The TLR3/TICAM-1 Pathway Is Mandatory for Innate Immune Responses to Poliovirus Infection

Hiroyuki Oshiumi, Masaaki Okamoto, Ken Fujii, Takashi Kawanishi, Misako Matsumoto, Satoshi Koike and Tsukasa Seya

J Immunol 2011; 187:5320-5327; Prepublished online 12 October 2011; doi: 10.4049/jimmunol.1101503
http://www.jimmunol.org/content/187/10/5320

Supplementary Material
http://www.jimmunol.org/content/suppl/2011/10/12/jimmunol.1101503.DC1

References
This article cites 55 articles, 32 of which you can access for free at:
http://www.jimmunol.org/content/187/10/5320.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
The TLR3/TICAM-1 Pathway Is Mandatory for Innate Immune Responses to Poliovirus Infection

Hiroyuki Oshiumi,*1 Masaaki Okamoto,*1 Ken Fujii,† Takashi Kawanishi,* Misako Matsumoto,* Satoshi Koike,† and Tsukasa Seya*

Cytoplasmic and endosomal RNA sensors recognize RNA virus infection and signals to protect host cells by inducing type I IFN. Using human PVR transgenic (PVRtg) mice, as well as IPS-1−/− and TICAM-1−/− mice, we found that TICAM-1 is essential for antiviral responses that suppress PV infection. TICAM-1−/− mice in the PVRtg background became markedly susceptible to PV, and their survival rates were decreased compared with wild-type or IPS-1−/− mice. Similarly, serum and organ IFN levels were markedly reduced in TICAM-1−/−/PVRtg mice, particularly in the spleen and spinal cord. The sources of type I IFN were CD8α+ CD11c+ splenic dendritic cells and macrophages, where the TICAM-1 pathway was more crucial for PV-derived IFN induction than the TLR3 pathway (5, 14).

When RNA viruses infect mammalian cells, type I IFN is generated to suppress viral infection. IFN-inducing pathways evoked by viral dsRNA have been identified in humans and mice, and the possible involvement of these pathways in protection against viruses has been examined using gene-disrupted mice and various virus species (1). The sensing of dsRNA by the innate immune system is accomplished either by TLR3 or by cytoplasmic sensors such as dsRNA-dependent protein kinase (so-called PKR), retinoic acid inducible gene I (RIG-I), and melanoma differentiation-associated gene 5 (MDA5) (2). In virus-infected cells, RIG-I and MDA5 mainly participate in type I IFN induction in conjunction with the adaptor molecule IFN-β promoter stimulator-1 (IPS-1; also known as MAVS, Cardif, or VISA) (1). The role of these molecules in host cell protection has been clearly delineated in RNA virus infection.

Toll/IL-1R homology domain-containing adaptor molecule 1 (TICAM-1; also called TRIF) is the adaptor of TLR3 (3–5). When dsRNA stimulates TLR3, TICAM-1 transiently couples with TLR3 and forms a multimer, translocating to a distinct region of the cytoplasm (8). In its multimeric form, TICAM-1 recruits the kinase complex to activate IFN regulatory factors (IRF)-3 and -7, which induce type I IFN promoter stimulator-1 (2).

Materials and Methods

Mice

All mice were backcrossed with C57BL/6 mice more than seven times before use. TICAM-1−/− (21) and IPS-1−/− mice (this study) were generated in our laboratory. TLR3−/− (4), IRF-3−/−, and IRF-7−/− mice (22) were provided by Drs. S. Akira (Osaka University, Osaka, Japan) and T. Taniguchi (University of Tokyo, Tokyo, Japan). PVrtg mice were provided as reported previously (20). All mice were maintained under specific pathogen-free conditions in the Animal Facility at Hokkaido University Graduate School of Medicine (Sapporo, Japan). Animal experiments were performed according to the guidelines set by the Animal Safety Center, Hokkaido University.

Generation of IPS-1−/−-deficient mice

The IPS-1 gene was amplified by PCR using genomic DNA extracted from embryonic stem cells. The targeting vector was constructed by replacing the second and third exons with a neomycin-resistance gene cassette (Neo), and an HSV thymidine kinase driven by the PGK promoter was inserted into the genomic fragment for negative selection. After the target vector was transfected into 129/Sv cells-derived embryonic stem cells, G418 and ganciclovir doubly resistant colonies were selected and screened by PCR. The targeted cell line was injected into C57BL/6 blastocysts, resulting in the birth of male chimeric mice. These mice were then backcrossed with C57BL/6 mice. The disruption of the IPS-1 gene was confirmed by PCR for the long and short arms. The abolishment of IPS-1 mRNA expression was confirmed by real-time quantitative PCR (RT-qPCR).

Cells, viruses, and reagents

Wild-type (WT) and TICAM-1−/− mouse embryonic fibroblasts (MEF) were prepared from 12.5- to 13.5-d-old embryos. PV, strain Mahoney, was amplified in Vero cells, and the viral titer was determined by a plaque assay. Bone marrow (BM) cells were prepared from the femur and tibia. The cells were cultured in RPMI 1640 (Invitrogen, New York, NY) supplemented with 10% FCS, 100 μg/ml penicillin, 100 μg/ml streptomycin, and 1% non-essential amino acids. The cell viability was monitored for 2 wk. To collect the peritoneal macrophages (BM-Mf), we injected 103 PFU of EMCV into 8-wk-old WT mice. After 6 d, the cells were collected and used as bone marrow-derived dendritic cells (BM-DC) or BM-Mf. The purity was confirmed by flow cytometry, using an antibody against F4/80. To prepare the BM-Mf, 5×10⁶ cells were resuspended in RPMI 1640 supplemented with 10% FCS, 100 μg/ml penicillin, 100 μg/ml streptomycin, and 1% non-essential amino acids, and 2×10⁶ PFU of EMCV were added in 1 ml. The culture was maintained at 37°C for 7 d.

Experimental infection of mice

Five- to 8-wk-old C57BL/6 female mice were used throughout this study. Mice of different genotypes were i.p. or i.v. infected with PV at the doses indicated. The viability of the infected mice was monitored for 2 wk. We collected sera from the mice at different time points to measure viral titers by a plaque assay and cytokine levels by ELISA. ELISA kits for IFN-α and IFN-β were purchased from PBL Biomedical Laboratories, ELISA was performed according to the manufacturer’s instructions.

ELISA

Culture supernatants of cells (10⁵) seeded on 24-well plates or sera were collected and analyzed for cytokine levels with ELISA. ELISA kits for IFN-α and IFN-β were purchased from PBL Biomedical Laboratories, ELISA was performed according to the manufacturer’s instructions.

Statistical analysis

Statistical significance of differences between groups was determined by the Student t test, and survival curves were analyzed by the log-rank test using Prism 4 for Macintosh software (GraphPad Software). Student t tests and χ² goodness-of-fit tests were performed using Microsoft Excel software and a χ² distribution table.

Results

TICAM-1 is essential for protection of PVrtg mice against PV infection

Mice lacking the mdxa-5 gene abrogate the production of type I IFN in response to EMCV infection and are more susceptible to EMCV infection (13, 17). Because EMCV is a picornavirus, it has been proposed that MDA5 is critical for sensing picornavirus infection. In infected cells, picornaviruses efficiently generate long dsRNAs, which is recognized by the cytoplasmic dsRNA sensor MDA5 (23). The 5′ end of the PV genomic RNA is linked to a VPg protein (16), not to a 5′-triphosphate, a major ligand for another cytoplasmic RNA sensor, RIG-I (24, 25). Thus, we first tested, using the PVrtg mouse model (20), whether the mortality of PV-infected mice is affected by disruption of IPS-1 (Fig. 1A). Approximately 70% of WT (PVrtg) mice and ~40% of IPS-1−/− mice survived >10 d postinoculation at an i.p. dose of 2×10⁵ PFU. No statistical significance between these two groups was detected (Fig. 1A). In the same experiments, TICAM-1−/− mice died within 5 d by paralysis (Fig. 1B).

We next investigated the effect of the route of PV infection on mortality in this mouse model. PV (2×10⁵ PFU) was injected i.p. or i.v. into WT and TICAM-1 mice and their mortality was examined (Fig. 1C, 1D). All TICAM-1−/− mice died by paralysis within 7.5 d irrespective of the injection route. The significance of this early mortality rate of PV-infected TICAM-1−/− mice was supported by statistical analysis. The mortality rates were slightly high in WT mice compared with IPS-1−/− mice when PV loads in mice were not very high (Supplemental Fig. 1A). This tendency seemingly diminished by early death of IPS-1−/− mice with high doses of PV input. These data suggested that TICAM-1, rather than IPS-1 (or the sensors RIG-I and MDA5), is a critical factor in protecting mice from PV-mediated paralytic death. This conclusion was confirmed using RIG-I−/− and MDA5−/− mice with a PVrtg background (S. Abe, K. Fujii, and S. Koike, submitted for publication).

These results showed a discrepancy with previous indications that MDA5 is critical in picornavirus protection (13). We therefore tested the dose dependence of PV in the survival of WT versus TICAM-1−/− mice. Surprisingly, high doses of PV (2×10⁵ and 2×10⁶ PFU) induced paralytic death in all WT as well as TICAM-1−/− mice within 6 d (Fig. 2A, 2B). Thus, high doses of PV (>2×10⁵ PFU) appear to overpower the TICAM-1 PV-protective activity in vivo, which confirmed previous findings using other picornaviruses (13). TICAM-1 was most effective in protecting mice from PV-mediated paralytic death. This conclusion was confirmed using RIG-I−/− and MDA5−/− mice with a PVrtg background (S. Abe, K. Fujii, and S. Koike, submitted for publication).

ELSAs were performed according to the manufacturer’s instructions.
the survival against PV infection at low dose ($<2 \times 10^4$ PFU) (Figs. 1B, 1C, 2C). Similar results were obtained with the PV infection study (S. Abe, K. Fujii, and S. Koike, submitted for publication) when TICAM-1−/− mice were substituted with TLR3−/− or IRF-3/7 double-knockout (KO) mice. Results were confirmed using IRF-3−/− and IRF-7−/− mice (26). These results are essentially consistent with previous reports using a PVRtg/IFNAR−/− mouse model (27), in which type I IFN is critical for PV permissiveness, particularly in the intestine of PVRtg mice.

FIGURE 1. Survival of WT, TICAM-1 KO, and IPS-1 KO mice following i.p. or i.v. PV infection. A and R, PV (2×10^4 PFU) was infected via the i.p. route into WT and IPS-1 (A) or TICAM-1 (B) KO mice ($n \geq 5$), and survival was monitored for 14 d. C and D, PV (2×10^3 PFU) was infected via the i.p. (C) or i.v. (D) route into WT and TICAM-1 KO mice ($n \geq 5$), and survival was monitored for 14 d.

FIGURE 2. High doses of PV disable the protective effect of TICAM-1. WT and TICAM-1 KO mice ($n \geq 6$) were i.p. infected with 2×10^6 (A), 2×10^5 (B), or 2×10^2 PFU (C) PV and survival was monitored for 14 d.

FIGURE 3. Viral titers in organs and serum following PV infection. WT and TICAM-1 KO mice were infected i.p. with 2×10^5 PFU PV. The viral titers in each organ (A) and sera (B) were measured by a plaque assay. Data are shown as means ± SD of three independent samples.
after PV i.p. injection in TICAM-1−/− mice compared with WT mice (Fig. 3B).

IFN-α/β levels were measured with sera from WT, IPS-1−/−, and TICAM-1−/− mice, but they were barely detected in these PV-infected mice (Supplemental Fig. 1B). Only i.v. injection of high PV titers (an example shows >4 × 10^8 PFU) allowed WT mice to release type I IFN within 12 h (Supplemental Fig. 1B). No IFN was detected in blood in TICAM-1−/− and IPS-1−/− mice even in this high-dose setting. However, IFN-α production was reproduced in a cell type level (peritoneal MF) in vitro (Supplemental Fig. 1C). PV infection-mediated cell death (28) and degradation of MDA5 protein (29) may be major causes for this undetectable type I IFN production during in vivo PV infection.

TICAM-1 pathway contributes to IFN-β induction in WT mice with low PV titers

We next determined the mRNA levels of type I IFN in each organ extracted from PV (2 × 10^4 PFU)-infected WT and TICAM-1−/− mice. IFN-β mRNA was upregulated in all of the organs tested in WT mice within 12 h in response to PV injection (i.p.) (Fig. 4A). In contrast, only a low increase in IFN-β mRNA was detected in the organs of TICAM-1−/− mice (Fig. 4A). IFN-α2 mRNA was upregulated in the organs of TICAM-1−/− and WT mice to similar extents in response to PV injection (2 × 10^5 PFU, i.p.) (Fig. 4B). Notable decreases in IFN-α2 mRNA were observed in the TICAM-1−/− spleen and spinal cord compared with WT controls (Fig. 4B). The mRNA levels of genes associated with type I IFN induction were evaluated by qPCR, and no unique differences were observed between the splenocytes from PV-infected TICAM-1−/− and IPS-1−/− mice (Supplemental Fig. 1D). Hence, type I IFN mRNA is generally upregulated via TICAM-1 in the local organs of PVRtg WT mice during PV infection.

The mRNA levels of IFN-inducible genes and other cytokines were determined in spleen cells after PV infection. IFN-α and IFN-γ-induced protein 10 (IP-10) mRNA were upregulated in the spleen cells of WT, but not TICAM-1−/− mice, after PV infection (multiplicity of infection [MOI] of 1) (Fig. 4C), with profiles similar to that of IFN-β mRNA (Fig. 4C). A sensor for 5′-triphosphorylated RNA, IFN-induced protein with tetra tripeptide repeats 1 (IFIT-1), was also upregulated through PV infection (Fig. 4C). TNF-α, IL-10, IL-12p40, and IFN-γ, which may be associated with infectious cell death, were barely upregulated in spleen cells in response to PV infection (Supplemental Fig. 1E).

TICAM-1−/−-dependent type I IFN induction by PV depends on Mf in PVRtg mice

The types of cells that participate in type I IFN induction in the spleen were examined by sorting spleen cells. IFN-β and IFN-α2 were found to be induced in WT CD11c+ DC (Fig. 5A), whereas CD11c− cells barely induced type I IFN. Furthermore, IFN-β and IFN-α2 were barely induced in TICAM-1−/− CD11c+ cells (Fig. 5B). Participation of IPS-1 in type I IFN induction in CD11c+ myeloid cells is less compared with that of TICAM-1 (Fig. 5B).

Splenic CD8α+CD11c+ and CD4+CD11c+ cells were separated by MACS beads and their response to PV (MOI of 1) was analyzed by determining the mRNA levels of type I IFN (Fig. 5C). CD8α+CD11c+ cells, but not the CD4+CD11c+ cells, of WT mice were responsible for type I IFN induction by PV. There was a CD4+CD8α− population of DC in the spleen and this type of cells did not induce type I IFN in response to PV (Supplemental Fig. 2). The generation of the mRNA of type I IFN and IFIT-1 by PV infection was abrogated in the TICAM-1−/− CD8α+CD11c+ splenic DC (Fig. 5D). Also, CD4/8α double-negative DC failed to express type I IFNs (Supplemental Fig. 2). Thus, CD8α+CD11c+ DC, which reportedly express TLR3 (30), are the source of type I IFN in PV-infected PVRtg mice.

We finally confirmed that type I IFN is locally induced in TLR3+ myeloid cells during PV infection. BM-MF and BM-DC were prepared from mouse BM and challenged with PV (MOI of 1). These cells express TLR3 in the endosome as previously reported about mouse BM-DC (30) and human monocyte-derived DC (31). BM-MF showed similar profiles of type I IFN mRNA to those of PV-infected splenocytes (Figs. 4C, 6A). However, IFN-α and IP-10 mRNA were not detectable in PV-infected BM-MF, the reason for which remains unclear (Fig. 6A). IL-12p40, a representative TICAM-1−/−-dependent gene, was transiently upregulated.
in BM-Mf ~4 h after PV infection (Supplemental Fig. 3). Similarly, but less prominently, the profiles of type I IFN and IL-12p40 were observed in BM-DC (Fig. 6A, Supplemental Fig. 3) and CD11c+CD8+ splenic DC (Fig. 5D). Therefore, taken together, these results indicate that IL-12 and IFN-α/β are only minimally upregulated in splenic DC in a PV-dependent manner.

The production of IFN-α was determined by ELISA in the supernatant of PV-infected BM-Mf and BM-DC (Fig. 6C). BM-Mf prepared from WT mice generated higher amounts of IFN-α than did those from TICAM-12/2 mice. Although similar results were obtained with BM-DC, the effect of TICAM-1 depletion was not statistically significant (Fig. 6C).

NK cells and MEF do not play major roles in protection against PV infection

Using NK1.1-depleted mice, we tested the possible participation of NK cells in the protection of PVRtg mice from PV infection (Fig. 7). NK1.1+ cells were depleted from mouse blood 1 d after injection (i.p.) of NK1.1 Ab into WT (Fig. 7A) and TICAM-12/2 mice. After PV challenge, WT mice inoculated with control saline and NK1.1 Ab survived similarly, whereas TICAM-12/2 mice were all killed by PV within 7.5 d irrespective of NK1.1 pre-treatment (Fig. 7B). Hence, NK cell activation does not affect PV-derived death. The lack of TICAM-1 was also found to have no effect on the NK cell-mediated rescue of PV-infected mice.

Mouse fibroblasts are known to be a potential source of type I IFN (13). We therefore checked whether MEF induce type I IFN and protection against PV (Supplemental Fig. 4). MEF from WT PVRtg mice were susceptible to PV, with cell death being observed at an MOI of 1. MEF from TICAM-12/2 PVRtg mice were 1 log more susceptible to PV, with cell death occurring at an MOI of 0.1 (Supplemental Fig. 4A). IFN-β was upregulated in PV-infected MEF to only a slightly higher level in PVRtg MEF than in TICAM-12/2 PVRtg MEF (Supplemental Fig. 4B). These results suggested that the large difference in the PV survival rate between WT and TICAM-12/2 mice is not caused by NK cells or type I IFN induction by fibroblasts. The TICAM-1 pathway plays a key role for producing IFN-α/β in Mf/DC, but not in fibroblasts, during PV infection in PVRtg mice.

Discussion

In this study, we demonstrated that PV infection is exacerbated in TICAM-12/2 PVRtg mice. There are a number of RNA-sensing molecules that serve as anti-virus agents and function in a cell type-specific manner. Based on trials using gene-disrupted mice and human viruses, RIG-I has been reported to be essential for sensing infection by rhabdoviruses, influenza viruses, paramyxoviruses, and flaviviruses, whereas MDA5 is important for sensing picornavirus infection (13, 33). In previous studies on picornaviruses, however, only EMCV and several species of picornaviruses have been employed for the KO mice analyses (13). The essential role of type I IFN in PV tropism has been well characterized in PVRtg mice (34). To our knowledge, this study is the first to investigate the sensor that detects PV infection in PVRtg PV-sensitive mice. Because RIG-I and MDA5 use the adaptor IPS-1, we constructed an IPS-12/2 mouse strain for this
study. Unexpectedly, however, IPS-1 was dispensable for protection against PV infection in vivo. This study, taken together with other reports (33, 35, 36), suggests that each virus species has its own strategy to evade host immune attack. This is true even in picornavirus subspecies. Although the IPS-1 pathway involving RIG-I and MDA5 is important for sensing and preventing cytoplasmic virus replication, other steps also participate in critical regulation of virus replication. PV infection is the case where MDA5 is not absolutely critical, but TICAM-1 is essential, for virus protection.

The TICAM-1 pathway participates in driving NK/CTL activation in DC/MF (21, 37). This pathway is involved in type I IFN induction, as in the IPS-1 pathway, but cells expressing TLR3 are limited. The TLR3 distribution profile by flow cytometry confirms its expression in myeloid cells in mice (30). The TICAM-1 pathway converges with the IPS-1 pathway via the molecular complex of IRF-3–activating kinases (38), and therefore activation of the TICAM-1 pathway induces type I IFN and other IFN-inducible genes (39). Nevertheless, gene induction profiles differ between the TICAM-1 and IPS-1 pathways (40), which may explain the functional distinction between the sensor that is triggered in the virus-infected cells (MDA5/IPS-1) and the sensor that is required for DC/MF to mount immune responses. Studying these gene functions will be an important issue for functional discrimination between the intrinsic versus extrinsic sensors.

RIG-1/MDA5 are distributed over almost all organs, including Mi/DC. An interesting point concerns what the function is of the IPS-1 pathway in PV infection. Without conditional KO mice, we have an experimental limit to discriminate between their intrinsic function that is triggered in PV-infected cells and the extrinsic function leading Mi/DC to driving the innate immune response. Because the TLR3/TICAM-1 pathway is conserved in Mi/DC, the CNS, fibroblasts, and epithelial cells, it is reasonable that their functions are rather specified in Mi/DC and the neuronal system in PV infection.

However, except several examples such as rhabdovirus (41) and hepatitis C virus (HCV) (32), no definitive evidence has been reported supporting the role of TLR3/TICAM-1 in anti-RNA virus infection using KO mice, unlike IPS-1 (35, 36). In previous studies, we used RNA viruses and their mouse models of measles virus, respiratory syncytial virus, vesicular stomatitis virus, influenza virus, and rotavirus infection (12), but we were unable to demonstrate solid antiviral function of the TLR3/TICAM-1 pathway in these models (12). Accordingly, which type I IFN, IFN-inducible gene, NK cell, or CTL is an effector for antagonizing viral replication still remains uncharacterized. To our knowledge, the results of our present study first demonstrated that the TLR3/TICAM-1 pathway is indispensable for induction of the type I IFN effector, but not NK cell activation, which is a critical event in the elimination of virus-infected cells and host protection against PV. IL-12 and IFN-γ are not upregulated in splenic DC in a PV-dependent manner. Furthermore, CTL are unlikely to be involved in our present model, since they would not function within the time scale of several days after initial infection (42).

FIGURE 6. Production of type I IFN from BM-MF and BM-DC. BM-MF (A) and BM-DC (B) were prepared from BM cells with M-CSF and GM-CSF, respectively (32). The cells were infected with PV (MOI of 1), and the expression levels of IFN-β, IFN-α2, IFN-λ, and IP-10 were determined by RT-qPCR. C, IFN-α produced by PV-infected BM-MF and BM-DC was measured by ELISA. BM-MF and BM-DC were prepared from BM cells of WT and TICAM-1−/− mice as in A and B. Data are shown as means ± SD and are representative of three independent experiments.

FIGURE 7. Effect of NK cells on mortality of PV-infected TICAM-1−/− PVRtg mice. A, To block the NK cell activity in mice, NK1.1 Ab or PBS (control) was i.p. injected into WT mice (n = 6). After 24 h, spleen cells were isolated from the mice and the fraction of NK1.1+ cells was measured by FACS analysis. B, NK1.1 Ab or PBS was i.p. injected into WT and TICAM-1 KO mice. After 24 h, the mice were infected i.p. with PV, and survival was monitored for 15 d.
How PV circumvents host-inducible type I IFN is an intriguing point. Three lines of evidence have supported the presence of unique mechanisms by which PV infection abrogates MDAlmediated type I IFN production by infected cells and accelerates TLR3-mediated DC maturation through phagocytosis of PV-infected cell debris. First, proteases encoded in the PV genome process the PV polyprotein to produce functional viral proteins (43). PV 2A and 3C proteases also contribute to the degradation of eIF4G (44) and TATA-binding protein (45), respectively, the cleavage of which induces the translational and transcriptional “shutoff” of host protein synthesis (28). Thus, blocking the synthesis of host cell proteins by PV involves stopping IFN production. Second, MDA5 is degraded in PV-infected cells in a proteasome- and caspase-dependent manner, resulting in the lack of type I IFN production (29). Third, PV-mediated apoptosis occurs in a caspase-dependent manner to disable infected cells from inducing an IFN response (46), with the MDA5-dependent innate response to PV infection becoming minimal within 3 h postinfection. Additionally, RIG-I is also cleaved by the viral protease 3C (47), and additional RIG-I functions are subsequently disrupted. Hence, the RIG-I/MDA5 functional time frames should be narrow and ineffective in PV-infected cells.

The hijacked cells release virions and die irrespective of blocking of the IPS-1 pathway. These infected cells are degrading into apoptotic debris containing virus dsRNA when RIG-I/MDA5 is ineffective at inducing IFN (48). Phagocytic internalization of this infected debris containing viral dsRNA into endosomes in Mf/DC is a critical event for TLR3 stimulation (37). If this is the case in PV-infected PVRtg mice, dsRNA-containing debris produced by apoptosis of PV-infected cells may play a major role in the activation of the TICAM-1 pathway in myeloid cells, as is the case for another positive-stranded RNA virus, HCV (32). In HCV studies, dead cells act as carriers of viral dsRNA to the endosomes of DC (32). HCV induces cellular immunity including NK activation driven by the DC TICAM-1 pathway. PV, however, barely induces NK cell activation.

The results of the present study were obtained using the PVRtg mouse model for human PV infection. Possible limitations of this model may include the fact that PV natural infection in humans occurs postinfection of the intestine by a low dose of PV and the PV mouse model is unable to reproduce this infectious route (27). The difference in PV infection between human and the PVRtg mouse model may include the fact that PV natural infection in humans differs from those in the immune system we examined (54, 56). How PV infection modulates IFN/cytokine-inducing signaling in the nervous system is an interesting issue. The possibility remains that cytokines, such as TNF-α, IL-10, IL-12p40, and IFN-γ, might be associated with the removal of infectious cells as in other virus infections, and the antiviral function of TLR3 ligands in PV-infected mice requires further elucidation.

A picornavirus CBV activates the TLR3/TICAM-1–IFN-γ axis in host-infected cells to induce type II IFN (18). It is possible that CBV promotes TLR3-dependent IFN-γ induction in lymphocytes rather than the type I IFN-inducing pathway. In the model of PV infection, however, the TICAM-1 pathway does not contribute to type II IFN induction. These findings indicate that picornaviruses, that is, EMCV, CBV and PV, have independently evolved to adapt to the host innate immune system and cope with the IFN-inducing system. If this is the case, host responses against picornaviruses may not be unimodally raised by MDA5 but may provide differentially adapted strategies. EMCV tropism reported previously (13) is clearly distinct from those of other picornaviruses. In this article, we present evidence that PV infection is protected by the TICAM-1 pathway that extrinsically induces type I IFN. Virus-produced dsRNA may differentially act on host cells depending on each virus species and accomplish circumvention from host innate sensing systems, maintaining virus tropism.

Acknowledgments
We are grateful to Dr. A. Nomoto (University of Tokyo, Tokyo, Japan) and our laboratory members for invaluable discussions. We also thank Dr. D.M. Segal (National Institutes of Health, Bethesda, MD) for providing the anti-mouse TLR3 mAb and Drs. S. Akira (Osaka University, Osaka, Japan) and T. Taniguchi (University of Tokyo) for providing TLR3+/− and IRF3/7−/− mice, respectively, for this study.

Disclosures
The authors have no financial conflicts of interest.

References
adaptor molecule-1-mediated NF-κB and interferon regulatory factor-3 activation.

