The Purinergic G Protein-Coupled Receptor 6 Inhibits Effector T Cell Activation in Allergic Pulmonary Inflammation

Giorgio Giannattasio, Shin Ohta, Joshua R. Boyce, Wei Xing, Barbara Balestrieri and Joshua A. Boyce

J Immunol 2011; 187:1486-1495; Prepublished online 1 July 2011;
doi: 10.4049/jimmunol.1003669
http://www.jimmunol.org/content/187/3/1486
The Purinergic G Protein-Coupled Receptor 6 Inhibits Effector T Cell Activation in Allergic Pulmonary Inflammation

Giorgio Giannattasio,*†‡ Shin Ohta,*†‡ Joshua R. Boyce, † Wei Xing,*† Barbara Balestrieri,*§ and Joshua A. Boyce*†§

We show that the P2Y₆ receptor, a purinergic G protein-coupled receptor with a high affinity for the nucleotide uridine diphosphate, is an important endogenous inhibitor of T cell function in allergic pulmonary inflammation. Mice conditionally deficient in P2Y₆ receptors [p2ry6 (flox/flox);cre/+ mice] exhibited severe airway and tissue pathology relative to P2Y₆-sufficient [p2ry6 (flox/flox)] littermates (+/+ mice) when treated intranasally with an extract of the dust mite *Dermatophagoides farinae* (Df). P2Y₆ receptors were inducibly expressed by lung, lymph node, and splenic CD4⁺ and CD8⁺ T cells of Df-treated +/+ mice. Df-reconstituted P2Y₆-deficient lymph node cells produced higher levels of Th1 and Th2 cytokines, and polyclonally stimulated P2Y₆-deficient CD4⁺ T cells proliferated faster than comparably stimulated P2Y₆-sufficient cells. The absence of P2Y₆ receptors on CD4⁺ cells, but not APCs, was sufficient to amplify cytokine generation. Thus, P2Y₆ receptors protect the lung against exuberant allergen-induced pulmonary inflammation by inhibiting the activation of effector T cells. *The Journal of Immunology*, 2011, 187: 1486–1495.

Nucleotides, the structural subunits of the nucleic acids, are also important extracellular signaling molecules (1, 2). They are stored in cytosolic and secretory compartments of cells and are released in response to cell injury, hypoxia, shear stress, and tissue injury (3–5). Nucleotides are also released by platelets, endothelial cells, mast cells (MCs), macrophages, and T cells in response to physiologic activation (6–9). Consequently, extracellular nucleotides accumulate at sites of vascular injury, hypoxia, thrombosis, inflammation, and immune cell activation. Both adenine-containing (ATP and ADP) and uracil-containing (UTP and UDP) nucleotides have extracellular functions mediated by cognate cell surface receptors. These receptors fall into two classes: purinergic (P2X) receptors, which are ligand-gated ion channels that mediate calcium and potassium fluxes in response to ATP, and P2Y receptors, which are G protein-coupled receptors (10–12). Although adenine nucleotides and their receptors play established roles in platelet aggregation (13), pain perception (14), and cellular responses to hypoxic injury (15), the functions of many P2Y receptors in vivo remain unknown.

P2Y₆ receptors are the only known high-affinity receptors selective for UDP. They are expressed on both hematopoietic (macrophages, dendritic cells, MCs, and T cells) and nonhematopoietic (vascular smooth muscle, epithelium, and endothelium) cell types (16–25). Most functions attributed to P2Y₆ receptors in vitro suggest a role in modulating cellular responses to inflammation through autocrine or paracrine actions of uracil nucleotides. Endogenous uracil nucleotides amplify airway epithelial chemokine production in response to neutrophil-derived peptides through P2Y₆ receptors in vitro (26). P2Y₆ receptors are strongly expressed by colonic epithelial cells in biopsies from patients with inflammatory bowel disease and mediate production of IL-8 by colonic epithelial cell lines in vitro (19). P2Y₆ receptors amplify chemokine generation by a LPS-stimulated monocytic cell line (27), amplify endothelial cell activation in response to LPS (28), and enhance the release of macrophage inflammatory protein-1β by human MCs stimulated with leukotriene D₄ (20). Human T cells express P2Y₆ receptors after activation in vitro and at sites of inflammation in vivo (23), and pharmacologic blockade of P2Y₆ receptors inhibits proliferation, CD25 expression, and generation of cytokines by mouse T cells in response to polyclonal and Ag-specific stimulation (9, 25). Although these in vitro studies suggest physiologic functions for P2Y₆ receptors in immune responses and inflammation, not all such functions have been demonstrated in vivo.

Given its distribution on cells of both the innate and adaptive immune systems, we suspected that P2Y₆ receptors might play a role in the pathogenesis of allergic pulmonary inflammation. In this study, we demonstrate that P2Y₆ receptors are endogenous suppressors of T cell-driven pulmonary pathology induced by exposure to the allergens of the house dust mite *Dermatophagoides farinae*, which are potent sensitizers in asthma. Newly created C57BL/6 (B6) mice bearing a conditional deletion of the P2Y₆ receptor [p2ry6 (flox/flox);cre/+ mice] displayed sharply

Received for publication November 8, 2010. Accepted for publication May 26, 2011.

The Journal of Immunology is published by The American Association of Immunologists, Inc., 9650 Rockville Pike, Bethesda, MD 20814, USA. Copyright © 2011 by The American Association of Immunologists, Inc.
increased pulmonary inflammation, lymph node hyperplasia, and allergen-sufficient Th1 and Th2 recall responses compared with P2Y6-deficient littermate controls [p2ry6 (floxed/flox); +/+ (+/+) mice] when exposed intranasally to an extract of *D. farinae* (Df). P2Y6 receptors were constitutively expressed at low levels by alveolar and lung interstitial macrophages but absent on splenic and parabronchial lymph node (PLN) T cells from naive mice. However, P2Y6 receptor expression was induced on both CD4+ and CD8+ T cells from PLNs of +/- mice exposed to Df. The absence of P2Y6 receptors from CD4+ T cells of Df-challenged mice, but not from lung-derived macrophages used as APCs, was sufficient to increase Th1 and Th2 cytokine generation in an Ag restimulation assay. Thus, the inducible expression of P2Y6 receptors by T cells permits endogenous UDP to modify cellular activation and cytokine production, dampening the inflammatory response to the clinically relevant allergens of house dust mites.

Materials and Methods

Mice

A 12.7-kb region of the p2ry6 gene was subcloned from a B6 bacterial artificial chromosome (BAC) clone using homologous recombination. A single loxP site was inserted at the 5’ side of exon 3 and a Neo cassette flanked by FRT sites and loxP sites was inserted at the 3’ end of exon 3. The region of the targeting vector was designed such that the long (LA) and the short (SA) homology arms extended 9.6 kb at the 5’ side and 2.1 kb at the 3’ of the cassette, respectively. The structure of the targeting vector was confirmed by restriction analysis after each modification step and by sequencing using primers designed to read from the selection cassette into the 3’ end of the LA (N7) and the 5’ end of the SA (N1) and primers annealing to the vector sequence (P6 and T7) and reading into the 5’ and 3’ ends of the BAC subclone. The BAC was subcloned into a 2.4-kb subclone vector containing an ampicillin cassette for retrotransformation of the construct prior to selection. The correctly targeted vector was linearized, electroporated into 129/Sv mouse embryonic stem cells, and cells were positively selected with G418. Six verified embryonic stem clones were microinjected into blastocysts from B6 mice, and chimeric mice were obtained and crossed with B6 mice to produce male and female p2ry6 (floxed) mice. To generate p2ry6 (floxed/flox) and p2ry6 (floxed/flox;cre+/+) mice a 129 × 129 mixed background, p2ry6 (floxed) mice were intracerebroventricularly injected with 106 G418-resistant, C57BL/6-derived embryonic stem cells. Cells were positively selected with G418. Six verified embryonic stem clones were microinjected into blastocysts from B6 mice, and chimeric mice were obtained and crossed with B6 mice to produce male and female p2ry6 (floxed) mice. To generate p2ry6 (floxed/flox) and p2ry6 (floxed/flox;cre+/+) mice a 129 × 129 mixed background, p2ry6 (floxed) mice were then crossed with B6 mice to produce male and female p2ry6 (floxed/flox) mice. To generate p2ry6 (floxed/flox) and p2ry6 (floxed/flox;cre+/+) mice a 129 × 129 mixed background, p2ry6 (floxed) mice were then crossed with B6 mice to produce male and female p2ry6 (floxed/flox) mice. To generate p2ry6 (floxed/flox) and p2ry6 (floxed/flox;cre+/+) mice a 129 × 129 mixed background, p2ry6 (floxed) mice were then crossed with B6 mice to produce male and female p2ry6 (floxed/flox) mice. To generate p2ry6 (floxed/flox) and p2ry6 (floxed/flox;cre+/+) mice a 129 × 129 mixed background, p2ry6 (floxed) mice were then crossed with B6 mice to produce male and female p2ry6 (floxed/flox) mice. To generate p2ry6 (floxed/flox) and p2ry6 (floxed/flox;cre+/+) mice a 129 × 129 mixed background, p2ry6 (floxed) mice were then crossed with B6 mice to produce male and female p2ry6 (floxed/flox) mice. To generate p2ry6 (floxed/flox) and p2ry6 (floxed/flox;cre+/+) mice a 129 × 129 mixed background, p2ry6 (floxed) mice were then crossed with B6 mice to produce male and female p2ry6 (floxed/flox) mice. To generate p2ry6 (floxed/flox) and p2ry6 (floxed/flox;cre+/+) mice a 129 × 129 mixed background, p2ry6 (floxed) mice were then crossed with B6 mice to produce male and female p2ry6 (floxed/flox) mice. To generate p2ry6 (floxed/flox) and p2ry6 (floxed/flox;cre+/+) mice a 129 × 129 mixed background, p2ry6 (floxed) mice were then crossed with B6 mice to produce male and female p2ry6 (floxed/flox) mice. To generate p2ry6 (floxed/flox) and p2ry6 (floxed/flox;cre+/+) mice a 129 × 129 mixed background, p2ry6 (floxed) mice were then crossed with B6 mice to produce male and female p2ry6 (floxed/flox) mice. To generate p2ry6 (floxed/flox) and p2ry6 (floxed/flox;cre+/+) mice a 129 × 129 mixed background, p2ry6 (floxed) mice were then crossed with B6 mice to produce male and female p2ry6 (floxed/flox) mice. To generate p2ry6 (floxed/flox) and p2ry6 (floxed/flox;cre+/+) mice a 129 × 129 mixed background, p2ry6 (floxed) mice were then crossed with B6 mice to produce male and female p2ry6 (floxed/flox) mice. To generate p2ry6 (floxed/flox) and p2ry6 (floxed/flox;cre+/+) mice a 129 × 129 mixed background, p2ry6 (floxed) mice were then crossed with B6 mice to produce male and female p2ry6 (floxed/flox) mice. To generate p2ry6 (floxed/flox) and p2ry6 (floxed/flox;cre+/+) mice a 129 × 129 mixed background, p2ry6 (floxed) mice were then crossed with B6 mice to produce male and female p2ry6 (floxed/flox) mice. To generate p2ry6 (floxed/flox) and p2ry6 (floxed/flox;cre+/+) mice a 129 × 129 mixed background, p2ry6 (floxed) mice were then crossed with B6 mice to produce male and female p2ry6 (floxed/flox) mice. To generate p2ry6 (floxed/flox) and p2ry6 (floxed/flox;cre+/+) mice a 129 × 129 mixed background, p2ry6 (floxed) mice were then crossed with B6 mice to produce male and female p2ry6 (floxed/flox) mice. To generate p2ry6 (floxed/flox) and p2ry6 (floxed/flox;cre+/+) mice a 129 × 129 mixed background, p2ry6 (floxed) mice were then crossed with B6 mice to produce male and female p2ry6 (floxed/flox) mice. To generate p2ry6 (floxed/flox) and p2ry6 (floxed/flox;cre+/+) mice a 129 × 129 mixed background, p2ry6 (floixed/flox) mice were then crossed with B6 mice to produce male and female p2ry6 (floxed/flox) mice. To generate p2ry6 (floxed/flox) and p2ry6 (floxed/flox;cre+/+) mice a 129 × 129 mixed background, p2ry6 (floxed) mice were then crossed with B6 mice to produce male and female p2ry6 (floxed/flox) mice. To generate p2ry6 (floxed/flox) and p2ry6 (floxed/flox;cre+/+) mice a 129 × 129 mixed background, p2ry6 (floxed) mice were then crossed with B6 mice to produce male and female p2ry6 (floxed/flox) mice. To generate p2ry6 (floxed/flox) and p2ry6 (floxed/flox;cre+/+) mice a 129 × 129 mixed background, p2ry6 (floxed) mice were then crossed with B6 mice to produce male and female p2ry6 (floxed/flox) mice. To generate p2ry6 (floxed/flox) and p2ry6 (floxed/flox;cre+/+) mice a 129 × 129 mixed background, p2ry6 (floxed) mice were then crossed with B6 mice to produce male and female p2ry6 (floxed/flox) mice.
Df (30). The concentrations of IL-2, IL-4, IL-5, IL-10, IL-13, IL-17A, and IFN-γ released in the supernatants were measured by ELISA (eBioscience, San Diego, CA). The amount of cytokine per 10^6 PLN cells and the total number of PLN cells were used to calculate the total amount of cytokine generated per lymph node.

For the ELISPot analysis, 2.5 × 10^6 PLN-nucleated cells were incubated in medium containing Df (20 μg/ml) for 72 h on 96-well cell culture plates with polyvinylidene difluoride filter membranes (Millipore, Billerica, MA) and precoated with Abs against IL-4, IL-5, IL-13, IL-17A, and IFN-γ (eBioscience). The spots were detected with an ELISPot kit (eBioscience), according to the manufacturer’s instructions, and counted with a CTL Immunospot Analyzer (Cellular Technology, Shaker Heights, OH). For each cytokine the total number of producing cells was calculated by multiplying the frequency of producing cells by the total number of PLN cells.

PLN CD4+ T cell proliferation

PLN cells from NaCl- or Df-treated +/- and p2ry6 (floxed/floxed)cre/+ mice were obtained, incubated (10 min, 37°C) in PBS with 1 μM CFDA-SE (eBioscience), and extensively washed in culture medium. A total of 4 × 10^5 CFDA-SE-labeled cells were then added to 24-well plates precoated with an anti-CD3 Ab (1 μg/ml overnight) and cultured in the presence of soluble anti-CD28 Ab (1 μg/ml) for 72 h. At the end of the incubation, cells were harvested, washed in FACS buffer, blocked, and incubated (45 min, 4°C) with allophycocyanin-CD4 (RM4-5; eBioscience). Data were acquired on a FACScanto flow cytometer with FACS DIVA software. The CFDA-SE profile was evaluated on the CD4+ gate and analyzed with FlowJo. The cells falling into the lowest CFSE peak were counted as “proliferating.”

Isolation of lung macrophages and T cells for confocal microscopy

Lung macrophages were obtained using a modification of previous protocols (34, 35). After airway cells and alveolar macrophages were removed by extensive BAL with PBS containing EDTA, lungs were homogenized through a 70-μm mesh in ice-cold complete medium, washed, and incubated (30 min, 37°C) with 428 U/ml collagenase IV (Worthington, Lakewood, NJ) and 20 μg/ml DNase I (Roche, Mannheim, Germany). The obtained cell suspension was washed and layered onto a Percoll gradient (60 and 40%). After centrifugation, the cells at each interface were collected, washed, and centrifuged again on a second density gradient (40 and 20%). Cells were plated at a density of 5 × 10^5 cells/ml in 96-well plates precoated with PBS containing 0.1% saponin (overnight, 37°C) on coverslips. After nonadherent cells were removed by washing, adherent macrophages were fixed with 2% paraformaldehyde (Sigma-Aldrich) and permeabilized with PBS containing 0.1% saponin (36). Cells were stained with goat polyclonal anti-P2Y6 Ab or goat IgG as negative control (10 μg/ml; Santa Cruz Biotechnology), and counterstained with FITC-conjugated donkey anti-rabbit IgG (Jackson ImmunoResearch Laboratories). Z-stack images were acquired with a Nikon C1 inverted microscope through a ×60 oil PlanApo NA 1.4 objective lens (36).

Cocultures of lung macrophages and splenic CD4+ T cells

To purify CD4+ T cells, spleens of NaCl- or Df-treated +/- and p2ry6 (floxed/floxed)cre/+ mice were homogenized, and nucleated cells were blocked and incubated (45 min, 4°C) with PE-Cy7-CD11c (clone 145-2C11) and FITC-CD4 (RM4-5) Abs (eBioscience). The double-positive CD3+CD4+ cells were sorted by flow cytometry (Dana-Farber Cancer Institute Flow Cytometry Facility, Boston, MA). Lung interstitial macrophages (1 × 10^6/ml) and CD3+CD4+ cells (7.5 × 10^6/ml) were cocultured in either 20 μg/ml Df for 72 h. At the end of the incubation, the concentrations of IL-5, IL-13, and IFN-γ released in the supernatants were measured by ELISA (eBioscience).

Statistics

Nonparametric Mann–Whitney U test and Kruskal–Wallis test with Dunn’s posttest correction for multiple comparisons were used to compare two and three or more groups, respectively. Analysis was performed with Prism software (GraphPad, La Jolla, CA). The p values <0.05 were considered significant.

Results

Deletion of P2Y6 receptors increases pulmonary inflammation induced by Df allergen

The p2ry6 allele was deleted by flanking the gene with P-lox sites (Fig. 1A). The p2ry6 (floxed/floxed)cre/+ mice and their +/- littermate controls (Fig. 1B) were treated with tamoxifen for 5 consecutive d.i.p. PCR analysis confirmed the genotype of the mice used in the experiments (Fig. 1C). Immunohistochemistry confirmed the absence of the P2Y6 receptor protein in the lungs, PLN, and spleen of the p2ry6 (floxed/floxed)cre/+ mice after tamoxifen treatment (Fig. 2). The initial experiments were performed with F1–F3 B6 × 129 mice and littermate controls. The results obtained in these experiments were similar to those obtained after backcrossing the mice for 10 generations to the B6 background (Fig. 3A).

To determine whether P2Y6 receptors played a role in the development of allergic pulmonary inflammation, Df (3 μg protein) or saline was administered intranasally, twice weekly for 3 consecutive wk (25) to cohorts of +/- and p2ry6 (floxed/floxed)cre/+ mice after both genotypes were treated with tamoxifen. Df caused increased BAL fluid cell numbers, eosinophils, neutrophils, macrophages, and lymphocytes. However, the total number of cells in BAL fluid of the Df-treated p2ry6 (floxed/floxed)cre/+ mice exceed that of the +/- controls by >2-fold (Fig. 3A). Compared with the Df-treated +/- controls, the Df-treated p2ry6 (floxed/floxed)cre/+ mice showed ~5-fold higher numbers of BAL fluid eosinophils and neutrophils (Fig. 3A). Similar results were obtained after backcrossing the initial F1 mice to the B6 background for 10 generations (Fig. 3B). Tamoxifen-treated Cre/+ mice without the fluxed p2ry6 allele showed identical degrees of Df-induced inflammation, PLN cell counts, and PLN cytokine production to wild-type controls (Supplemental Fig. 1A–C, respectively), indicating that activation of Cre recombinase per se did not alter the phenotype.

Because the peribronchial inflammation caused by Df at 3 μg was too severe to show substantial differences between the genotypes (data not shown), we reduced the dose of Df to 1 μg in selected experiments to determine whether the deletion of P2Y6 receptors altered pulmonary pathology at a lower dose of Ag. At this allergen dose, the BVBS of the p2ry6 (floxed/floxed)cre/+ mice contained more extensive inflammatory infiltrates consisting of mononuclear cells along with eosinophils, neutrophils, lymphocytes, and plasma cells than did the +/- controls (Fig. 3C). In addition, the bronchial epithelium of the p2ry6 (floxed/floxed)cre/+ mice demonstrated more goblet cell metaplasia than did the +/- controls (Fig. 3C). Higher levels of expression of IL-5 and IL-13 mRNA transcripts were present in the lungs of the Df-treated p2ry6 (floxed/floxed)cre/+ mice than in the lungs of the +/- mice, with similar trends for the goblet cell-associated transcripts Muc5ac and Clic3/Gob-5 (Fig. 3D).

Cellular distribution of P2Y6 receptors in the lungs and lymphoid tissues

Because the deletion of P2Y6 receptors resulted in increased pulmonary inflammation in response to Df, we sought to determine the cellular distribution of P2Y6 receptors in the lungs and
associated secondary lymphoid organs of +/- mice and whether this distribution and the level of receptor expression changed with inflammation. qPCR revealed low constitutive levels of P2Y6 receptor mRNA in the lungs of naive +/- mice. These levels sharply increased in response to intranasal Df (Fig. 2A). Immunohistochemistry using a rabbit polyclonal anti-P2Y6 Ab (20) revealed that P2Y6 receptor protein localized predominantly to cells with the morphologic appearance of macrophages in the alveolar and interstitial spaces in saline-treated +/- mice (Fig. 2B). Challenge of +/- mice with Df induced the accumulation of mononuclear cells in the BALT of the BVBs, which stained strongly for P2Y6 receptor protein. On the basis of cell size and morphology, these cells appeared to be a mixture of lymphocytes and monocyte-like cells (Fig. 2B). There was negligible staining of the resident epithelial, endothelial, and smooth muscle cells and no significant staining of the infiltrating granulocytes.

Immunostaining of the spleen and PLNs from naive +/- mice revealed negligible staining for P2Y6 receptor protein. In contrast, distinct populations of P2Y6 receptor-positive cells appeared in the paracortical zones of the spleen and PLNs from Df-treated +/- mice (Fig. 2C) but not in the germinal centers. Neither the lung (Fig. 2B) nor the lymphoid tissues (Fig. 2C) of the saline- or Df-
treated p2ry6 (flox/flox);cre/+ mice exhibited staining for P2Y₆ receptor protein.

To identify the lymphoid cells expressing P2Y₆ receptors after treatment with Df, we performed flow cytometry using the rabbit anti-P2Y₆ Ab on the dispersed spleen cells from the +/- mice. Abs against CD4, CD8, B220 (CD45R), and CD11c were used to identify helper and cytotoxic T cells, B cells, and APCs, respectively (Fig. 4A). No P2Y₆-expressing lymphoid cells were identified in the spleens from the naive +/- mice (Fig. 4B). In contrast, both CD4⁺ and (to a lesser extent) CD8⁺ splenic T cells from the Df-treated +/- mice showed modest staining for P2Y₆ (Fig. 4B). B220⁺ B cells did not express P2Y₆ receptors, whether derived from naive or Df-treated +/- mice. There were too few CD11c⁺ cells to analyze, and no staining for P2Y₆ receptors was observed on any cell populations in the spleens from saline- or Df-treated p2ry6 (flox/flox);cre/+ mice (Fig. 4B). The percentages of CD4⁺, CD8⁺, and B220⁺ cells in the lymph nodes did not differ between the two strains (data not shown). Confocal imaging of CD4⁺ cells purified from the dispersed lungs of Df-treated wild-type mice confirmed prominent P2Y₆ receptor staining, which was not observed in lung T cells from saline-treated +/- mice (Fig. 4C).

Effects of P2Y₆ receptors on the adaptive immune response to Df

To determine the role of P2Y₆ receptors on control of recall responses to the Df Ags in sensitized mice, we evaluated the production of proinflammatory and immunoregulatory cytokines from restimulated PLN cells from the Df-treated p2ry6 (flox/flox);cre/+ mice and +/- controls. The PLNs from the Df-treated p2ry6 (flox/flox);cre/+ mice were consistently larger than those from the +/- controls and contained more total cells (Fig. 5A). Equal numbers of PLN cells isolated from NaCl- and Df-treated +/- (n = 6 and 18, respectively) and p2ry6 (flox/flox);cre/+ (n = 6 and 18) mice were cultured in vitro in either medium alone or containing Df. At the end of the culture, the concentrations of IL-2, IL-4, IL-5, IL-10, IL-13, IL-17A, and IFN-γ released in the supernatants were evaluated by ELISA. Restimulated PLN cells from Df-treated p2ry6 (flox/flox);cre/+ mice generated more IL-4, IL-5, IL-13, IL-17A, and IFN-γ than did cells from +/- mice (Fig. 5B). The amounts of IL-2, IL-10, and IL-17A also tended to be higher but did not reach significance (p = 0.26, 0.15, and 0.12, respectively). The results obtained from the PLN cells from the N10 mice were similar (Supplemental Fig. 3), and restimulation of splenocytes yielded results similar to the PLN cells (data not shown). To determine whether the increased quantities of cytokines reflected increased numbers of cytokine-generating cells in the PLNs from Df-treated p2ry6 (flox/flox);cre/+ mice, we performed ELISPOT assays. Consistent with the ELISA data, the PLNs of Df-treated p2ry6 (flox/flox);cre/+ mice contained increased numbers of cells expressing IL-4, IL-5, and IL-13 protein than did the PLNs of the Df-treated +/- controls (Fig. 5C). The differences in IFN-γ and IL-17A were not significant (p = 0.07 and 0.10, respectively). Quantitative PCR analysis of the Df-treated PLN cells showed no differences between strains in the
induced expressions of the Th1-associated transcription factor T-bet, the Th2-associated transcription factor GATA-3 (the regulatory T cell-associated transcription factor Foxp3), and the Th17 transcription factor ROR-γt (Supplemental Fig. 4).

To determine whether the absence of P2Y$_6$ receptors changed the rate of helper T cell proliferation, PLN cells were loaded with CFDA-SE before restimulation, and the dilution of the dye was measured cytofluorographically as an index of proliferation.
Because the CFDA-SE dilution signal in cultures of PLN cells restimulated with *Df* was below the limit of detection (data not shown), we performed the assay by using a T cell polyclonal stimulation with anti-CD3 and anti-CD28 Abs. Percentages of polyclonally stimulated proliferating CD4+ T cells were modestly but significantly higher in the PLNs of p2ry6 (flox/flox);cre/+ mice than in the PLNs of +/+ controls (Fig. 5D). Splenic CD4+ cells p2ry6 (flox/flox);cre/+ mice also displayed higher rates of proliferation in response to polyclonal stimulation than did +/+ control cells, and unlike the +/+ cells, exogenous UDP failed to suppress their proliferation (Fig. 5D). Percentages of apoptotic CD4 cells in the PLNs of the *Df*-treated p2ry6 (flox/flox);cre/+ mice were lower than in the PLNs from the +/+ controls (Supplemental Fig. 5). The p2ry6 (flox/flox);cre/+ mice exposed to *Df* showed higher levels of serum total IgE (Supplemental Fig. 6A), but they had comparable levels of *Df*-IgG1 (Supplemental Fig. 6B).

The absence of P2Y6 receptors on CD4+ T cells controls the recall response to *Df*-associated allergens

To determine whether the increased cytokine production from the restimulated PLNs reflected a direct suppressive effect of P2Y6 receptors expressed by T cells or an effect of P2Y6 receptor-dependent modulation of APC functions, we developed a coculture assay. Because mice with transgenic expression of *Df*-specific TCR are not yet available, we purified CD3+/CD4+ T cells from the spleens of NaCl- and *Df*-treated +/+ and p2ry6 (flox/flox);cre/+ mice and incubated them with enriched interstitial macrophages from the lungs of each genotype and treatment as a source of APCs. Nearly all of these cells had morphologic features of macrophages (Fig. 6A), with >85% expressing the pan-macrophage marker CD68 (Fig. 6B) (37). Fewer than 5% of the cells expressed T cell markers (CD3, CD4, and CD8), whereas B220 was expressed by ~15% of the CD68+ cells (data not shown). The proportions of the cells expressing the APC markers CD11c and MHC-II (~30% for each marker) did not differ between genotypes (Fig. 6B), and confocal imaging confirmed that the macrophages from the *Df*-treated +/+ mice exhibited substantially increased expression of P2Y6 protein relative to the saline-treated controls (Fig. 6C). After 72 h of coculture in the presence of *Df*, CD3+/CD4+ T cells from naive mice of both genotypes generated small and comparable amounts of IL-5 and IL-13 (Fig. 6, left panels). In contrast, CD3+/CD4+ T cells from *Df*-treated p2ry6 (flox/flox);cre/+ mice released more IL-5, IL-13, and IFN-γ than the cells from +/+ mice in all three experiments performed (as shown for one experiment; Fig. 6D, right panels). There was no effect of the macrophage genotype, although macrophages from lungs of *Df*-treated mice supported higher levels of

FIGURE 6. Cytokine release from restimulated cocultures of CD4+ T cells and lung macrophages. *A*, Wrights and Giemsa stain showing enriched lung macrophages from *Df*-treated +/+ mice. *B*, Forward and side scatter characteristics (left panels), CD68/CD11c staining (middle panels), and MHC-II staining (right panels) of the enriched macrophages from the indicated strains used in the coculture assays. *C*, Confocal images of enriched lung APCs from the indicated NaCl- and *Df*-treated genotypes stained for P2Y6 immunofluorescence. Results were identical in a second experiment. *D*, Cytokine release from restimulated cocultures of CD4+ T cells and lung macrophages. Lung macrophages from NaCl- and *Df*-treated +/+ (unshaded) and p2ry6 (flox/flox);cre/+ (shaded) mice were cocultured with CD4+ T cells from +/+ (□) and p2ry6 (flox/flox);cre/+ (■) mice treated with NaCl (left panels) or *Df* (right panels). The results are from one experiment, which was repeated twice more with similar trends but with different magnitude of responses.
cytokine generation by CD4$^+$ cells than did macrophages from the lungs of saline-treated controls (Fig. 6D).

Discussion

This study uncovers a prominent role for the UDP-selective P2Y$_6$ receptor in the control of pulmonary inflammation and cytokine generation in a model of allergic pulmonary inflammation. In our model, uracil nucleotides act at P2Y$_6$ receptors that are inducibly expressed by T cells to suppress the development of Df Ag-responsive T cells and production of pathogenic cytokines. In vitro studies indicate that UDP (acting presumably at P2Y$_6$ receptors) amplifies effector cytokine production by epithelium (21), endothelium (28), macrophages (27), and MCs (20). Although we cannot exclude important contributions from P2Y$_6$ receptors on these other cell types in our model, our study suggests that upregulation of P2Y$_6$ receptors on T cells and limiting T cell activation may be a dominant mechanism that limits the pathologic consequences of a pulmonary immune response, at least in response to a complex natural allergen.

Given the fact that multiple P2Y$_6$ receptor-expressing cell types can contribute to the pathophysiology of the immune and inflammatory response to natural allergens, we tested the effect of P2Y$_6$ receptor deletion in a model of intranasal Df challenge. Df contains glycans, proteases, and other stimuli that activate lung APCs and initiate a pathogenic T cell response with the generation of Th1, Th2, and Th17 cytokines and the development of characteristic pulmonary inflammation (38, 39). We generated a mouse with mouse-homozygous floxed p2ry6 alleles (Fig. 1A) that were disrupted by tamoxifen treatment after introducing a single copy of a tamoxifen-sensitive Cre recombinase allele [p2ry6 disrupted by tamoxifen treatment after introducing a single copy of the alveolar and interstitial spaces of the lung (Fig. 2). The absence of P2Y$_6$ receptor expression on B220$^+$ B cells is consistent with the lack of immunostaining of germinal centers (Fig. 2C). Because there were very few CD11c$^+$ APCs in the PLNs, we were unable to determine whether they expressed P2Y$_6$ receptors, although macrophages enriched from the lung did express P2Y$_6$ receptors that were upregulated with Df treatment (Fig. 6C).

We next sought to determine the effects of P2Y$_6$ receptor deletion on the recall response to Df. The PLNs from the Df-treated p2ry6 (flox/flox);cre/+ mice contained more total cells (Fig. 5A) than did the PLNs from the +/+ controls. Although the total percentages of T cells in the PLNs did not differ between the strains (data not shown), the restimulated PLN cells from the Df-treated p2ry6 (flox/flox);cre/+ mice generated significantly higher amounts of Th2 and Th1 cytokines than did samples from the +/+ mice (Fig. 5B), paralleled by higher numbers of cytokine-producing T cells (Fig. 5C). Thus, the effect of P2Y$_6$ receptors on the control of Ag recall responses is not restricted to one lineage of effector T cell in this model. Moreover, the robust generation of IL-10 (Fig. 10) by the samples from p2ry6 (flox/flox);cre/+ mice and the trivial induction of mRNA encoding Foxp3 in PLN cells from +/+ and p2ry6 (flox/flox);cre/+ mice following exposure to Df (Supplemental Fig. 4) suggest that the absence of P2Y$_6$ receptors does not selectively compromise regulatory T cell development as a mechanism for the phenotype observed. Thus, P2Y$_6$ receptors induced by Ag stimulation play a homeostatic role in the control of memory T cell activation during recall responses to Df Ags. Although the low frequencies of Df-responsive T cells (estimated at 1 in 100 lymph node cells) precluded detection of proliferation in a recall response to Df, polyclonally stimulated CD4$^+$ PLN T cells from p2ry6 (flox/flox);cre/+ mice proliferated significantly faster than +/+ control cells did. The fact that exogenous UDP suppressed proliferation only in the CD4$^+$ cells from +/+ controls (Fig. 5D) validates that P2Y$_6$ receptors account entirely for the UDP response of T cells in this model. It is possible that both enhanced proliferation and attenuated apoptosis contribute to the relative PLN hyperplasia of the p2ry6 (flox/flox);cre/+ mice in this model. Proof of a homeostatic role for P2Y$_6$ in the control of Ag-induced proliferation awaits the creation of transgenic mice with TCRs specific for Df Ags.

In addition to intrinsic properties of the responder T cells, APC-specific factors strongly influence the magnitude and nature of Ag-induced recall responses (39). To test whether the outcome of the Df-induced recall response was influenced more strongly by P2Y$_6$ receptors expressed by APCs or by effector T cells, we purified P2Y$_6$ receptor-deficient or -sufficient splenic CD4$^+$ T cells and cocultured these with either P2Y$_6$ receptor-deficient or -sufficient lung macrophages as a source of APCs (Fig. 6) (48).

The induction of inflammation by Df causes APCs to mature and become more effective in processing and presenting Ag, likely explaining the ability of the CD4$^+$ cells to produce higher level of cytokines when cocultured with APCs derived from Df-treated mice. The absence of P2Y$_6$ receptors did not affect the expression of activated APC markers CD11c and MHC-II (Fig. 6). Importantly, the macrophage genotype had no influence on the levels of cytokines generated by responder T cells. Although the absolute quantities of cytokines produced varied in the three experiments performed, CD4$^+$ cells from the Df-treated p2ry6 (flox/flox);cre/+ mice generated more IL-5, IL-13, and IFN-γ than did the CD4$^+$ T cells from the +/+ controls in every experiment (as shown for one
CD4+ cells is both necessary and sufficient to amplify the pro-inflammatory effects of adenine nucleotides in a similar context. P2Y6 receptor mediates a suppressive function for the uracil nucleotides that are generated in the inflammatory milieu during exposure to dust mite allergens. Two recent studies reported that uridine, the precursor of UDP and UTP, has a protective function in two models of acute lung inflammation by acting on epithelial cells (49, 50). Thus, uracil and its derivatives may suppress allergic pulmonary inflammation by several mechanisms, contrasting with the pro-inflammatory effects of adenosine nucleotides in a similar context. Given the multitude of P2Y receptors that are expressed by cells of the immune system, it is critical to understand both the pro- and anti-inflammatory effects of any P2Y receptor that is envisioned as a potential target for drug development in the treatment of inflammatory diseases.

Acknowledgments
We thank Chunli Feng for outstanding technical support.

Disclosures
The authors have no financial conflicts of interest.

References

