Soluble Proteins Induce Strong CD8⁺ T Cell and Antibody Responses through Electrostatic Association with Simple Cationic or Anionic Lipopeptides That Target TLR2

Brendon Y. Chua, David Pejoski, Stephen J. Turner, Weiguang Zeng and David C. Jackson

J Immunol 2011; 187:1692-1701; Prepublished online 8 July 2011;
doi: 10.4049/jimmunol.1100486
http://www.jimmunol.org/content/187/4/1692

References

This article cites 37 articles, 21 of which you can access for free at:
http://www.jimmunol.org/content/187/4/1692.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Soluble Proteins Induce Strong CD8+ T Cell and Antibody Responses through Electrostatic Association with Simple Cationic or Anionic Lipopeptides That Target TLR2

Brendon Y. Chua, David Pejoski, Stephen J. Turner, Weiguang Zeng, and David C. Jackson

The low immunogenicity exhibited by most soluble proteins is generally due to the absence of molecular signatures that are recognized by the immune system as dangerous. In this study, we show that electrostatic binding of synthetic branched cationic or anionic lipopeptides that contain the TLR-2 agonist Pam3Cys markedly enhance a protein’s immunogenicity. Binding of a charged lipopeptide to oppositely charged protein Ags resulted in the formation of stable complexes and occurs at physiologic pH and salt concentrations. The induction of cell-mediated responses is dependent on the electrostatic binding of lipopeptide to the protein, with no CD8+ T cells being elicited when protein and lipopeptide possessed the same electrical charge. The CD8+ T cells elicited after vaccination with lipopeptide–protein Ag complexes produced proinflammatory cytokines, exhibited in vivo lytic activity, and protected mice from challenge with an infectious chimeric influenza virus containing a single OVA epitope as part of the influenza neuraminidase protein. Induction of a CD8+ T cell response correlated with the ability of lipopeptide to facilitate Ag uptake by DCs followed by trafficking of Ag-bearing cells into draining lymph nodes. Oppositely charged but not similarly charged lipopeptides were more effective in DC uptake and trafficking. Very high protein-specific Ab titers were also achieved by vaccination with complexes composed of oppositely charged lipopeptide and protein, whereas vaccination with similarly charged constituents resulted in significant but lower Ab titers. Regardless of whether similarly or oppositely charged lipopeptides were used in the induction of Ab, vaccination generated dominant IgG1 isotype Abs rather than IgG2a.

Generally, soluble protein Ags are poorly immunogenic when administered in the absence of adjuvants or through the use of sophisticated delivery modalities, as measured by their ability to elicit Ab and especially CD8+ T cells. This property has been attributed to size (i.e., they are nonparticulate), susceptibility to proteolytic degradation in serum, and a lack of molecular signatures or “danger signals” that dictate a response from the innate immune system. The shortcoming of poor immunogenicity of protein and subunit-based vaccines requires their coadministration with an adjuvant to elicit an immune response, a requirement that is of considerable importance to the vaccine industry. Of the many experimental adjuvants currently available, only squalene oil water emulsions and aluminum-based salt adjuvants have been approved for human use (1, 2). The use of these adjuvants, however, is usually limited by the fact that although they may be effective at eliciting humoral responses, they are often ineffective at stimulating cell-mediated immunity, particularly by CD8+ T cell. These limitations apply to many current vaccine strategies and can be attributed to the inadequate delivery of Ag to the appropriate APC, particularly the dendritic cell (DC) and subsequently to the appropriate Ag presentation pathway. Together with the lack of danger signals that are required to activate DCs for T cell priming, the poor immunogenicity of soluble protein vaccine candidates poses a significant challenge to their rationale.

Cellular immune responses are particularly important for generating protective immunity against a number of current infectious diseases (e.g., HIV, tuberculosis, malaria) (3, 4) that are causing high global mortality rates and for which there are either no or ineffective vaccines. A key requirement for the development of novel and effective vaccine strategies against such indications must be the development of robust vaccine technologies that are capable of inducing both humoral and cell-mediated immune responses.

Antigenic receptors that are expressed by DCs, such as the TLR family, have evolved to recognize a diverse range of microbial components. The engagement of TLRs by their appropriate ligands or agonists initiates a cascade of events that can result in the induction of Ab and cell-mediated responses. The use of TLR agonists as adjuvants to increase the efficacy and response to immunization with an Ag are well documented (5, 6) and form the vanguard of a rationally designed, new generation of vaccines. In many of these studies, vaccine formulations consisting of an admixture of Ag and TLR agonist are used, whereas others have used Ags covalently attached to TLR agonists. Some examples include Pam3CysSK4-conjugated-carbohydrate (7) and peptide-based (8) Ags for targeting TLR1/2 heterodimer, proteins linked to CpG oligodeoxynucleotides (9–11) and to DNA plasmids (12) for targeting TLR9, and imidazoquinoline-conjugated proteins (13, 14) for delivery to TLR 7/8.

Although the use of these agonists, whether admixed or covalently coupled to Ags, are effective at promoting vaccine efficacy,
covalent coupling has proved to be superior to eliciting Th1-type cell-mediated immunity and enhancing cross-presentation of Ags (11, 12, 15). This improvement in immunogenicity is attributed to the simultaneous delivery of both Ag and agonist to DCs, which leads to enhanced uptake, activation (16), and subsequent Ag presentation to T cells (17). We have shown previously that the covalent attachment of dipalmityl-5-glycerol-cysteine (Pam2-Cys), a synthetic analog of macrophage-activating lipopeptide-2 derived from the cytoplasmic membrane of *Mycoplasma fermen-
tants* (18), to peptide-epitopes can facilitate their delivery into DCs via TLR2 and induce the activation of transcription factors including NF-κB leading to DC maturation, secretion of proin-
flammatory cytokines, and eventual activation of Ag-specific naïve T cells. Use of this TLR2 agonist has allowed us to design vaccine candidates that elicit protective humoral and cellular immune responses against pathogenic infection or tumorigenic challenge (8, 19–22).

With the aim of developing novel ways of adjuvanting other-
wise nonimmunogenic and soluble proteins, we investigated whether the electrostatic linkage of Pam2-Cys to protein Ags as opposed to a covalent conjugation results in the enhancement of protein immunogenicity. Robust, noncovalent association between protein and adjuvant would provide a manufacturing advantage compared with the chemistries involved for covalent attachment and would provide a “plug and play” approach to vaccine prepar-
ation. To facilitate firm association of Pam2Cys with protein Ag, the lipid moiety was assembled with a branched cationic ar-
ginine or an anionic glutamic acid-based structure designed to bind electrostatically to negatively or positively charged Ags, re-
spectively. The physicochemical interactions between these simple lipopeptides and protein Ags were studied, and the uptake of Pam2-Cys–Ag complexes by DCs was investigated. The ensuing Ab- and cell-mediated Ag-specific responses were evaluated by measuring Ab titer and determining the ability of the CDS8+ T cells that were induced to produce cytokines and protect inoculated mice against challenge with a live infectious chimeric influenza virus engineered to contain the OVA CTL epitope SIINFEKL in its neuraminidase protein.

Materials and Methods

Synthesis of cationic and anionic lipopeptides

The synthesis of a branched cationic peptide construct containing four N-
terminal arginine (R4) using traditional Fmoc chemistry has been described previously (23). Synthesis was performed manually using PEG-S RAM solid support (Rapp Polymere, Tübingen, Germany; substitution factor 0.27 mmol/g). Fmoc-lysine(Mtt)-OH (Novabiochem, Läufelfingen, Swit-
zerland) was first coupled to the support and the Fmoc protecting group present on the α-amino group then removed, and Fmoc-lysine(Fmoc)-OH was then coupled to the exposed N-terminal amino group. Subsequent deprotection and acylation of another round of Fmoc-lysine(Fmoc)-OH yielded four branch points to which four arginine residues were then coupled to generate R4, which has an overall positive charge of 8.

Assembly of a branched anionic peptide construct containing eight N-
terminal glutamic acid residues was performed either manually or on a CEM Liberty Microwave peptide synthesizer (DKSH, Hallam, VIC, Australia). Two tiers of Fmoc-lysine(Fmoc)-OH were incorporated into a branched lysine peptide to generate eight branch points to which glutama-
ic acid residues were coupled. The primary amino groups of the glutamic acid residues were then acetylated using a 20-fold excess of acetic anhy-
dride and a 40-fold excess of diisopropylethylamine (Sigma, Castle Hill, NSW, Australia). The product (E8) had an overall negative charge of 8.

Lipidation of R4 and E8 was performed by removing the Mtt protective group present on the ε-amino group of the C-terminal lysine, followed by acylation of the exposed ε-amino group with two serially added serine residues. The Pam2-Cys lipid moiety was then coupled according to Zeng et al. (24) to generate R4(Pam2Cys) or E8(Pam2Cys) (Fig. 1A). To prevent lipidation of the N-terminal positions of R4, the N-terminal amino groups of the arginines were first acylated using a 10-fold molar excess of di-
tert-
butyl dicarbonate (Fluka Chemika, Buchs, Switzerland) in the presence of diisopropylethylamine.

After assembly, lipopeptides were cleaved from the solid phase support, and all side-chain protecting groups removed with 88% trifluoroacetic acid (TFA), 5% phenol, 2% triisopropylsiline, and 5% water for 3 h at room temperature. Lipopeptides were analyzed by reversed-phase (RP) HPLC using a Vydac C4 column (4.6 × 300 mm) installed in a Waters HPLC system. The chromatogram was developed at a flow rate of 1 ml/min using 0.1% TFA in H2O and 0.1% TFA in acetonitrile as the limit solvent. Lipopeptides were purified if necessary, with all purified products presented as a single major peak on analytical RP-HPLC, and had the expected mass when analyzed using an Agilent series 1100 ion trap mass spectrometer.

Sedimentation and HPLC analysis of lipopeptide–Ag complexes

Increasing amounts of the branched R4(Pam2Cys) or E8(Pam2Cys) lipope-
peptides were mixed with 1 nmol of OVA or hen egg lysozyme (HEL) in a total volume of 100 μl PBS in a flat-bottom 96-well plate. The opales-
cence of the solution was then measured by determining the OD at 450 nm.

Mixtures containing 100 nmol of either R4(Pam2Cys) or E8(Pam2Cys) and 1 nmol OVA or HEL in a total volume of 100 μl PBS were centrifuged (12 × 10^3 g) for a period of 5 min, and the distribution of lipopeptide and Ag present in the supernatant and sedimented material was performed by RP-HPLC analysis. The material sedimented from solutions containing only lip-
opeptide, or protein or mixtures of both, was dissolved in a solution of 50% acetonitrile in water and before analysis by HPLC. The mass of the major peak was verified by mass spectrometry in all samples containing lipopeptides.

ELISAs

All experimental procedures involving animals were approved by the University of Melbourne’s animal ethics committee (animal ethics ap-
proval identification number 0707207). Groups of five female, 6–8-wk-old, BALB/c mice were inoculated subcutaneously in the base of the tail on day 0 and again on day 22 with saline containing different amounts of R4(Pam2Cys) or E8(Pam2Cys) lipopeptide added to 25 μg OVA or HEL in a total volume of 100 μl. Separate groups of mice also received OVA or HEL formulated as an emulsion [CFA (Sigma-Aldrich, St. Louis, MO)]. Sera were prepared from blood taken 3 wk after the primary inoculation and 2 wk after the secondary inoculation.

Flat-bottom-well polystyrene plates were coated with Ag (5 μg/ml) in PBS for 18–20 h at room temperature in a humidified atmosphere. The Ag was removed and BSA (10 mg/ml) in PBS added for 1 h before washing with PBS containing v/v 0.05% Tween-20 (Aldrich, Milwaukee, WI). Serial dilutions of sera obtained from immunized mice were added to wells and held overnight at room temperature. After washing, bound Ab was detected using HRP-conjugated rabbit anti-mouse IgG Abs (Dako, Glostrup, Denmark) or rat anti-mouse IgG1 and IgG2a Abs (Southern Biotech) in conjunction with enzyme substrate (0.2 mM 2,2′-azino-bis-3-
ethylbenzthiazoline-sulfonic acid in 50 mM citric acid containing 0.004% hydrogen peroxide).

The titers of Ab are expressed as the reciprocal of the highest dilution of serum required to achieve an OD of 0.2. All p values in this study were obtained using one-way ANOVA nonparametric statistical analysis per-
formed with Prism 4 (GraphPad Software).

Intracellular cytokine staining assay

For the measurement of Ag-specific cell-mediated immune responses follow-
 ing vaccination, groups of three female, 6–8-wk-old C57BL/6 mice were vaccinated subcutaneously in the base of the tail with a solution of saline containing different amounts of R4(Pam2Cys) or E8(Pam2Cys) added to 25 μg OVA in a volume of 100 μl per dose.

After 7 d, spleens were obtained from inoculated mice and splenocytes (1 × 10^6) derived from them were then exposed to the H2Kb restricted OVA-derived peptide epitope OVA257 (SIINFEKL) (1 μg/ml) in RPMI 1640 medium (Invi
trogen) supplemented with 10% heat inactivated FCS (CSL, Parkville, Victoria, Australia), gentamicin (12 mg/ml), 2 mM glutamine, 1 mM sodium pyruvate, penicillin (100 U/ml), streptomycin (100 μg/ml) and 55 μM 2-ME, Brefeldin A (1 μg/ml) in the form of BD GolgiPlug from the Cytofix/Cytoperm Plus Kit (Becton Dickinson) and recombiant IL-2 (10 U/ml; Roche, Mannheim, Germany). After 6 h, lymphocytes were washed with FACS Wash Buffer (1% FCS 5 mM EDTA in PBS) and stained with a PerCP-conjugated rat anti-mouse CD8 Ab (Clone 53-6.7; Becton Dickinson) according to the manufacturer’s instructions. Cells were washed once with Perm/Wash solution.
and stained with a FITC-conjugated rat anti-mouse IFN-γ Ab (Clone XMG1.2; Becton Dickinson) or an allophycocyanin-conjugated rat anti-mouse TNF-α Ab (Clone MP6-XT22; BioLegend) for 30 min at 4°C before flow cytometric analysis. Data analysis was performed using FlowJo software (Treestar, Ashland, OR). Live viable cells were gated based on their forward and side scattering properties, and analysis was performed on total of 1 × 10⁷ CD8⁺ cells.

In vivo cytotoxic T cell-killing assay

The in vivo cytotoxic activity of CTLs elicited in inoculated mice was measured using peptide-pulsed target cells. Splenocytes obtained from naive mice were either untreated or pulsed with peptide OVA257 or the unrelated H-2Kd peptide epitope NP147 (TYQRTRALV), which is derived from influenza virus nucleoprotein. Peptide-pulsed cell populations were incubated with 1 μg/ml peptide at 37°C in HBSS for 60 min. The untreated cell population was also incubated under similar conditions, but in the absence of any peptide. Cells were then washed once in supplemented RPMI 1640 medium and then resuspended in 20 ml of 0.1% BSA in PBS. Each cell population was labeled at 37°C for 10 min with 5- (and 6-) carboxyfluorescein diacetate succinimidyl ester (CFSE; Molecular Probes, Eugene, OR) at a final concentration of 5 μM for the nonpulsed population, 1 μM for OVA257 pulsed populations and 100 nM for NP147 pulsed populations. Afterward, the cells were washed once with supplemented RPMI 1640 prior to determining cell numbers. An equal number (1 × 10⁷) of cells from each population was mixed together and injected i.v. into each test mouse. Specific lysis was assessed in organs 18 h after adoptive transfer of cells and analysis performed with flow cytometry. The percentage specific lysis of fluorescent target cells in each mouse was calculated according to the formula:

\[
\text{percentage specific lysis} = 1 - \left(\frac{r_{\text{naive}}}{r_{\text{vaccinated}}} \right) \times 100,
\]

where ratio \(r = \frac{\% \text{CFSE}_{\text{low cells}}}{\% \text{CFSE}_{\text{high cells}}} \)

Influenza virus challenge and lung virus assay

C57BL/6J mice were inoculated twice, 14 d apart, either subcutaneously in the base of tail or intranasally with 25 μg OVA alone or OVA preincubated with a 2-fold molar excess of R4(Pam2Cys). Mice were inoculated s.c. with a volume of 100 or 50 μl in the case of intranasal inoculation. Animals were challenged intranasally with 10⁴ PFU of A/HKx31 influenza virus containing the K6OVA257 epitope in the neuraminidase stalk (25) 9 d after receiving the second dose of Ag. Lymphocytes obtained from lung bronchoalveolar lavage (BAL) washes were obtained 5 d later by incising the trachea and inserting a plastic cannula with a 1-ml syringe attached. The respiratory tract was then washed with RPMI 1640 using three separate aliquots (1 ml), each being infused and withdrawn three times. OVA257-specific IFN-γ and TNF-α production by CD8⁺ T cells were then enumerated in an intracellular cytokine staining assay.

To determine lung viral titres, lungs of mice challenged with virus were homogenized using a tissue homogenizer in 3 ml RPMI and centrifuged at 300 × g for 5 min. Titers of virus in the lung supernatants were then determined using a Madin-Darby canine kidney plaque assay as described previously (26).

Labeling OVA with FITC

FITC (6 mg; Sigma-Aldrich) was dissolved in 100 μl DMSO (Sigma-Aldrich) and added in a drop-wise manner to 1 ml of 0.1 M phosphate buffer (pH 8.3) containing 6 mg OVA (Sigma-Aldrich) while being vortexed. This solution was held overnight at 4°C in a light-proof container. The fluoresceinated protein was then purified by gel permeation chromatography on a Superdex 75 10/300 GL column (Amersham Biosciences, Sweden) installed in an AKTA design FPLC system (Amersham Biosciences, Uppsala, Sweden). Fluoresceinated material was then concentrated using a Vivaspin 20 ultrafiltration spin column (Sartorius Stedim, Göttingen, Germany). The labeled protein in solution was determined using the expression:

\[
\text{protein concentration} (M) = \frac{A_{280} - (A_{\text{max}} \times CF)}{e},
\]

FIGURE 1. Schematic representation of the branched cationic lipopeptide R4(Pam2Cys) and the anionic lipopeptide E8(Pam2Cys) and precipitate for-
where A_{280} represents the absorbance of the labeled protein solution at a wavelength of 280 nm, A_{max} is the absorbance at 495 nm, CF is the correction factor of 0.3 to adjust for the amount of A_{280} contributed by FITC, and ε is the extinction coefficient of OVA ($E_{1\text{cm}1\%} = 6.99$).

Uptake of FITC–OVA by murine DCs

A line (D1 cells) of murine DCs was prepared and propagated according to Winzler et al. (27) as modified by Chua et al. (23). After a minimum of 21 d in culture, D1 cells were stained for MHCII using FITC-conjugated anti-IA/IE Ab (Clone M5/114.15.2; Becton Dickinson) and PE-conjugated CD11c (Clone 2G9; Becton Dickinson) prior to use. Cells (2×10^5) were seeded onto a Petri dish in 1 ml fresh D1 media containing 5 μg/ml of FITC-conjugated OVA (OVA–FITC) alone or with the same amount of OVA–FITC that had been preincubated with an equimolar amount of R4-(Pam2-Cys). Cells were harvested at various time points after exposure to OVA–FITC and washed extensively with FACS Wash (1% FCS per 5 mM EDTA in PBS). Extracellular fluorescence was quenched as performed previously (23) by the addition of an equal volume of 0.1 M citrate buffer (pH 4.0) containing 250 μg/ml trypan blue before analysis by flow cytometry.

FIGURE 2. HPLC analysis of protein-lipopeptide solutions. HPLC analysis was performed on supernatants (A–C, G–I) of solutions containing either 100 nmol of branched R4(Pam2Cys) or E8(Pam2Cys) lipopeptide (G), 1 nmol OVA (B), or HEL (H), a mixture of R4(Pam2Cys) and OVA (C) or E8(Pam2Cys) and HEL (I) in a total volume of 100 μl PBS following centrifugation (1.2 × 10^5 G). Sedimented material from solutions containing only lipopeptide (D, J), protein (E, K), or mixtures of both (F, L) were dissolved in a solution of 50% acetonitrile in water and then analyzed by HPLC. In all samples containing lipopeptides, the identity of the peak corresponding to the lipopeptide was verified by mass spectrometry.
cell selection using anti-CD11c microbeads according to the manufacturer’s instructions (Miltenyi Biotec, Bergisch Gladbach, Germany) prior to flow cytometric analysis for FITC uptake.

Results

Lipopeptide binding to protein is inhibited by high salt concentrations

Predicted isoelectric point values were used to determine the net electrical charge of OVA and HEL and were obtained using Lasergene 8.0 software (DNASTAR). For OVA the net charge is predicted to be -11, and for HEL the charge is $+8$. On the basis of these predicted charges and a knowledge of the charge exhibited by the synthetic lipopeptides, we predicted that R$_4$(Pam$_2$Cys) would bind to OVA, but not to HEL, and that E$_8$(Pam$_2$Cys) would bind to HEL and not to OVA.

These predictions were supported by experiments in which increasing amounts of lipopeptide, either R$_4$(Pam$_2$Cys) or E$_8$(Pam$_2$Cys), were added to a constant amount of OVA or HEL, and the OD of the resulting solutions were determined (Fig. 1B). In both cases where protein and lipopeptide had opposite charge, the solutions showed increasing opalescence tending to a plateau as the appropriate lipopeptide was added. These results suggested that lipopeptide–protein complexes were formed through electrostatic interactions.

Support for this idea came from experiments in which quantities of lipopeptide and protein that would generate the greatest amount of complex were mixed in the presence of increasing amounts of sodium chloride, and the amounts of complexes formed were measured by determination of OD. The results (Fig. 1C) showed that increasing concentrations of NaCl resulted in a progressive decrease in OD until negligible readings were obtained at $\sim 1\text{M}$ NaCl, suggesting an inability to form lipopeptide–protein complexes at this concentration.

The components of complexes formed between lipopeptide and protein Ag were identified by HPLC analysis carried out on the

FIGURE 3. Cell-mediated responses elicited by vaccination R$_4$(Pam$_2$Cys) or E$_8$(Pam$_2$Cys)-mixed OVA. A, Groups of C57BL/6J mice ($n = 3$ per group) were inoculated s.c. with 25 μg OVA alone or preincubated with a 5-fold molar excess of R$_4$(Pam$_2$Cys) or E$_8$(Pam$_2$Cys). Spleens of vaccinated animals were removed 7 d later, and IFN-γ and TNF-α secretion from OVA$_{257}$-specific CD$^8^+$ T cells were enumerated in an intracellular cytokine-secreting assay. Bar graphs show the total amount of Ag-specific cytokine secreting cells and is representative from two separate experiments. B, OVA$_{257}$-specific in vivo cytolytic responses were also assessed 7 d after vaccination by i.v. injections of CFSE$^\text{high}$ OVA$_{257}$-pulsed and CFSE$^\text{low}$ irrelevant peptide-pulsed splenocytes from naive mice. Spleens of vaccinated animals were removed 16 h later and analyzed for the presence of CFSE-labeled cells by flow cytometry. The percentage of specific target cell lysis was measured by determining the amount of CFSE$^\text{high}$ cells in relation of the CFSE$^\text{low}$ cells in each animal. The results are presented as the mean value and SD and are representative of two separate experiments. Mice were also inoculated with 25 μg OVA alone or preincubated with a 5- or 10-fold molar excess of R$_4$(Pam$_2$Cys). OVA$_{257}$-specific IFN-γ and TNF-α production from CD$^8^+$ T cells in the spleen (C) and in vivo cytolytic responses were then determined (D).

FIGURE 4. Lipopeptide-mediated enhancement of OVA dendritic cell uptake. A, CD11c$^+$ MHCII$^+$ splenocyte-derived cultured dendritic cells (2×10^5 cells) were incubated with 5 μg/ml of FITC-conjugated OVA (OVA–FITC) alone or preincubated with an equal amount of R$_4$(Pam$_2$Cys). Cells were harvested after 3 and 24 h, washed extensively, and treated with trypan blue to quench extracellular fluorescence before flow cytometric analysis to determine levels of intracellular green fluorescence. B, Cells were also examined under a confocal microscope for OVA–FITC (green) localization after staining with anti–MHCII-PE Ab (red) and DAPI (blue) without extracellular fluorescence quenching. Original magnification $\times100$. The presence of orange staining observed at the surface of OVA–FITC incubated cells is due to the colocalization of OVA–FITC and the PE-labeled anti-MHCII Ab.
supernatant and material sedimented from solutions containing lipopeptide only, protein Ag only, or a mixture of lipopeptide plus protein Ag. The results show that the supernatants obtained from solutions containing only lipopeptide or protein Ag contained most or all of the original component (Fig. 2A, 2B, 2G, 2H) with little or none of the material appearing in the sediment (Fig. 2D, 2E, 2J, 2K). In contrast, solutions containing both lipopeptide and protein Ag contained a significant amount of the protein Ag and lipopeptide in the sediment, indicating formation of macromolecular complexes between OVA and R4(Pam2Cys) (Fig. 2F) or HEL and E8(Pam2Cys) (Fig. 2L). The sizes of the peaks corresponding to the individual protein in the respective supernatant were significantly smaller than that present in the sedimented material, confirming that most of each protein Ag had associated with the appropriate lipopeptide forming a macromolecular complex.

Inoculation with lipopeptide–protein complexes elicits Ag-specific CD8⁺ cytotoxic T lymphocytes

C57BL/6J mice were inoculated with OVA mixed with lipopeptide. Seven days later the numbers of OVA₂₅⁷–₂₆₄-specific TNF-α⁺, IFN-γ⁺, and TNF-α⁺IFN-γ⁺ producing CD8⁺ T cells present in the spleen were determined in an intracellular cytokine staining assay. The presence of Ag-specific CTLs was also determined by measuring in vivo lysis of CFSE-labeled splenocytes derived from naive mice that had been pulsed with OVA₂₅⁷–₂₆₄ peptide. The presence of Ag-specific CTLs was also determined by measuring in vivo lysis of CFSE-labeled splenocytes derived from naive mice that had been pulsed with OVA₂₅⁷–₂₆₄ peptide.

The results (Fig. 3A) demonstrate that inoculation with R4(Pam2Cys) complexed with OVA resulted in the induction of CD8⁺ T cells secreting TNF-α only, IFN-γ only, and those producing both TNF-α and IFN-γ. Fewer CD8⁺ T cells producing TNF-α or IFN-γ only were induced after inoculation with OVA alone, and only a small population of TNF-α and IFN-γ producing CD8⁺ T cells were elicited after inoculation with OVA in the presence of E8(Pam2Cys). The results of an in vivo cytolytic assay (Fig. 3B) show that a strong cytolytic T cell response is also associated with inoculation with OVA in the presence of R4(Pam2Cys). The hierarchy of cytotoxic activities observed in the in vivo cytotoxicity assay paralleled the numbers of TNF-α⁺IFN-γ⁺–producing CD8⁺ T cells detected, although in the case of the in vitro cytotoxic activity, there was little significant difference observed between animals that received OVA alone and those that were inoculated with OVA in the presence of E8(Pam2Cys).

To further investigate the characteristics of the responses induced by R4(Pam2Cys)–OVA, mice were inoculated with OVA complexed with a 5:1 and 10:1 molar excess of lipopeptide to OVA, and numbers of cytokine-secreting CD8⁺ T cells present in the spleen were determined. Of the total number of cytokine-secreting cells elicited by inoculation with R4(Pam2Cys)–OVA complexes, significantly greater numbers of cells secreting TNF-α or IFN-γ and TNF-α and IFN-γ were elicited after inoculation with a 5:1 ratio of lipopeptide to protein compared with a 10:1 ratio of lipopeptide to protein (Fig. 3C). This trend was also reflected in the in vivo cytolytic responses in which lower levels of target cell lysis resulted when a 10:1 ratio of lipopeptide to protein (Fig. 3D).

Oppositely charged lipopeptide and protein Ag are efficiently taken up by DCs in vitro and in vivo

A key requirement for the induction of cell-mediated responses is that Ag is presented to T cells by APCs. We therefore determined the extent to which lipopeptide–protein complexes, formed by electrostatic interaction, were taken up by DCs.

The intracellular accumulation of noncomplexed or R4(Pam2Cys)-complexed OVA–FITC was assessed in vitro using D1 cells, a murine TLR2⁺ DC line derived from splenocytes (27). The results of an experiment in which the uptake of FITC-labeled OVA by DCs was measured at 3 and 24 h (Fig. 4A) shows that uptake occurred in the presence and absence of R4(Pam2Cys), but that the presence of lipopeptide caused more protein to be internalized. At each time point examined, approximately twice the amount of intracellular OVA–FITC was detected in cells incubated with R4(Pam2Cys)–OVA compared with those incubated with OVA–FITC alone. The uptake of both lipopeptide–OVA complexes and OVA alone occurred within 3 h of exposure, with maximum uptake achieved after 24 h. There was no further increase in intracellular accumulation of Ag after this time (data not shown).

Examination of cells by confocal microscopy (Fig. 4B) showed that in cells incubated with R4(Pam2Cys)–OVA complexes, the FITC–OVA was distributed within the cell cytoplasm apparently accumulated in vesicles. This finding was in contrast to the Ag distribution in

![FIGURE 5. Effect of lipopeptide charge on maturation of DCs, uptake of OVA, and in vivo trafficking to the draining lymph node.](http://www.jimmunol.org/)
Inoculation with R4(Pam2Cys)–protein complexes induces an OVA complexes exhibited biologic function, mice were inoculated with lipopeptide–Ag mixtures followed 24 h later by examination of the popliteal lymph nodes for cells containing FITC–OVA. The results (Fig. 5C) show that more FITC-positive cells were present in the draining lymph nodes of animals that had received R4(Pam2Cys) than in those that had received E8(Pam2Cys) or OVA alone.

A comparison of the levels of intracellular Ag present in DCs after incubation with OVA mixed with each lipopeptide, however, showed that R4(Pam2Cys) was considerably more effective than E8(Pam2Cys) at facilitating Ag uptake (Fig. 5B). In fact, the percentage of DCs exhibiting intracellular fluorescence after incubation with OVA mixed with E8(Pam2Cys) was not significantly different from that observed in cells exposed to OVA alone. To investigate whether the in vitro differences that we observed were reflected by in vivo differences, mice were inoculated in the footpad with lipopeptide–Ag mixtures followed 24 h later by examination of the popliteal lymph nodes for cells containing FITC–OVA. The results (Fig. 5C) show that more FITC-positive cells were present in the draining lymph nodes of animals that had received R4(Pam2Cys)–OVA complexes than in those that had received E8(Pam2Cys) or OVA alone.

Inoculation with R4(Pam2Cys)–protein complexes induces an accelerated clearance of chimeric OVA-influenza virus from the lung

To determine whether the CD8+ T cells induced by lipopeptide–OVA complexes exhibited biologic function, mice were inoculated with 106 or 104 PFU A/HK31 influenza virus containing the KbOVA257 epitope. Lymphocytes present in lung homogenates collected after challenge with influenza virus were determined by plaque formation. Each symbol represents the lung virus titer of an individual mouse. The percentage reduction in mean viral titer relative to the PBS control group is shown.

FIGURE 6. Influenza virus clearing responses in lungs of mice inoculated with lipopeptide–OVA complexes after virus challenge. Groups of C57BL/6 mice (n = 3 per group) were inoculated twice, 14 d apart, either s.c. in the base of tail or intranasally with 25 μg of OVA alone or OVA preincubated with a 2-fold molar excess of R4(Pam2Cys). Mice were inoculated s.c. with a volume of 100 or 50 μl in the case of intranasal inoculation. Animals were challenged intranasally with 106 PFU A/HK31 influenza virus containing the KbOVA257 epitope. A, Lymphocytes present in lung bronchoalveolar lavages were obtained 5 d later, and OVA257-specific IFN-γ and TNF-α production by CD8+ T cells was enumerated in an intracellular cytokine staining assay. Each bar and error bar represents the mean and SD of each group. B, Titers of influenza virus in lung homogenates collected after challenge with influenza virus were determined by plaque formation. Each symbol represents the lung virus titer of an individual mouse. C, The percentage reduction in mean viral titer relative to the PBS control group is shown.
viral titer. We conclude that the presence of increased numbers of activated T cells in the lungs of these mice and their ability to produce IFN-γ correlates with their ability to clear virus infection regardless of the vaccination routes examined.

Inoculation with lipopeptide–protein complexes elicits Ab

BALB/c mice were inoculated with OVA or HEL mixed with R₄(Pam₂Cys) or E₈(Pam₂Cys), respectively, at a 5:1 molar ratio of lipopeptide to protein. Ab titers in sera obtained after one or two doses of lipopeptide–protein Ag complex were then determined by ELISA.

Neither OVA nor HEL when administered alone in saline elicited significant titers of Abs after a single dose, but some Abs were apparent after the second dose, although the reproducibility in titer between individual animals was poor. Administration of these proteins with CFA, however, resulted in healthy Ab titers following primary and secondary inoculations, demonstrating that these proteins are strongly immunogenic under the right conditions.

In mice that received a single dose of OVA alone (Fig. 7A) or HEL alone (Fig. 7B), and in cases where the Ags were mixed with oppositely charged or with nonlipidated peptides (i.e., R₄ or E₈), little or no Ab was induced. Even after two doses, only low levels of Ab were detected, but the amounts detected were not consistent in all mice within a group.

Significant titers of Ab were, however, detected in mice that had been inoculated with R₄(Pam₂Cys)–OVA or E₈(Pam₂Cys)–HEL complexes. The Ab titers resulting from inoculations with these lipopeptide–protein complexes were comparable to the titers observed in mice vaccinated with OVA or HEL coadministered with CFA. Slightly lower titers of Ab were elicited in mice that had been inoculated with a mixture of R₄(Pam₂Cys) and HEL, each of which are positively charged and in mice that had been inoculated with a mixture E₈(Pam₂Cys) and OVA. This result is surprising given the requirement for the successful induction of a CD8⁺ T cell response on electrostatic association between lipopeptide and Ag.

We also observed that IgG1 was the dominant Ab isotype induced (Fig. 7C, 7D). Furthermore, the Ab isotype elicited was not dependent on the charge of the lipopeptide or protein used, indicating that the presence of Pam₂Cys enabled Th2 and Th-1 type responses.

Discussion

The use of TLR ligands as adjuvants is an effective way to enhance the immunogenicity of soluble Ags such as proteins, carbohydrates, DNA, and peptides. To date there have been many that have been investigated extensively for this purpose (5, 6). Although these ligands are effective at promoting vaccine efficacy, superior immune responses are generated when both TLR ligand and Ag are covalently linked (11, 12, 15, 16). From the series of experiments conducted in this study, we have found that the immunogenicity of otherwise nonimmunogenic proteins could also be markedly enhanced if linked not covalently but electrostatically to lipopeptides containing the TLR2 targeting ligand Pam₂Cys.

We reason that a lipopeptide that has charged amino acids fashioned in a branched manner would provide a tentacle-like structure capable of associating electrostatically with oppositely charged portions of a protein. The binding of positively charged protein Ags such as OVA was achieved using the arginine-based cationic lipopeptide R₄(Pam₂Cys), while the glutamic acid-based anionic lipopeptide E₈(Pam₂Cys) was used to bind to the positively charged protein HEL. It is possible that other amino acids such as lysine and aspartic acid could also be used to facilitate electrostatic interactions.

For cell-mediated responses, only inoculation with electrostatically associated lipopeptide–Ag complexes was effective in
eliciting CD8+ T cells that have the ability to secrete multiple proinflammatory cytokines and able to cause in vivo cytolysis of target cells. Furthermore, inoculation with lipopeptide–Ag complexes resulted in accelerated clearance of virus from the lungs of mice challenged with influenza virus.

Although protein complexes containing either lipopeptide were similarly effective at inducing DC maturation, the CD8+ T cell responses that were elicited after inoculation with these complexes correlated with the ability of the lipopeptides to mediate Ag uptake by DCs and subsequent trafficking of Ag to the draining lymph node. When we consider that the internalization of Ag by DCs is a prerequisite for the priming of cell-mediated responses, it is not surprising that antigenic uptake facilitated by electrostatically associated constituents culminated in significantly higher responses than those elicited by similarly charged lipopeptide and Ag—that is, Em(Pam2Cys)-and OVA—where Ag uptake by cells was low. Similar observations correlating the magnitude of cell-mediated responses and DC Ag uptake with the nature of association between Ag and TLR-agonist-conjugated Ag have been reported previously in studies where more efficient Th1-type responses result from inoculation with TLR-ligands that are covalently conjugated to Ags compared with formulations where nonconjugated constituents are used (13, 16). Colocalization of TLR agonist-conjugated Ag in the same APC not only results in increased uptake and cross-presentation of Ag to T cells (9, 11, 15), but also requires much smaller doses to create the same level of response elicited by nonconjugated Ag (28). Although the strength of covalent bonds involved in the attachment of Ag and agonist in the above-mentioned studies would be greater than electrostatic bonds, the combined strength of the presumably multiple ionic bonds formed between the charged amino acids of the lipopeptides and Ag are clearly sufficient to facilitate internalization of bound Ag into DCs through the TLR2 endocytic pathway.

The dominant Ab isotype elicited in the secondary responses to the Ags that we examined was IgG1, indicating that vaccination with complexes between lipopeptide and Ag could generate Th2-type responses. The highest Ab titers were once again achieved by vaccination with oppositely charged constituents, although this response was not totally dependent on electrostatic binding because vaccination with similarly charged constituents also resulted in the induction of strong, albeit lower, Ab titers.

The role of the DC in Ab responses is centered on the uptake of Ag and the cognate activation of CD4+ T helper cells that provide the necessary signals required for differentiation of B cells into Ab secreting cells. Several recent in vitro studies, however, have found that TLR ligands can directly induce Ab secretion from both naive and memory B cells (29) and induce their differentiation into plasma cells (30) in the absence of T cell help. Conjugation of Ag to TLR ligands also appears to be beneficial for Ab responses where simultaneous triggering of B cell receptor together with TLR engagement can lead to enhanced Ag-specific B cell responses (31). A role for TLR ligands in the preferential activation of B cells and differentiation into IgM- and IgG-secreting plasma cells in the absence of T cell help is further supported by observations that memory B cells express higher levels of TLRs and associated adaptador molecules (32, 33).

B cell responses may also be mediated directly by DCs independently of T cell-mediated facilitated CD40 ligation (34, 35). In addition, extracellular Ag captured by DCs can also be retained in an unprocessed format that can then be transferred directly to naive B cells resulting in the initiation of an IgG-dominated Ab response (36). Somewhat relevant is the presence of a DC subset that has the ability to migrate into the primary B cell follicles to provide antigenic stimulation to both B and T cells (37). Together, the small disparity between the Ab responses elicited by vaccination with either lipopeptide is therefore not surprising, because the processes governing the induction of these responses might not be exclusively reliant on the internalization of Ag by DCs and recruitment of CD4+ T cell help.

There are several advantages in using these lipopeptides to enhance protein immunogenicity in a charge dependent manner. Because most TLR ligands are nonpeptide components of infectious agents, linking them covalently to antigenic epitopes or proteins may prove to be chemically challenging, whereas electrostatic association between lipopeptide and protein occurs spontaneously upon mixing, reducing the need for any further chemical intervention or modification. Furthermore, only small amounts of these lipopeptides are needed to elicit robust humoral and cell-mediated immune responses (0.5–2.5 nmol lipopeptide per animal) and could therefore be dose sparing and economical in use. This aspect is also advantageous for avoiding any side effects or toxicity that may normally be associated with the use of an adjuvant as well as overcoming the limited range of responses that can be induced. Given the findings of this study, this approach could therefore constitute a particularly efficient way of inducing immune responses against soluble microbial, viral, and tumorigenic protein Ags and may be effective for generating immunity against diseases, particularly those that require both Ab- and cell-mediated responses.

Acknowledgments
We thank Dr. Amabel Tan for assistance with the viral challenge assays.

Disclosures
The authors have no financial conflicts of interest.

References

