Cutting Edge: Tissue-Retentive Lung Memory CD4 T Cells Mediate Optimal Protection to Respiratory Virus Infection

John R. Teijaro, Damian Turner, Quynh Pham, E. John Wherry, Leo Lefrançois and Donna L. Farber

J Immunol 2011; 187:5510-5514; Prepublished online 4 November 2011; doi: 10.4049/jimmunol.1102243

http://www.jimmunol.org/content/187/11/5510

Supplementary Material
http://www.jimmunol.org/content/suppl/2011/11/02/jimmunol.1102243.DC1

References
This article cites 23 articles, 13 of which you can access for free at:
http://www.jimmunol.org/content/187/11/5510.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Cutting Edge: Tissue-Retentive Lung Memory CD4 T Cells Mediate Optimal Protection to Respiratory Virus Infection

John R. Teijaro,*1 Damian Turner,† Quynh Pham,‡ E. John Wherry,§ Leo Lefrançois,‡ and Donna L. Farber*†

We identify in this article a new class of lung tissue-resident memory CD4 T cells that exhibit tissue tropism and retention independent of Ag or inflammation. Tissue-resident memory CD4 T cells in the lung did not circulate or emigrate from the lung in parabiosis experiments, were protected from in vivo Ab labeling, and expressed elevated levels of CD69 and CD11a compared with those of circulating memory populations. Importantly, influenza-specific lung-resident memory CD4 T cells served as in situ protectors to respiratory viral challenge, mediating enhanced viral clearance and survival to lethal influenza infection. By contrast, memory CD4 T cells isolated from spleen recirculated among multiple tissues without retention and failed to mediate protection to influenza infection, despite their ability to expand and migrate to the lung. Our results reveal tissue compartmentalization as a major determining factor for immune-mediated protection in a key mucosal site, important for targeting local protective responses in vaccines and immunotherapies. The Journal of Immunology, 2011, 187: 5510–5514.

Migration of activated T cells to peripheral tissue sites during infection promotes local immune responses to clear pathogens. After clearance, long-lived, pathogen-specific memory T cells can take up residence and recirculate within multiple lymphoid and nonlymphoid compartments, with significant populations in mucosal sites such as lung and intestine (1, 2). The presence of memory T cells in tissue sites has been associated with increased protection to virus infections in mice (1–3); however, it has been difficult to establish whether in situ immunity is due to T cells resident in the tissue versus those rapidly recruited from other sites. Defining the protective T cell subsets for specific compartments is critical to the successful design of vaccines that target tissue sites.

Respiratory infection with influenza virus results in the generation and dissemination of memory T cells into lung and lymphoid tissue sites as demonstrated in mouse models (4, 5) and in human peripheral blood and lungs (6, 7). We recently showed that heterogeneous populations of influenza-specific memory CD4 T cells in mice could direct rapid lung viral clearance independent of CD8 T cells and B cells but did not protect from morbidity of infection (8, 9). As circulating memory CD4 T cells reactive to pandemic influenza strains have been identified in healthy humans (10), further insights into the nature of protective memory CD4 T cells could be beneficial in optimizing this potent response.

In this study, we identify a population of influenza-specific memory CD4 T cells in lung that are noncirculating and exhibit lung-tropic migration independent of Ag specificity. We used parabiosis models to demonstrate irreversible retention of lung-tropic memory CD4 T cells in the lung and in vivo labeling to identify a noncirculating lung-resident polyclonal memory CD4 T cell population persisting after influenza infection—both exhibiting elevated CD69 and CD11a expression. Mice with memory CD4 T cells exclusively in the lung were protected from morbidity and mortality of influenza infection, with spleen-derived memory CD4 T cells affording little protection and even exacerbating mortality despite their diverse tissue residence and migration to the lung. Our results define a new class of memory CD4 T cells resident in lung tissue and reveal tissue compartmentalization as a major determining factor for protection in a key mucosal site, with important implications for targeting site-specific immunity in vaccines and immunotherapies.

Materials and Methods

Mice

BALB/c mice (8–16 wk of age; National Cancer Institute Biological Testing Branch), RAG2−/− (BALB/c) mice (Taconic Farms, Germantown, NY), and influenza hemagglutinin (HA)-TCR transgenic mice (11) on BALB/c (Thy1.2) or BALB/c(Thy1.1) backgrounds were maintained under specific pathogen-free conditions at the University of Maryland, Columbia University, and the University of Connecticut. Protocols were approved by the institutional animal care and use committees of all institutions.

1Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201; 2Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032; 3Division of Immunology, Department of Medicine, University of Connecticut Health Center, Farmington CT 06030; and 4Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104

*Current address: Department of Immunology, The Scripps Research Institute, La Jolla, CA.

Received for publication August 4, 2011. Accepted for publication October 3, 2011. This work was supported by National Institutes of Health Grants AI083022 (to D.L.F. and E.J.W.) and AI41576 and AI76457 (to L.L.).

Address correspondence and reprint requests to Prof. Donna L. Farber, Columbia Center for Translational Immunology, Columbia University Medical Center, 650 W. 168th Street, Mail Box 127, New York, NY 10032. E-mail address: dlf39@columbia.edu

The online version of this article contains supplemental material.

Abbreviations used in this article: HA, hemagglutinin; TCID50, tissue culture infectious dose units 50.

Copyright © 2011 by The American Association of Immunologists, Inc. 0022-1767/11/$16.00

www.jimmunol.org/cgi/doi/10.4049/jimmunol.1102243
T cells would influence their intrinsic homing capacities. Lung-dependent of Ag specificity.

Influenza virus infection

Mice were infected intranasally with 100–500 tissue culture infectious dose units 50 (TCID50) influenza virus (A/PR/8/34) for sublethal infection and 5000 TCID50 PR8 influenza (2LD50) for lethal infection as described (8, 9, 12). Morbidity was monitored by daily weighing and examination. Influenza virus titers were determined by TCID50 assay as described (13).

Generation of influenza-specific memory CD4 T cells

HA-specific memory CD4 T cells were generated by adoptive transfer of in vitro, Ag-primed HA-TCR CD4 T cells into BALB/c(Thy1.1) or RAG2−/− mice as previously done (4, 14, 15). Polyclonal memory CD4 T cells specific for influenza were recovered 4–8 wk after intranasal infection of BALB/c mice and quantitated by ELISPOT assay as described (8, 15).

Homing and parabiosis experiments

For in vivo homing assays, HA-specific memory CD4 T cells (Thy1.1) were isolated from spleens and lungs of RAG2−/− hosts, transferred (2 × 106/mouse) into BALB/c recipient mice, and recipient tissues were recovered 7 and 21 d later. For parabiosis experiments, BALB/c recipients of 2 × 106 lung or spleen HA-specific memory CD4 T cells were surgically conjoined 7 d posttransfer to BALB/c mouse partners as described (16), and tissues were harvested from mouse pairs 8–21 d later.

In vivo Ab labeling and flow cytometry

For in vivo Ab labeling, naive or flu-immune BALB/c mice were injected intravenously with 2.5 μg PE-Cy5-conjugated anti-CD4 Ab (clone RM4-5), and after 10 min, peripheral blood was obtained and lungs perfused with PBS/500 units heparin, and cells isolated. Cells were surface or intracellularly stained with fluorochrome-conjugated Abs as described (15) and analyzed using an LSRII or FACSCanto flow cytometer (BD Biosciences, San Jose, CA) with FACSDiva (BD Biosciences) or FlowJo software (Tree Star, Ashland, OR).

Statistical analysis

Results are expressed as the mean value from individual groups ± SEM unless otherwise designated, indicated by error bars. Significance between experimental groups was determined by two-tailed Student t tests, assuming a normal distribution for all groups.

Results and Discussion

Lung memory CD4 T cells exhibit tissue-specific tropism

Influenza infection resulted in generation of polyclonal influenza-specific memory CD4 T cells in lung and spleen, with lung memory CD4 T cells exhibiting a slightly higher proportion of IFN-γ producers and decreased IL-2 producers compared with spleen memory CD4 T cells (Fig. 1A). To dissect the role of tissue location in the distinct functions of spleen and lung memory CD4 T cells, we generated memory CD4 T cells expressing the same TCR clonotype by adoptive transfer of in vitro-primed influenza HA-specific TCR-transgenic CD4 T cells into lymphocyte-deficient or intact mouse hosts (4, 14, 17). Similar to polyclonal populations, HA-specific memory CD4 T cells in the lung had a lower proportion of IL-2 producers and a similar frequency of IFN-γ producers compared with spleen memory CD4 T cells (Fig. 1B). These results indicate tissue-specific influences on the function of resident memory populations, independent of Ag specificity.

We hypothesized that the tissue location of memory CD4 T cells would influence their intrinsic homing capacities. Lung- and spleen-derived HA-specific memory CD4 T cells isolated as described above were transferred into unmanipulated BALB/c congenic hosts, and their resultant distribution into different tissues of recipient mice was assessed 1–3 wk later. Spleen-derived memory CD4 T cells dispersed into multiple tissues of recipient mice, including spleen, lung, liver, and lymph nodes (Fig. 1C), with the majority of spleen-derived cells recovered from the spleen, followed by reduced yet significant numbers in the lung (Fig. 1D). By contrast, lung-derived memory CD4 T cells distributed almost exclusively in the lungs of recipient mice and not significantly into other sites such as spleen, lymph node, or liver (Fig. 1C). Notably, all of the lung-derived memory CD4 T cells were recovered from the lungs of recipient mice 3 wk posttransfer (Fig. 1D), demonstrating lung tissue-tropism of this subset. Lung memory CD4 T cells localized predominantly in the tissue parenchyma with much lower numbers in the airways as quantified.
in bronchoalveolar lavage fluid (Supplemental Fig. 1A). Together, these results demonstrate that lung-resident memory CD4 T cells are distinct in function and migration from spleen-derived counterparts and possess internal “zip codes” enabling them to home to their tissue of residence.

Lung memory CD4 T cells are specifically retained in the lung

The homing tropism of lung memory CD4 T cells could arise through recirculation and migration back to the lung and/or specific retention in the lung. We used a parabiosis model (16) to examine the recirculation and/or retention properties of spleen and lung memory CD4 T cells. Host mice of spleen- or lung-derived memory CD4 T cells (Thy1.1+) containing HA-specific memory CD4 T cells in multiple tissues or only in lungs, respectively, were surgically conjoined to a second BALB/c mouse as described (16) to create host and parabiont partner mice with shared circulations. After 8 d conjoined, T cell populations in multiple tissues of host and parabiont partner mice were recovered and analyzed. In mouse pairs containing spleen-derived memory CD4 T cells, we detected significant frequencies of HA-specific memory T cells in spleen, lung, and liver, but not lymph nodes (Fig. 2A and data not shown), with the highest overall numbers recovered from spleen and lung (data not shown). In striking contrast, mouse pairs containing lung-derived memory CD4 T cells had memory CD4 T cells exclusively in the lungs of host mice, with no dispersion into additional tissues or lung-draining lymph nodes of host or parabiont partner mice (Fig. 2A, 2B). Lung-derived memory CD4 T cells further remained in the lungs of the original host mice in long-term parabiosis experiments of 3 wk duration (Supplemental Fig. 1B), when spleen-derived memory CD4 T cells had completely dispersed and were not detected in any tissues of host or partner mice (data not shown). These results demonstrate a powerful and specific retention of lung memory CD4 T cells in the lung, independent of Ag and inflammation. These homing and retention properties of lung memory CD4 T cells are distinct from lung memory CD8 T cells, which migrate to multiple lymphoid and nonlymphoid tissue sites (9, 18) and recirculate in vivo in parabiosis studies (16), similar to our findings with spleen-derived memory CD4 T cells. Our results therefore define a new class of tissue-resident memory CD4 T cells retained within a specific compartment.

Distinct phenotypes of circulating and tissue-resident memory CD4 T cell populations

In addition to differences in CD62L expression with lung being predominantly CD62Llo and spleen heterogeneous for CD62L expression (data not shown and Ref. 4), lung-retained HA-specific memory CD4 T cells expressed the activation marker CD69 and high levels of the integrin LFA-1 (CD11a), whereas spleen memory CD4 T cells did not express CD69 and had reduced levels of CD11a (Fig. 3A). We investigated whether subsets with different migratory capacities could be identified within endogenous lung CD4 T cells consisting of

FIGURE 2. Irreversible tissue retention of lung memory CD4 T cells. Host mice containing Thy1.1+ lung- or spleen-derived HA-specific memory CD4 T cells as in Fig. 1C were surgically conjoined to syngeneic BALB/c partner mice in parabiosis experiments (see Materials and Methods). A, Frequency of spleen- and lung-derived CD4+Thy1.1+ HA-specific memory CD4 T cells (of total CD4 T cells) in tissues of host and parabiont partner mice after 8 d conjoined. B, Percent distribution of HA-specific memory CD4 T cells recovered from host and partner mouse tissues calculated as in Fig. 1D. Results are compiled from eight parabiotic mouse pairs/group and representative of two independent experiments. ***p < 0.005 (significant differences between lung and spleen memory migration).

FIGURE 3. Distinct phenotype of tissue-resident versus circulating memory CD4 T cells. A, Cell surface CD11a and CD69 expression by lung- and spleen-derived HA-specific memory CD4 T cells gated on live CD4+CD44hiCD62Llo T cells; representative of four independent experiments. B, In vivo labeling delineates resident and circulating polyclonal lung memory CD4 T cell subsets. BALB/c mice previously infected with influenza (4–6 wk postinfection) were injected intravenously with fluorescently labeled anti-CD4 Ab, and blood and lung tissue were harvested. Top, Proportion of CD3ε+CD8α-γδ- T cells stained by or protected from in vivo-administered Ab. Bottom, CD11a and CD69 expression by the labeled or protected cell populations; representative of four independent experiments.
and spleen of recipient mice (Fig. 4). CD4 T cells were present in high frequencies in both the lung and spleen, whereas spleen-derived memory infection, lung-derived memory CD4 T cells maintained a bi-/trivalent effector-memory phenotype (CD44int/CD62Llo) compared with naive mice (60% lethality at day 12 postinfection). Unlabeled lung T cells exhibited an effector-memory phenotype (CD44hi/CD62Llo) (data not shown) with a high proportion of CD11a+/CD69+ cells (Fig. 3B), similar to the phenotype of HA-specific lung-resident memory CD4 T cells (Fig. 3A). By contrast, in vivo-labeled lung CD4 T cells were predominantly naive (70% CD44lo/CD62Lhi; data not shown) and had reduced levels of CD11a and CD69 compared with those of the protected population (Fig. 3B). These results establish that the lung-resident CD69hi/CD11alo memory CD4 T cell subset is represented among polyclonal populations of lung CD4 T cells. This CD69hi/CD11alo phenotype is also associated with memory CD4 and CD8 T cells in intestine and skin (21, 22), suggesting similar signatures for tissue-resident T cells in other mucosal and nonlymphoid sites.

Enhanced protection from influenza virus challenge by lung-retentive memory CD4 T cells

The distinct migration/retention properties of lung and spleen memory CD4 T cells enabled a novel investigation of protection by tissue-resident versus circulating memory subsets. We challenged mouse recipients of spleen or lung-derived memory CD4 T cells (“spleen-memory” and “lung-memory” recipients, respectively) intranasally with influenza PR8 (H1N1) virus (HA specificity of HA-TCR T cells) and monitored protection by weight loss morbidity and lung viral loads as described (9). After sublethal infection, naive mice and spleen-memory recipients exhibited profound and progressive weight loss of 25% by 5–6 d postinfection, whereas lung-memory recipients experienced only moderate weight loss (10%) for the entire course of infection (Fig. 4A). Importantly, lung-memory recipients exhibited more rapid and enhanced lung viral clearance compared with that of infected naive and spleen-memory recipients, with complete clearance by day 8 postinfection (Fig. 4B). Lung-memory recipients were also fully protected from lethal influenza challenge compared with naive mice (60% lethality at day 12 postinfection) and spleen-memory recipients, which experienced accelerated death at day 7 postinfection (Fig. 4C). After infection, lung-derived memory CD4 T cells maintained a biased distribution in the lung, whereas spleen-derived memory CD4 T cells were present in high frequencies in both the lung and spleen of recipient mice (Fig. 4D). These findings indicate that lung memory CD4 T cells serve as optimal in situ protectors to influenza challenge, contrasting spleen memory CD4 T cells, which exhibit low protective capacities yet extensive expansion.

Our results reveal a novel class of tissue-resident memory CD4 T cells in a key mucosal site that are specifically retained in lung tissue and mediate efficacious protection to respiratory virus infection. These findings indicate that the protective capacity of T cell memory to infections in peripheral sites is intricately linked to their tissue compartmentalization, and quantitative measurements of circulating Ag-specific T cell responses as typically assessed (23) may not reflect the quality of local tissue-specific immune responses. We propose that targeting the generation and maintenance of these tissue-resident memory populations will be critical for vaccines and immunotherapies to promote or regulate compartment-specific immune responses.

Disclosures

The authors have no financial conflicts of interest.

References

FIGURE 4. Lung memory CD4 T cells mediate enhanced protection to influenza challenge compared with spleen memory CD4 T cells. BALB/c mice and recipients of lung- or spleen-derived HA-specific memory CD4 T cells (10⁶/mouse) were challenged with PR8 influenza virus. A. Daily weight loss after sublethal influenza infection, compiled from six independent experiments with n = 20 to 25 per group. B. Kinetic analysis of influenza viral titers in the lungs of naive mice or mice receiving spleen- or lung-derived memory CD4 T cells as in A. Results are expressed as mean TCID₅₀ from four to nine mice per group, representative of two to four experiments at each time point. C. Lung memory CD4 T cells protect from lethal challenge. Graph shows survival of naive BALB/c mice or mice recipients of spleen- or lung-derived memory CD4 T cells infected with 2LD₅₀ of PR8 influenza virus from two independent experiments with 8–10 mice per group. D. Numbers of lung- and spleen-derived HA-specific memory CD4 T cells recovered from recipient spleen and lungs 6 d postinfection, expressed as the average from five mice per group, representative of six experiments. ***p < 0.0005, **p < 0.005, *p < 0.05, #p < 0.05, †p = 0.06 (significance for all sections).

The Journal of Immunology 5513

Downloaded from http://www.jimmunol.org/ by guest on September 15, 2017

