferred onto nitrocellulose membranes by wet-blotting. To confirm equal loading, all blots were stained with Ponczeau red solution. Membranes were blocked for 60 min at room temperature in Odyssey blocking reagent (LI-COR Biosciences) diluted 1:2 in 0.1 M PBS (pH 7.4). Then the blots were incubated overnight at 4°C with primary Ab against IKKe (80 kDa) or phospho-p65 (Ser536) (1:250; Cell Signaling Technology, Boston, MA) in blocking buffer. After washing three times with 0.1% Tween 20 in PBS, the blots were incubated for 60 min with an IRDye 800- or IRDye 700-conjugated secondary Ab (1:10,000 in blocking buffer; Molecular Probes). After rinsing in 0.1% Tween 20 in PBS, protein–Ab complexes were detected by the Odyssey Infrared Imaging System (LI-COR). β-Actin (1:10,000; Chemicon International; 1:2500; Santa Cruz) was detected with IRDye 800CW IRDye 700-conjugated secondary Ab. Membranes were then incubated with Odyssey secondary Ab at 1:10,000 dilution in Odyssey blocking reagent and scanned with Odyssey Infrared Imaging System (LI-COR). The densities of the bands were determined using Odyssey Infrared Imaging System (LI-COR) software.
the manufacturer’s instructions. RNA from primary cells was prepared with a mirVana miRNA Preparation Kit (Ambion). Two hundred nanograms of total RNA was used for the reverse transcription, which was performed with Random Primers in a Superscript III First-Strand Synthesis System (Invitrogen, Karlsruhe, Germany) (tissue) or a Verso cDNA Kit (ABgene) (cells). Twenty nanograms of RNA equivalent was subjected to real-time PCR in an Applied Biosystems sequence detection system AB7500 using a FastStart Universal Master Mix Kit (Roche Diagnostics, Mannheim, Germany), with SYBR Green fluorescence staining. Expression of IKKe, COX-2, iNOS, MMP-9, c-fos, and TLR4 mRNA was determined and normalized to 18S mRNA, which was detected with VIC-labeled predeveloped 18S probe (Applied Biosystems, Weiterstadt, Germany). The following gene-specific primers were used: IKKe: forward, 5'-GTCAGCACCGGCCAAACAGG-A3'; reverse, 5'-TCTCCACCTGGAATAGCTT-3'; COX-2: forward, 5'-AGAGTATGATGCTGCTCTT-3'; reverse, 5'-GGACGCAACCACCTGCT-3'; iNOS: forward, 5'-CCAGGGCCCTCACCACAC-3'; reverse, 5'-CTCTAGAGTCGTGCACACAGGG-3'; MMP-9: forward, 5'-GAAAGGACACCCCTGGTGT-3'; reverse, 5'-AGAGTACTGCTGCTCAGGGA-3'; c-fos: forward, 5'-ACCATGATGTTCTCGGTGTTTCAAA-3'; reverse, 5'-GCTGGTTGAGATGCGTGACAC-3'; TLR4: forward, 5'-ATGGCATGTCCTACACACC-3'; reverse, 5'-GAGGCAATTTCGTTGACCCACA-3'.

The cycle number at which the fluorescence signals cross a defined threshold (Ct-value) is proportional to the number of RNA copies present at the start of the PCR. The threshold cycle number for the specific mRNA was normalized by subtracting the Ct value of 18S from the Ct value of IKKe, COX-2, iNOS, MMP-9, c-fos, or TLR4 of the same sample. Relative threshold (Ct-value) is proportional to the number of RNA copies present at a specific primary Ab and HRP-conjugated secondary Ab. The colorimetric reactions and expressed as fold change of a reference control sample (uninflamed and the noninflamed control paw was used to assess the inflammatory paw edema).

Transcription-factor analysis

Nuclear extracts from spinal cord and DRG were prepared using a commercially available Nuclear Extract Kit, according to the manufacturer’s instructions (Active Motif, Rixensart, Belgium). These nuclear extracts were then subjected to TransAM NF-κB-p65 and IRF-3 transcription factor ELISAs, according to the manufacturer’s instructions (Active Motif). Brittle membrane protein was allowed to bind to an oligonucleotide-coated plate. IRF-3 or NF-κB-p65 was detected by incubation with specific primary Abs and HRP-conjugated secondary Ab. The colorimetric read-out was measured photometrically and is proportional to transcription factor activity.

Cytokine ELISA

ELISA kits for the analysis of TNF-α or IL-1β were purchased from Biotrend (Cologne, Germany; Assay Designs, mouse enzyme immune assays). For the assessment of TNF-α concentrations, 30 μg spinal cord protein extracts from IKKe knockout (KO) and WT mice disected 5 h after injection of zymosan into one hind paw were used. Because no measurable results could be obtained for IL-1β from spinal cord protein extracts, we used serum from the respective mice to analyze this cytokine. ELISAs were performed, according to the manufacturer’s instructions.

Behavioral testing

IKKe−/− and IKKe+/+ littermates were used in all behavioral tests. Animals were habituated to the experimental room and were investigated by an observer blinded to the genotype.

Rota Rod test. Motor coordination was assessed with a Rota Rod Treadmill for mice (Ugo Basile, Comerio, Italy) at a constant rotating speed of 32 rpm. All mice had five training sessions before the day of the experiment. The fall-off latency was averaged from five tests. The upper cut-off time was 90 s.

Mechanical sensitivity. Paw-withdrawal latency to mechanical stimulation was assessed with an automated testing device consisting of a steel rod that is pressed against the plantar surface of the paw with increasing force until the paw is withdrawn (Dynamic Plantar Aesthesiometer; Ugo Basile, Varese, Italy). The maximum force was set at 5 × g to prevent tissue damage, and the ramp speed was 0.5 g/s (cut-off, 20 s). Mice were placed in test cages with a metal grid bottom. They were kept in the test cages for 1 h to allow accommodation. The paw-withdrawal latency was obtained as the mean of four to six consecutive trials at each time point.

Hot-plate test. Animals were placed into a Plexiglas cylinder with a heated plate maintained at 52 ± 0.2°C (Ugo Basile), and the latency to jump or shake/flutter of a hind paw was recorded. Each animal was tested only once, because repeated testing in this assay can lead to latency changes (19). The cut-off time was 30 s.

Formalin test. The formalin test was performed, as described (20). Briefly, mice were placed in a Plexiglas cage and were allowed to habituate for 30 min. Twenty microliters of a 5% formaldehyde solution (formalin) was injected s.c. into the dorsal surface of the left hind paw. The time spent licking the formalin-injected paw was recorded in 5-min intervals up to 45 min, beginning immediately after formalin injection.

Zymosan-induced paw inflammation, mechanical hyperalgesia. Paw-withdrawal latency was assessed using a Dynamic Plantar Aesthesiometer, as described above. After baseline measurements, hind paw inflammation was induced by s.c. injection of 20 μl a 10 mg/ml zymosan A (Sigma-Aldrich, Munich, Germany) suspension in PBS (0.1 M pH 7.4) into the mid-plantar region of the left hind paw (21). The mean of four consecutive trials, with 10-s intervals, was determined hourly up to 8 h, as well as at 24 and 48 h after zymosan injection.

At the end of the observation period (48 h after zymosan injection), animals were deeply anesthetized with isoflurane and killed by cardiac puncture. Both hind paws were cut and weighed, and the difference between the inflamed and the noninflamed control paw was used to assess the inflammatory paw edema.

Data analysis

Statistical evaluation was done with SPSS 17.0 for Windows. Data are presented as mean ± SEM. Data were either compared by univariate ANOVA, with subsequent t tests using a Bonferroni a-correction for multiple comparisons, or by the Student t test. For analysis of inflammatory hyperalgesia in the zymosan-induced paw inflammation and the formalin test, repeated-measures ANOVA was performed. For all tests, p < 0.05 was considered statistically significant.

Results

IKKe expression and regulation

IKKe mRNA and protein are constitutively expressed in the spinal cord of C57BL/6 mice, as assessed by TaqMan real-time PCR and Western blot analysis. Inflammatory noxious stimulation induced a significant upregulation of mRNA and protein levels at all indicated time points after zymosan injection into the hind paws (Fig. 1A, 1B). In situ hybridization of the spinal cord showed a constitutive distribution of IKKe mRNA throughout the gray matter of the spinal cord and an inflammation-induced increase in IKKe mRNA, which was most intense in the dorsal horn where the primary afferent neurons synaptically transmit the nociceptive signal to secondary neurons (Fig. 1C). In DRG, we also observed a constitutive IKKe mRNA and protein expression that was enhanced after peripheral noxious stimulation (Fig. 1D, 1E).

To clarify in which cells basal IKKe is expressed, we performed in situ hybridization with subsequent immunostainings with established cell markers. Abundant IKKe staining was observed in laminae I and II in the spinal cord. IKKe was also expressed in neurons with NF200 immunoreactivity but not in astrocytes of the spinal cord (Supplemental Fig. 1A, 1B). In DRG, IKKe also colocalized with NF200 and isolecitin B4, indicating its expression in neuronal cells (Supplemental Fig. 1C, 1D). Immunofluorescence experiments with markers for microglia and leukocytes (CD45) revealed no expression of IKKes in these cell types (data not shown). To further define the expression of IKKe and its regulation after inflammatory stimulation in different cell types, we investigated primary neurons, astrocytes, and microglia. Western blot analysis revealed only low protein levels of IKKe in all cell types. However, after stimulation with proinflammatory agents, the protein expression significantly increased in neurons, astrocytes, and microglia, indicating that neurons and glia contribute to IKKe up-regulation in the nervous system upon peripheral inflammatory stimulation (Fig. 2).

IKKe KO mice show normal motor function and acute noiception

The Rota Rod test was performed to rule out motor function deficits that may interfere with nociceptive testing. WT and IKKe−/− mice were able to balance on the rotating rod up to the cut-off time of...
90 s, demonstrating that the genetic modification does not impair their motor functions. We used Hot Plate and Dynamic Plantar tests to assess the impact of the IKKε deletion on acute thermal and mechanical nociception. The results of both tests revealed no differences between WT and IKKε−/− mice (Hot Plate: 14.82 ± 0.55 s and 14.60 ± 0.95 s, respectively; Dynamic Plantar: 8.57 ± 0.28 s and 8.38 ± 0.55 s, respectively), indicating that the physiologically important immediate response to acute noxious thermal and mechanical stimulation was intact in IKKε−/− mice.

Because IKKε shows homology to other I-kB kinases, and a systemic KO of genes is frequently associated with compensatory regulation of similar proteins, we assessed the protein levels of IKKα, IKKβ, and TBK1 in spinal cord protein extracts of IKKε KO and WT mice. The results of the Western blot analysis showed equal protein expression in both genotypes for all kinases tested, suggesting that these proteins were not compensatory regulated in IKKε KO mice (data not shown).

IKKε deficiency attenuates the nociceptive response in inflammatory pain models

The zymosan-induced paw inflammation model was used to assess inflammatory hyperalgesia. In behavioral experiments, WT mice showed a strong decrease in paw-withdrawal latencies upon mechanical stimulation after injection of zymosan, which lasted until the end of the observation period at 48 h, indicating inflammatory hyperalgesia. In the first 5 h after zymosan injection, there were no differences between WT and IKKε−/− mice. However, in accordance with the IKKε mRNA and protein regulations, the nociceptive response curves started to diverge at 5 h, and latencies returned almost to baseline in IKKε-deficient mice at 48 h after zymosan injection (*p < 0.05, repeated-measures ANOVA) (Fig. 3A). To assess whether the behavioral differences between WT and IKKε KO mice after zymosan injection were due to differences in the release of different proinflammatory cytokines, we analyzed TNF-α and IL-1β concentrations 5 h after zymosan injection. TNF-α levels in the spinal cord were decreased in IKKε−/− mice compared with IKKε−/+ mice (KO, 212.1 ± 26.2 pg/mg protein; WT, 311.7 ± 47.2 pg/mg protein), indicating that TNF-α might be involved in the decreased nociceptive response in KO mice. IL-1β concentrations in spinal cord protein extracts were below the quantification limit. Therefore, IL-1β levels were additionally measured in the serum, where they did not differ between the genotypes (WT, 66.5 ± 16.2 pg/ml; KO, 62.8 ± 8.9 pg/ml).
The zymosan-evoked paw edema, which was analyzed by weighing the inflamed paw compared with the untreated paw at the end of the observation period, did not differ between genotypes (WT, 0.372 ± 0.099 g; IKKε2/2, 0.318 ± 0.093 g), suggesting that the antinociceptive effects are not solely mediated by the anti-inflammatory effects of NF-κB inhibition.

We applied the formalin test as a second model of inflammatory pain. IKKε mRNA, as well as protein levels, were also upregulated in the spinal cord and DRG after peripheral injection of formalin, supporting the results obtained in the zymosan model (Supplemental Fig. 2). Injection of formalin into one hind paw of WT mice induced the typical biphasic paw-licking behavior. Notably, the nociceptive behavior was reduced in IKKε2/2 mice (Fig. 3B).

Statistical analysis revealed that IKKε2/2 mice showed a similar response in the first phase but spent significantly less time licking the formalin-injected hind paw in the second phase of the formalin assay compared with WT mice, suggesting that IKKε contributes to formalin-evoked C-fiber sensitization of pain pathways. Local injection of the IKKε inhibitor BX795 into the spinal cord of C57BL/6 mice (1.5 mg/kg body weight, i.t.) attenuated nociceptive behavior in the formalin test and, hence, provided similar pain protection as did the deletion of IKKε (Fig. 3C). BX 795 concentrations in the lumbar spinal cord were assessed by liquid chromatography–mass spectrometry/mass spectrometry analysis and reached 3.8 ± 1.0 ng/mg tissue, which is in a concentration range that selectively inhibits the IKKε/TBK1 complex (18).
Regulation of NF-κB and IRF-3 activity

NF-κB p65 and IRF-3 transcription factor activity have been analyzed in nuclear extracts from spinal cord tissue. In WT mice, we observed a significant increase in p65 DNA-binding activity in the spinal cord 2 h after formalin injection. This increase was completely abolished in IKKe KO mice. The basal level of NF-κB activity in IKKe−/− mice was similar to that of WT mice (Fig. 4A). We found only very low basal p65 activity in DRG tissue, which was slightly higher in IKKe KO animals. After formalin treatment, we observed similar effects as shown in the spinal cord extracts (Fig. 4B). Based on these data, we performed cell-culture experiments in RAW 264.7 macrophages and downregulated IKKe expression by means of RNA interference. IKKe siRNA transfection led to a stable 60–80% downregulation of IKKe protein levels that lasted for ≥48 h. Western blot analysis of LPS-stimulated control cells revealed an immediate upregulation of phosphorylated p65-Ser536 after 2 and 5 min. Phosphorylation of p65 did not occur in macrophages transfected with IKKe siRNA.

FIGURE 4. Regulation of NF-κB and IRF-3 activation. A and B, p65 transcription factor activity, as assessed by TransAM transcription factor ELISA. Nuclear extracts of the spinal cord (A) and the DRG (B) of WT and IKKe KO mice were prepared from control mice and mice 2 h after injection of formalin into the hind paws (n = three mice/group); darker columns, control; lighter columns, 2-h formalin. The insets show the basal NF-κB activity in spinal cord and DRG of WT and IKKe KO mice. C, Western blot showing serine 536 phosphorylation of p65 in LPS-stimulated RAW 264.7 macrophages with (gray columns) and without (black columns) treatment with IKKe-siRNA. D, Western blot showing IKKe protein levels after different treatments of RAW 264.7 cells. Cells were transfected with siRNA for 48 h and then treated with LPS for 24 h. The blots show a representative result; the diagram shows the densitometric analysis of three independent experiments. E, IRF-3 transcription factor activity, as assessed by TransAM transcription factor ELISA. Nuclear extracts of the spinal cord of naive WT mice, as well as 30 min and 2 h after injection of formalin in the hind paws (n = 3 mice/group). *p < 0.05, **p < 0.01, ***p < 0.001. #, scrambled siRNA; C, control; TR, transfection reagent.
(Fig. 4C, 4D). These results indicated that IKKe is involved in quick stimulus-evoked NF-κB activation and, therefore, might also contribute to early effects in the animal models.

IRF-3 transcription factor activity in the spinal cord was not affected 30 and 120 min after formalin injection into the hind paws (Fig. 4E), suggesting that IFN signaling and IRF-3 were not involved in formalin-induced nociception.

Regulation of NF-κB–dependent and -independent genes

In addition to p65 DNA-binding activity, we analyzed the regulation of the NF-κB–dependent “pain-relevant” genes COX-2, iNOS, and MMP-9 in the spinal cord (Fig. 5) after formalin injection by real-time PCR. Formalin injection evoked a significant upregulation of all three transcripts 2 h after formalin injection in WT animals. Interestingly, the induction of COX-2, iNOS, and MMP-9 mRNA was completely abolished in IKKeε−/− mice. To analyze whether these effects were limited to NF-κB–dependent genes, we further investigated the regulation of c-fos and TLR4, which are NF-κB independent but also upregulated in inflammatory processes. Accordingly, their expression increased 2 h after formalin injection in WT mice. In contrast to COX-2, iNOS, and MMP-9, this increase was not disturbed in IKKeε−/− mice, indicating that a KO of IKKe affected only NF-κB–regulated genes (Fig. 5). Baseline levels of all mRNAs investigated did not differ between the genotypes (data not shown).

Because mRNA analyses were performed in complete spinal cord extracts, the cellular source remained elusive. Therefore, we investigated mRNA expression of COX-2 and iNOS in primary neuron, astrocyte, and microglia cell culture by quantitative RT-PCR and performed communofluorescence studies for iNOS in the spinal cord. We found low levels of COX-2 and iNOS mRNA in untreated primary cells. Treatment with a cytokine mix for 1 and 6 h led to a time-dependent increase of these genes in all three cell types, which was most pronounced for iNOS in astrocytes and microglia 6 h after stimulation (Supplemental Fig. 3). In accordance with these cell-culture results, we found low levels of iNOS in spinal cord slices of untreated control mice, which increased in astrocytes and microglia 24 h after formalin injection into the hind paw (Supplemental Fig. 4). In summary, these results indicated that, similarly to IKKe, its downstream targets are regulated in a number of different cells in the nervous system that cooperate in the processing of the painful inflammatory response.

Discussion

The present study was designed to clarify whether the recently detected IKKe is involved in inflammatory nociception and, if yes, whether this process is mediated by modulation of NF-κB activity. We showed that IKKe mRNA and protein are expressed in DRG and spinal cord and are upregulated during paw inflammation. Neurons and glia apparently contribute to this adaptation because we observed an upregulation of IKKe protein in primary cultured neurons, astrocytes, and microglia upon inflammatory stimulation. IKKe-deficient mice show attenuated nociceptive behavior in inflammatory models. This effect could be mimicked pharmacologically in C57BL/6 mice by treatment with the IKKe inhibitor BX795. From these results, we inferred that IKKe at basal levels is involved in early inflammatory nociception, as shown in the formalin test, whereas its upregulation contributes to the sensitization of the nervous system during inflammation and the manifestation of hyperalgesia, as observed in the late phase of zymosan-induced paw inflammation. We further showed that IKKe deficiency abolishes inflammation-evoked NF-κB activation and DNA-binding activity and prevents upregulation of NF-κB–dependent proinflammatory genes. Therefore, in contrast to former studies that mainly focused on IKKe as an antiviral IFN-regulating kinase, our results suggested that the in vivo effects of IKKe in inflammatory pain are mediated through NF-κB–signaling cascades.

We found expression of IKKe in fibers in the superficial dorsal horn of the spinal cord and the isolecitin B4+ primary C-fiber afferent neurons of the DRG. This suggested a participation of IKKe in nociceptive processing, because isolecitin B4 defines a population of nociceptive small-diameter, nonmyelinated DRG neurons that essentially contribute to peripheral sensitization and the development of inflammatory hyperalgesia (22). In contrast, IKKe also colocalized with NF200+ large nonnociceptive neurons and seems to be pan-neuronal in the DRG, indicating that, in addition to its potential role in nociception, it might fulfill other functions in the nervous system. The abundant distribution of IKKe in nociceptive and nonnociceptive neurons of the DRG and the spinal cord is in line with the pan-neuronal expression of NF-κB at these sites and suggested that baseline IKKe is involved in the physiological constitutive NF-κB activation state in DRG and spinal cord neurons (23). Irrespective of these physiological functions, IKKe activation upon noxious stimulation of the hind paws and subsequent NF-κB activation apparently contribute to inflammatory

![FIGURE 5. Regulation of NF-κB–dependent and -independent genes in the spinal cord. Quantitative RT-PCR (TaqMan) of the NF-κB–dependent genes COX-2, iNOS, and MMP-9 and the NF-κB–dependent genes c-fos and TLR4. The columns show relative mRNA levels in the spinal cords of mice 2 h after formalin injection into a hind paw. mRNA levels of the spinal cord of untreated control mice were set as 1. 18S-RNA was used as internal standard (n = 4 mice/group). Quantitative RT-PCRs were run twice in triplicate. Dark columns, WT; bright columns, IKKeε−/−. ***p < 0.001, **p < 0.01, *p < 0.05 WT versus knockout; †p < 0.05, ‡‡p < 0.01, §§§p < 0.001, control versus 2 h formalin.](http://www.jimmunol.org/content/prod/189/5/2623/F5.large.jpg)
hyperalgesia supported by results in two models of inflammatory nociception: the formalin assay, which involves a sensitization of C-fiber neurons and synapses in the second phase (24), and the zymosan-induced paw inflammation model, which represents persistent inflammatory hyperalgesia (25, 26). Our data indicated that IKKe is a modulator of inflammatory sensitization but does not affect acute physiological pain, because IKKe deficiency did not affect responses to acute heat or mechanical stimuli or the first phase of the formalin assay, which is due to chemical stimulation of A-fiber nociceptive neurons (27). The inhibitory effects of IKKe deletion on inflammatory nociception is in accordance with studies that showed that IKKe is upregulated in inflamed joint tissue in patients with rheumatoid arthritis and osteoarthritis (15, 16), modulated by proinflammatory stimuli, and responsible for the regulation of several proinflammatory genes (14). It might be suggested that the depletion of IKKe is compensated by upregulation of other IKKs. However, we found that protein levels of IKKα, IKKB, and TBK1 were similar in WT and IKKe KO mice. Therefore, compensatory protein regulations are unlikely. Furthermore, the antinociceptive effect in two inflammatory models is apparently existent, and the results from KO mice could be confirmed in experiments using the IKKe inhibitor BX795, which leads to similar effects in the formalin assay. Therefore, a compensatory regulation of other IKKs can be excluded.

The role of IKKe as an NF-κB-activating kinase has been controversial in recent years. Several reports indicated that IKKe is not involved in NF-κB signaling and plays its major role in the regulation of IFN-β, whereas others described coordinated regulation of both IFN regulatory factors and NF-κB (reviewed in Refs. 3, 28). On the one hand, our data indicated that IRF-3 is not activated during inflammatory hyperalgesia and, therefore, is unlikely to substantially contribute to nociceptive sensitization in these models. On the other hand, we showed that formalin-induced NF-κB activation in the spinal cord is almost completely abrogated in IKKe KO mice, which were also devoid of an upregulation of the proinflammatory factors COX-2, iNOS, and MMP-9. These enzymes are typically NF-κB-regulated genes that contribute to inflammatory nociception (29–32). Moreover, COX-2, MMP-9, and iNOS have no binding sites for IRF-3 or -7 that contribute to inflammatory nociception (29–32). Moreover, induced NF-κB activation in the spinal cord is almost completely abrogated in IKKe KO mice, which were also devoid of an upregulation of the proinflammatory factors COX-2, iNOS, and MMP-9. These enzymes are typically NF-κB-regulated genes that contribute to inflammatory nociception (29–32).

In summary, our data suggest that IKKe is a modulator of inflammatory sensitization but does not affect acute physiological pain, because IKKe mice are viable and fertile (17), and we and other investigators showed that IKKe is involved in inflammatory processes, this kinase might be the more promising target for anti-inflammatory therapy. However, much additional work is needed to confirm its potential usefulness as a drug target. In summary, our data suggest that IKKe is involved in the development and maintenance of inflammatory hyperalgesia by activation of the NF-κB–signaling pathway.

Acknowledgments
We thank Prof. Shizuo Akira and Osama Takeuchi for providing IKKe−/− mice. We also thank Sabine Kupis, Katharina Spieth, Annett Häussler, and Sandra Labocha for excellent technical assistance.

Disclosures
The authors have no financial conflicts of interest.

References
18. Clark, L., K. Plater, M. Peggie, and P. Cohen. 2009. Use of the pharmacological inhibitor BX795 to study the regulation and physiological roles of TBK1 and...

