Stimulated γδ T Cells Increase the In Vivo Efficacy of Trastuzumab in HER-2+ Breast Cancer

Aude-Hélène Capietto, Ludovic Martinet and Jean-Jacques Fournié

* J Immunol 2011; 187:1031-1038; Prepublished online 13 June 2011; doi: 10.4049/jimmunol.1100681
http://www.jimmunol.org/content/187/2/1031

References
This article cites 71 articles, 32 of which you can access for free at:
http://www.jimmunol.org/content/187/2/1031.full#ref-list-1

Subscription
Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts

The Journal of Immunology is published twice each month by
The American Association of Immunologists, Inc.,
1451 Rockville Pike, Suite 650, Rockville, MD 20852
Copyright © 2011 by The American Association of Immunologists, Inc. All rights reserved.
Print ISSN: 0022-1767 Online ISSN: 1550-6606.
Stimulated γδ T Cells Increase the In Vivo Efficacy of Trastuzumab in HER-2+ Breast Cancer

Aude-Hélène Capietto,*†,1 Ludovic Martinet,†,‡ and Jean-Jacques Fournié,*†,§

One fourth of women with HER-2+ metastatic breast carcinoma are treated with a combination regimen with trastuzumab, but the frequent resistance to this Ab requires definition of new means to improve its bioactivity. The mechanisms of action of trastuzumab involve several pathways including Ab-dependent cellular cytotoxicity. Because human γδ T lymphocytes mediate Ab-dependent cellular cytotoxicity and can be activated further by phosphoantigens, these cells are prone to improve the efficacy of Abs, as recently demonstrated for CD20+ B cell lymphomas. Whether this concept applies as well with carcinomas remained to be demonstrated in vivo, however. In this study, we asked whether a combination of trastuzumab and phosphoantigen-stimulated γδ lymphocytes increases the efficacy of trastuzumab against HER-2+ breast carcinoma cell lines in vivo. We report that repeated infusions of this combination had a better efficacy than that of trastuzumab alone against HER-2+ mammary carcinoma xenografts in mice. In these models, reduction of tumor growth was observed together with trastuzumab opsonization of HER-2+ cells and tumor infiltration by γδ lymphocytes. In addition in humans, the mammary carcinomas of 27 of 30 patients showed significant γδ T cell infiltrates. Altogether, these findings indicate that combination of trastuzumab and stimulated γδ cells represents a new strategy to improve the efficacy of Herceptin (trastuzumab) in HER-2+ breast cancer. The Journal of Immunology, 2011, 187: 1031–1038.

Abbreviations used in this article: ADCC, Ab-dependent cellular cytotoxicity; BrHPP, bromohydrin pyrophosphate; PAg, phosphoantigen; TIL, tumor-infiltrating lymphocyte; TTZ, trastuzumab.

Received for publication March 9, 2011. Accepted for publication May 4, 2011.

This work was supported by institutional grants from INSERM, Université Toulouse III, and Centre National de la Recherche Scientifique, as well as by grants from Institut National du Cancer (Contrats RITUXOP and V92TER) and from Innate Pharma, Marseille.

Address correspondence and reprint requests to Dr. Jean-Jacques Fournié, INSERM, Unité Mixte de Recherche 1037, Cancer Research Center of Toulouse, BP3028, Hôpital Purpan, 31024 Toulouse Cedex, France. E-mail address: jean-jacques.fournie@inserm.fr

Abbreviations used in this article: ADCC, Ab-dependent cellular cytotoxicity; BrHPP, bromohydrin pyrophosphate; PAg, phosphoantigen; TIL, tumor-infiltrating lymphocyte; TTZ, trastuzumab.

Copyright © 2011 by The American Association of Immunologists, Inc. 0022-1767/11/$16.00
with tumors expressing MICA/B or ULBP s contributes to cyto-
lytic activation (23). Moreover, activated V<sup>γδ</sup>V<sup>9</sup>V<sup>8</sup> T effector
memory cells upregulate the expression of CD16 (FcγRIIIA) to
perform ADCC (24, 25).

Synthetic PAg s such as bromohydrin pyrophosphate (BrHPP)
(26) and second-generation bioisosteres (27–29) have been
developed as selective immunostimulating drugs targeting TCRV<sup>γδ</sup>V<sup>9</sup>V<sup>8</sup>
T lymphocytes, most specifically for cancer immunotherapies.
In addition, antioestolytic drugs such as aminobisphosphonates
activate the same lymphocytes by inducing endogenous PAg s and
could thus have related therapeutic applications (30–32). These
different molecules have led several groups to demonstrate anti-
tumor functions of human γδ T lymphocytes in different in vivo
contexts. Studies in nonhuman primates (33, 34) and in cancer
patients (35–38) have illustrated the potential of activated
TCRγδ<sup>9</sup> T lymphocytes against leukemia, lymphoma, and
carcinoma (reviewed in Refs. 39–42). Clinical trials involving PAg s
or aminobisphosphonates alone and in combinations are currently
being assessed as various anticancer therapies by different groups
around the world. Along this line, several studies have shown the
increase of lytic activity by γδ T cells combined with mAbs
such as rituximab and TTZ in vitro (25, 43). In addition, clinical
processes to amplify peripheral γδ T cells from cancer patients
have been set up by several independent clinical laboratories
(44–46), demonstrating the feasibility of γδ T cell-based cancer
immunotherapies.

Nevertheless, whether transfer of γδ T cells combined with TTZ
infiltrates human breast tumors and does better than TTZ alone
remained untested. In this study, we show that TCRγδ<sup>9</sup> T cells
improve the bioactivity of TTZ in a murine model of human HER-
2<sup>+</sup> breast cancer xenograft. We find that with TTZ, TCRV<sup>γδ</sup><sup>9</sup> T
lymphocytes access the breast tumor site and are cytotoxic for
HER-2-overexpressing breast tumor cells. Together with the
demonstration of TCRVγδ<sup>9</sup> T lymphocytes infiltrating human
breast tumors, this study indicates that combination of TTZ with
γδ cell activation by PAg s represents a new strategy to improve
the treatment of HER-2<sup>+</sup> breast cancer.

Materials and Methods

Abs and flow cytometry

FITC-conjugated Abs to TCRVγδ, anti-CD4, PE–Cy5-conjugated anti-
CD56, PE-conjugated Abs to markers TCRVγδ, CD3 or PE–Cy7-
conjugated anti-CD45 were from Beckman-Coultier-Immunotech (Mar-
seille, France), and Pacific blue-conjugated Abs to CD3 or CD8 and allo-
phyocyanin–Cy7–conjugated anti-CD8 were from Ozyme (Saint Quentin
en Yvelines, France). The respective isotype-matched conjugated controls
were from Beckman-Coultier-Immunotech and Ozyme, respectively. Flow
cytometry was done with LSR-II and the dedicated software FACSdiva (BD
Biosciences) and FlowJo 7.5.5 (Tree Star, Ashland, OR).

Reagents

The synthetic PAg BrHPP (Innate Pharma, Marseille, France) has been
described elsewhere (26). Recombinant human IL-2 was kindly provided by
Sanofi-Aventis (Toulouse, France) and TTZ (Herceptin; Roche, Basel,
Switzerland) was a kind gift from Dr. Arnaud Cabelguenne (Institut Claudius
Regaud, Toulouse, France). Cells were cultured in complete medium con-
taining RPMI 1640 (Invitrogen), C2C12 was included as an HER-2/
healthy human individuals (Etablissement Franc¸ais du Sang, Toulouse,
France). The respective isotype-matched conjugated controls
were from Beckman-Coultier-Immunotech and Ozyme, respectively. Flow
cytometry was done with LSR-II and the dedicated software FACSdiva (BD
Biosciences) and FlowJo 7.5.5 (Tree Star, Ashland, OR).

Proliferation and preparation of Vγ9Vδ8 T cells

TCRγδ<sup>9</sup> T lymphocytes were isolated from PBMCs obtained from healthy
human IL-2 (300 IU/ml) at day 0, and further supplemented with
recombinant human IL-2 (300 IU/ml) every 3 d but without further
restimulation by BrHPP until injection in mice. In experiments involving
mice treated four times, the injected TCRγδ<sup>9</sup> T cells arose from the same
healthy donor for all mice in each experiment. In the experiment with γδ
T cell injections for 4.5 wk, TCRγδ<sup>9</sup> T cells were expanded from four
different healthy donors with each donor for two or more mice per group.
The same scheme was used in both groups receiving γδ T cells. All
experiments were done with Vγδ<sup>9</sup> T cell purity >95%.

Cell lines and cytotoxicity assays

The MDA-MB-231 and SK-BR-3 human breast cancer cell lines used as
target cells were cultured at 37°C in complete medium with 10% FBS
(Invitrogen). MDA-MB-231 was included as an HER-2<sup>+</sup> negative tumor
cell line control, and SK-BR-3 was used to represent HER-2<sup>+</sup> positive
tumor cells. Specific lysis by Vγδ<sup>9</sup> T cells was measured by standard 4-h<sup>51</sup>Cr-
release assays. The lysis rates were obtained by the following equa-
tion: (experimental release – spontaneous release)/(maximum release –
spontaneous release) × 100. Maximum and spontaneous releases were
determined, respectively, by adding 0.1% Triton X-100 or complete
medium to 10<sup>6</sup>Cr-labeled tumor target cells in the absence of γδ
T cells. Data are presented as the mean of triplicate samples. Specific
lysis assays by ADCC involved the same settings as above except the
presence of TTZ or IgG1 (10 µg/ml) added to the 4-h cell coincu-
tation and to the spontaneous release and maximum release control
experiments.

Tumor xenograft model

Eight- to ten-week-old female SCID/Beige mice were used to assess the
in vivo anticancer properties of γδ T cells. SK-BR-3 cells (2×10<sup>6</sup>)
were suspended in PBS by trypsin and inoculated s.c. in the mammary
tissue of mice. Tumor measurements were performed twice per week with a caliper,
and volumes were calculated using the following formula: V = 1/2(length
(mm)) × (width (mm))<sup>2</sup>. When tumors reached a mean volume of 40–150
mm<sup>3</sup>, the animals were randomized into groups with comparable tumor
volume and treated. Treatments were injections of either γδ T cells, TTZ,
combination of both, or vehicle control only. TTZ was given i.p. at a
concentration of 10.0 mg/kg in sterile saline twice per week (vehicle
control was saline) and 1×10<sup>6</sup> to 2×10<sup>6</sup> γδ T cells were administered i.v.
(lateral tail vein) in sterile saline twice per week (vehicle control was saline).
At the end of each experiment, tumors were removed at necropsy for FACS
analysis. All animal protocols were submitted and approved by the local
ethical committee under reference no. 311155505.

Flow cytometry of tumor xenografts and human tumor biopsies

Immediately upon sacrifice, xenografted tumors were excised then rinsed
with PBS. Freshly excised tumors were then mechanically disaggregated,
and cell suspensions were prepared, washed, and stained with Abs specific
for human CD3 and TCRγδ<sup>9</sup> and then analyzed by FACS.

 freshly resected human breast tumor samples or control samples of non-
cancer breast tissues were reduced in small fragments and incubated 30
min at 37°C in sterile RPMI 1640 containing collagenase IV (1 mg/ml;
Sigma-Aldrich, Lyon, France). Total cells were then extracted by me-
chanical dispersion and incubated 30 min at 4°C with Abs directed against
different immune cell markers or their isotype-matched controls. Flow
cytometry-based analyses were performed by FACS.

Statistics

One-tailed, paired Student t test was used whenever appropriate or one-way
Mann–Whitney rank sum test was used otherwise using a threshold of
α = 5% for significant differences (p < 0.05). All statistical analyses were
performed using the Sigma Stat 3.0 (SPSS, Chicago, IL) and XL Stat 2008
(AddinSoft, Paris, France) software.

Results

In vitro cytotoxicity of Vγ9Vδ2 T cells with TTZ against HER-2<sup>+</sup> cancer cell lines

Vγ9Vδ2 T cells are endowed with an NK-like HLA-unrestricted
cytotoxic activity (47–49). Hence, to evaluate the in vitro cyto-
toxicity of Vγ9Vδ2 T cells with TTZ, the HER-2<sup>+</sup> breast cancer
line cell SK-BR-3 and the HER-2<sup>−</sup> breast cancer cell line MDA-
MB-231 were used as allogeneic target cells (Fig. 1A). The γδ cell
cytolytic activity was measured using the standard 51Cr-release
assay in six independent experiments with Vγ9Vδ2 T cells from different healthy donors at various E:T ratios (Fig. 1B). The addition of Vγ9Vδ2 T cells significantly increased the TTZ cytotoxicity (52.1 ± 8.6%, mean ± SEM) for SK-BR-3 compared with TTZ alone (9.3 ± 1.3%, mean ± SEM, p < 0.05), Vγ9Vδ2 T cells alone (11.0 ± 1.2%, mean ± SEM, p < 0.05), or Vγ9Vδ2 T cells and human IgG control (10.3 ± 1.5%, mean ± SEM, p < 0.05) at an E:T ratio of 30:1 (Fig. 1C, left panel). With the HER-2<sup>low</sup> targets MDA-MB-231 T cells by contrast, the addition of Vγ9Vδ2 T cells had only a marginal effect on TTZ cytotoxicity (Fig. 1C, right panel), confirming that the cytolytic enhancement observed with SK-BR-3 resulted from a better HER-2 targeting. Thus, in vitro, TTZ combined with γδ T cells strongly increased the killing of the SK-BR-3 HER-2<sup>high</sup> breast cancer cell model.

γδ T cells and TTZ inhibit mammary tumor growth in SCID/Beige mice

On the basis of the above results from in vitro experiments, we then tested the validity of this concept in vivo. To this aim, we analyzed the bioactivity of human γδ T cells combined with TTZ on the in vivo growth of HER-2<sup>high</sup> SK-BR-3 cells established as orthotopic breast cancer xenografts in mice. The SK-BR-3 cells were implanted s.c. in the mammary tissue of SCID/Beige mice, and without further manipulation they progressively grew as tumors reaching ∼140 mm<sup>3</sup> within 60 d (Fig. 2A). Mice with these established tumor xenografts were then treated twice per week for 2 wk with either vehicle control, TTZ alone (10 mg/kg), γδ T cells alone (1 × 10<sup>7</sup> cells), or both TTZ and γδ T cells.

Globally, the tumor growth in mice was more efficiently inhibited by treatment with γδ T cells combined with TTZ than by treatment with TTZ alone, γδ T cells alone, or vehicle control (Fig. 2B). By 11 d of treatment, the tumor growth in mice that had received γδ T cells alone or the vehicle control were nearly similar: mean tumor growth was +50 mm<sup>3</sup> with treatment by γδ T cells alone versus +70 mm<sup>3</sup> in the control group. At the same time point, treatments by TTZ alone or by TTZ plus γδ cells were equally effective: +28 mm<sup>3</sup> in both groups. After 16 d of treatment, however, TTZ plus γδ T cells (+12 mm<sup>3</sup>) did significantly better than TTZ alone (+70 mm<sup>3</sup>) (p < 0.05, paired t test). Because the size of the tumor was significantly greater after 11 d of TTZ alone but after 22 d with TTZ + γδ T cells treatment, the bioactivity of the combination remained effective 11 d longer despite the absence of further injections of the treatment (Fig. 2C). Thus, a combination treatment with γδ T cells and TTZ inhibited growth of an HER-2<sup>+</sup> breast carcinoma xenograft.

Because the previous experiments involved tumors challenged while in exponential growth phase, however (day 56, Fig. 2A), the same comparative treatments were performed at an earlier time point of the tumor development, chosen in this study at day 41 of the tumor engraftment (Fig. 2D). Growth of the tumor was massive in most of these conditions but was significantly inhibited by the combination of TTZ and γδ T cells (paired t test, p < 0.05) (Fig. 2E). This bioactivity was significantly better than that with TTZ alone, up to the end of the experiment and despite the lack of further treatments (Fig. 2F).

Thus, in a SCID/Beige mouse model, a short immunotherapy by a combination of γδ T cells and TTZ significantly improved the in vivo efficacy of TTZ alone against a freshly established orthotopic HER-2<sup>+</sup> mammary carcinoma xenograft.

γδ T cells infiltrate tumor xenografts and inhibit their growth

The above results raised the question whether increasing the number of injections of γδ T cells and TTZ inhibited more efficiently the tumor growth. To answer this, xenografted mice received γδ T cells (2 × 10<sup>7</sup> cells) and TTZ (10 mg/kg) injected twice per week for 4 wk. The purity of primary γδ T cell lines was checked at each time point before injection and was always >95% (Fig. 3A). There was no tumor growth for 30 d in mice treated with γδ T cells and TTZ together (37.0 ± 10.2 mm<sup>3</sup> at day 0 versus 76.5 ± 48.3 mm<sup>3</sup> at day 30) NS, paired t test). By contrast, tumor grew significantly in mice treated with TTZ alone from day 18 (43.8 ± 9.0 mm<sup>3</sup> at day 0 versus 177 ± 54.0 mm<sup>3</sup> at day 18, paired t test, p < 0.05) (Fig. 3B) and in mice injected with γδ T cells alone or with the vehicle control (data not shown). The better tumor growth in the “γδ T cell alone” group than in the “trastuzumab alone” group was attributed to the proinflammatory profile of these cells. As some mice from the “γδ T cells alone” group were euthanized, the mean of the tumor volume was not determinable for the last time points (Fig. 3B, C). To check whether γδ T cells were recruited to the tumor site, the tumor xenografts were removed at necropsy and mechanically disaggregated before staining with human anti-TCRVγ9 and anti-CD3 Abs. The rates of γδ Tumor-infiltrating lymphocytes (TILs) were then measured by flow cytometry. Infiltrating γδ T cells were present in the tumor samples that had received TTZ and γδ T cells but not in mice treated with TTZ alone. On the one hand, the rate of γδ TILs was the same in mice treated with γδ T cells alone or with γδ T cells plus TTZ (Fig. 3D). On the other hand, however,
tumors opsonized by TTZ were only present in mice treated with TTZ alone or with γδ T cells plus TTZ (Fig. 3E).

These results indicated that in vivo, therapeutic regimens of γδ T cells and TTZ combinations are able to do better than TTZ alone as they yield both tumor cell opsonization and tumor cell infiltration by the cytolytic γδ T cells.

FIGURE 3. γδ T cells and TTZ infiltrate and inhibit HER-2+ mammary breast tumors. A, Primary γδ T cell line purity used to inject at the different time points in mice (each week for 4 wk). Representative flow cytometric analysis from four different γδ T cell lines used. Percentage of CD3+TCRVγ9+ cells and isotypic controls (dashed lines) are shown. B, In vivo growth of orthotopic mammary tumors (2 × 10⁶ SK-BR-3 cells) in SCID/Beige mice. Tumor volume of each group (n = 7) after randomization and treatment (mean ± SEM). Mice were treated two times per week for 4.5 wk with γδ T cells (●, 2 × 10⁷ γδ T cells i.v.), with TTZ (●, 10 mg/kg TTZ i.p.), or with TTZ and γδ T cells (●, 10⁷ γδ T cells i.v. + 10 mg/kg TTZ i.p.). C, Tumor volume of mice treated with TTZ (solid bars, 10 mg/kg TTZ) or with γδ T cells and TTZ (open bars, 10⁷ γδ T cells + 10 mg/kg TTZ). Mean ± SEM. *p < 0.05. ND, not determinable. D and E, Tumor biopsies from mice treated with γδ T cells (2 × 10⁷ γδ T cells), with TTZ (10 mg/kg TTZ), or with γδ T cells and trastuzumab (2 × 10⁷ γδ T cells + 10 mg/kg TTZ) were removed and stained for flow cytometry analysis. Representative result from seven biopsies of each group. D, Tumor cells were stained with human anti-TCRVγ9 and anti-CD3 Abs. Percentages of human γδ T cells and isotypic controls (dashed lines) are shown. E, Tumor cells were stained with Fc-specific human IgG1 (Fc-specific hIgG1, solid line) or human IgG1 (hIgG1, dashed line) as control. Percentages of positive cells for TTZ stained on HER-2 are shown.

TCRVγ9+ T cells infiltrate human breast tumors

To assess the clinical validity of this concept, the tumor biopsies of 30 patients diagnosed with breast tumor were analyzed for infiltrating immune cells. This comprised tumors collected after excision and histological tumor identification from 29 untreated patients with an infiltrative ductal carcinoma and 1 from a patient...
with an in situ ductal carcinoma. Twenty-three patients had positive expression for hormonal receptors, and four overexpressed HER-2/neu (Table I). We included in this analysis four control samples of noncancer breast biopsies to compare the proportion of TCRVγ9+ cells among other immune cells in nontumor breast.

TCRVγ9+ T cells were infiltrating all biopsies analyzed, although at variable rates. Only 3 of the 30 samples had barely detectable TCRVγ9+ cells, whereas 27 of the 30 harbored a clear-cut TCRVγ9+ lymphoid cell infiltrate (Fig. 4A). There were on average 150 γ9 lymphocytes for 100,000 total biopsy cells, almost as many NK cells (∼130 NK cells for 100,000 total biopsy cells), and much more CD4 and CD8 T cells (Fig. 4B). Quantifying the CD45+ TILs confirmed this bias: 5 and 8% of TILs from these ductal mammary carcinoma were TCRVγ9+ and NK cells, respectively, whereas the CD4+ and CD8+ subsets were prominent (50% and 37% of TILs, respectively) (Fig. 4C, 4D). In contrast, control samples of normal breast tissues consistently showed fewer TCRVγ9+ T cells than that of the above carcinomas. Furthermore, they also comprised fewer CD4 and CD8 T cells than that of the tumor samples, whereas NK cell numbers were in the same range in both groups (Fig. 4E–G). Altogether, these results demonstrated that TCRVγ9+ T cells infiltrate ductal mammary carcinomas from untreated patients.

Discussion

Altogether, this study supported the view that the TCRVγ9+ T cells could be harnessed together with Herceptin to improve the efficacy of ADCC in the treatment of HER-2+ breast cancers. The treatment of HER-2/neu positive breast cancer has considerably benefited from the use of the therapeutic mAb TTZ. Frequent relapses, however, demonstrate that the bioactivity of this mAb is still suboptimal. Breast cancer and particularly metastatic breast cancer remain an important cause of mortality. If TTZ treatment improved the survival rate of patients with HER-2/neu positive breast tumor, many of them are or become resistant to TTZ. Nevertheless, several studies have demonstrated that the tumor resistance to TTZ is not the cause of an HER-2 expression decrease by cancer cells. Breast tumors that progress on TTZ continue to express high levels of HER-2/neu molecules (50, 51). Thus, approaches combining TTZ and other strategies to improve anticancer therapies remain to be developed.

Potentiating the ADCC induced by anticancer mAbs can be achieved not only by direct engineering of these drugs but also by strategies that target the downstream cytolytic effector cells (52). NK cells represent the major subset of lymphoid cells mediating ADCC. Patients induced to complete or partial remission by TTZ alone were found to have higher ADCC and higher infiltration of cytotoxic lymphocytes in situ (13). However, NK cell activities of PBMCs from breast cancer patients are significantly lower compared with those of healthy individuals (53), and there is a great heterogeneity of NK cell–ADCC activity among breast cancer patients. Moreover, assessment of ADCC in metastatic breast cancer patients treated with a combination of TTZ and IL-2 or with IL-12 alone failed to find that ADCC correlates with clinical responses (54, 55). Thus, transfer of immune cells stimulated to mediate a stronger ADCC represents an option to increase TTZ efficacy.

Among cell effectors of ADCC against tumor cells, a subpopulation of peripheral Vγ9Vδ2+ T cells expresses high level of FcγRIIIA and mediates cytotoxic function (22, 56). The recruitment of their FcγR-dependent functions appears well suited in this regard because FcγRIIIA-expressing γ6 T cells can be amplified, and the association of these cells with therapeutic mAbs improves their antitumor functions in vitro and in vivo (25, 43).

γδ T cells have been consistently identified and isolated from the TIL population in various types of cancers, including breast carcinoma (57). In this study, we show that TCRVγ9+ T cells are present in biopsies of human mammary-infiltrating carcinomas with a similar proportion to NK cells, suggesting their attraction from peripheral blood to tumor site. In addition, the immune functions of TCRVγ9+ T lymphocytes against breast cancer cells suggest they contribute to the immunosurveillance of such cancers. Moreover, the absolute number and percentage of γδ T cells from blood of cancer patients, including patients with bone metastasis of breast cancer, are the same as that in healthy donors (44). These γδ T cells are cytotoxic against cancer cell lines after large-scale, good manufacturing practice-grade ex vivo expansion by PAg or zoledronate, and IL-2 is nowadays highly feasible (44).

All these observations suggested the development of novel alternative or adjuvant therapies using Vγ9Vδ2+ T cells and TTZ for treatment of HER-2/neu+ tumor patients. The current work based on orthotopic human mammary carcinomas xenografted in SCID/Beige mice demonstrated that combining TTZ with γδ T cells improves the in vivo efficacy of this Ab against an HER-2/neu+ breast cancer. Previous investigations have demonstrated the anti-tumor efficacy of human γδ T cells in vivo after adoptive transfer into SCID mice inoculated with human tumor cells as various as lymphoma, nasopharyngeal carcinoma, and melanoma (58–60). Nevertheless, the presence of endogenous NK or macrophage murine cells could contribute to the antitumor activities observed in these studies. In addition, most primary cell lines of human Vγ9Vδ2+ T cells are biased toward a perforin-low Th1-type profile (21, 25). Hence alone, these cells might spontaneously kill mammary carcinoma very weakly (Figs. 1, 2), as this cytotoxic activity mainly relies upon release of perforin (25, 43). Furthermore, there is a vast body of literature indicating that proinflammatory lymphocytes and their corresponding cytokine profiles might actually promote growth of breast cancers (61, 62), as observed in this study in control groups of xenografted SCID/Beige mice receiving γδ cells alone (Fig. 3B). Although future studies will determine the extent to which these observations translate into clinical practice, our results might help to interpret results from already initiated clinical trials involving autologous or allogeneic transplantation of primary cell lines of Vγ9Vδ2+ T lymphocytes alone.

Despite such limitations, however, this report showed that when human Vγ9Vδ2+ T cells were combined with mAb, these cells infiltrated the tumor and efficiently blocked its growth, confirming that ADCC is an important mechanism of action for Herceptin.

Table I. Patient characteristics

<table>
<thead>
<tr>
<th>Parametera</th>
<th>Number of Patients</th>
<th>% of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>5</td>
<td>17</td>
</tr>
<tr>
<td>II</td>
<td>8</td>
<td>27</td>
</tr>
<tr>
<td>III</td>
<td>17</td>
<td>57</td>
</tr>
<tr>
<td>Clinical nodal status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>11</td>
<td>37</td>
</tr>
<tr>
<td>Negative</td>
<td>19</td>
<td>63</td>
</tr>
<tr>
<td>Hormone receptor status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>23</td>
<td>77</td>
</tr>
<tr>
<td>Negative</td>
<td>7</td>
<td>23</td>
</tr>
<tr>
<td>HER-2 status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>Negative</td>
<td>26</td>
<td>87</td>
</tr>
<tr>
<td>Histological status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCI</td>
<td>29</td>
<td>97</td>
</tr>
<tr>
<td>CCIS</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

aAge of patients: mean ± SD, 58 ± 13 y; range, 30–85 y.
Thus, the use of this combined strategy needs not only to test ADCC and γδ-responsive patients but also a regimen that increases CD16 expression on these cells. The synthetic PAg BrHPP was shown to induce γδ T cell maturation toward terminally differentiated γδ T cells (TEMRA) and high-level CD16-expressing cells. This drug is nowadays available as good manufacturing practice-grade and is not toxic for patients. In addition, third-generation bisphosphonates indirectly stimulate Vγ9Vδ2+ T cells and thereby also increase their cytolytic activity. Hence, the activity of this antiosteolytic, U.S. Food and Drug Administration-approved drug could also benefit this kind of combined therapeutic regimen. γδ T cell-based immunotherapy might be achieved for instance by stimulating Vγ9Vδ2+ T cells in patients through injection of PAg or bisphosphonate and IL-2, as recently performed in hematological malignancies (35), in prostate cancer (36), and in advanced metastatic breast cancer (64, 65). Nevertheless, it could be argued that such an approach could remain sensitive to tumor-induced immunosuppression. Most

**FIGURE 4.** TCRVγ9+ T cells infiltrate human ductal mammary carcinomas. Total cells were extracted from freshly resected human breast samples, counted, stained, and analyzed by flow cytometry. A–D, Thirty breast tumor samples. A, TCRVγ9+ T cell counts for 100,000 total biopsy cells. Median is shown (dashed line). B, Mean of cell counts for CD3+CD56+ cells (NK cells), CD3+CD8+ cells (CD8 T cells), CD3+CD4+ cells (CD4 T cells), and TCRVγ9+CD3+ T cells (TCRVγ9 T cells) for 100,000 total biopsy cells. Shown are mean ± SEM. *p < 0.05. C, Mean percentage of CD3+CD56+ cells (NK cells), CD3+CD8+ cells (CD8 T cells), CD3+CD4+ cells (CD4 T cells), and TCRVγ9+CD3+ cells (TCRVγ9 T cells) among CD45+ cells. Shown are mean ± SEM. *p < 0.05. D, Representative of TIL phenotypes (from patient no. 30). E–G, Four noncancer breast tissue (control) samples. E, Mean of cell counts for CD3+CD56+ cells (NK cells), CD3+CD8+ cells (CD8 T cells), CD3+CD4+ cells (CD4 T cells), and TCRVγ9+CD3+ T cells (TCRVγ9 T cells) for 100,000 total biopsy cells. Shown are mean ± SEM. *p < 0.05. F, Mean percentage of CD3+CD56+ cells (NK cells), CD3+CD8+ cells (CD8 T cells), CD3+CD4+ cells (CD4 T cells), and TCRVγ9+CD3+ cells (TCRVγ9 T cells) among CD45+ cells. Shown are mean ± SEM. *p < 0.05. G, Representative profile of lymphocytes infiltrating a nontumoral breast tissue sample.
notably, Vγ9Vδ2+ T cell proliferation and maturation could be inhibited by TGF-β (66), which is frequently released in the breast tumor microenvironment (67, 68). Even if in vitro, the strength of BrHPP signaling can bypass TGF-β inhibition on Vγ9Vδ2+ T cells (66), we did not verify this in the orthotopic xenograft models depicted in this article. Moreover, other immunosuppressive cytokines and metabolites produced by tumors or their microenvironment might also regulate the Vγ T cells, as PGE2 (69–71). In addition, regulatory T cells might also dampen the antitumor function of Vγ T cells (46). The alternative could be achieved by adoptive transfer of ex vivo-expanded autologous Vγ9Vδ2+ T cells from cancer patients (37, 38). The mice models assessed in this study were rather related to this approach, as they were treated with Vγ T cell lines—albeit not autologous with SK-BR-3 cells—and amplified by in vitro culture with BrHPP plus IL-2. Other options to restore full cytotoxicity against the tumor cells consist in additional administrations of zoledronate plus IL-2 (65), albeit repeated antigenic stimulation with PAg might finally produce a selective Vγ9Vδ2+ T cell anergy in cancer patients (A.-H. Capietto, L. Martinet, and J.-J. Fournié, unpublished observations).

Nevertheless, this work indicated that the in vitro expansion of Vγ T cells and their subsequent infusion with TZT may be of observations). Even if in vitro, the strength (A.-H. Capietto, L. Martinet, and J.-J. Fournié, unpublished observations). Nevertheless, this work indicated that the in vitro expansion of Vγ T cells and their subsequent infusion with TZT may be of significant clinical benefit in the treatment of HER-2/neu positive breast cancers. Future clinical investigations from our and other laboratories will assess the therapeutic activity of these promising regimens.

Acknowledgments

We are grateful to Christine Jean for advice in mice experiments, all J.-F.’s laboratory members for critical discussions and technical advice on this work. Innate Pharma for clinical grade batches of BrHPP, and Sanofi-Aventis for recombinant human IL-2.

Disclosures

J.-F. authored an INSERM patent on therapeutic applications of phosphoantigens. The other authors have no financial conflicts of interest.

References


